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Motivation for Using Smart Antennas

� The demand for wireless communications is ever growing.

– Each user requests higher data rates and reliability

– More users requests request service simultaneously

� Bandwidth is limited!

� Radio channel is not particularly ’friendly’

– Reflections results in signal arriving at the receiver via multiple paths with random phase

and amplitude

– Arrival of multiple paths introduce delay spread, intersymbol interference

– Significant problems arise from other users interfering with the signal transmission
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How can Smart Antennas help?

� Antenna arrays at the receiver:

– M-fold gain for M-antenna elements

– Diversity gain against multipath fading

� Depends on correlation of the fading

– Interference mitigation

� Separation of users with antenna arrays whose radiation pattern is not isotropic
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Diversity

� Spatial Diversity

– If the angle spread is large, then small separation of antennas (λ�4) is sufficient for low

correlation

– Handsets, indoor base stations, urban area base stations typically have large angle spread

– High towers may need a lot more antenna spacing ( 10λ) for low correlation

� Polarization Diversity

– Limited gain

� Angle Diversity

– Adjacent narrow beams used

– Small separation sufficient

� Diversity gain at the base station typically achieved by

– Selection Diversity (select the antenna with best quality)

– Maximum ratio combining (weighted sum of signals to max SNR)
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Smart Antennas and Interference Suppression

� Current cellular systems: 3 sector antennas, non-interfering channels

� Channel management becomes difficult (too many hand-offs) with too many sectors

� Multibeam antennas (multiple fixed beams) can cover each sector: No handoffs between

beams, limited diversity, limited interference reduction

� Adaptive Arrays

– Combine the signals received at each array element in a way to improve the performance

for the signal of each user, e.g., max SIR

– Effective interference suppression

– M antennas can null out M-1 interferers, can significantly reduce interference even when

there are more than M interferers

– A vehicle to provide multiple access capability for a narrow band system: SDMA
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Array Combining (Beamforming)

� Suppress interferer’s by adjusting the weights with which the signals are combined

� Changes in the channel/interference structure can be tracked with adaptive methods

� More complex than multibeam antennas sinceeach userneeds a different combiner

� Typically for narrowband systems, if delay spread is non-negligible; temporal equalization is

needed

� For wideband systems, i.e., CDMA, a combiner for multiple paths is used

� Adaptive arrays are used in

– GSM and IS-136 systems along with temporal equalization

– IS-95 systems along with RAKE receiver

� The temporal and array combining is done in cascade, each optimized for the
corresponding domain



A. Yener, WCAN@Penn State 7

Beamforming (Spatial Filtering)
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Code Division Multiple Access: Principles
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Interference Management for CDMA
� CDMA systems areinterferencelimited because

– Users haveunique, butnon-orthogonalsignatures

� Strong users can destroy weak user’s communication� near-far problem

� Interference Managementis needed!
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Interference Management Techniques

� Power Control[Zander] [Yates] [Hanly]

� Multiuser Detection (Temporal Filtering)[Verdú][Xie et. al.][Madhow,Honig]

� Beamforming (Spatial Filtering)[Naguib et. al.]

� Power ControlandMultiuser Detection[Ulukus, Yates]

� Power ControlandBeamforming[Rashid-Farrokhi et. al.]

� Multiuser DetectionandBeamforming[Yener, Yates, Ulukus]

� Power Control, Multiuser Detection, andBeamforming[Yener, Yates, Ulukus]

� Power ControlandAdaptive cell sectorization[Saraydar,Yener]
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Beamforming (Spatial Filtering)
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Linear Multiuser Detection (Temporal Filtering)
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Temporal and Spatial Filtering
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Temporal-Spatial Filtering

� Several possible filter structures:

– Single userapproach: Temporal-spatial matched filter [Naquib et. al]

– Single user – multiuserapproach: Temporal matched filter + Spatial MMSE or vice versa

[Honig et. al] [Rashid-Farrokhi et. al]

– Cascadedstructures: MMSE temporal combiners cascaded with an MMSE spatial

combiner, or vice versa [Yener, Yates, Ulukus]

� Each of these filters can be expressed as a matrix filter.

� Joint optimum temporal-spatial filter perform better than any cascade structure[Yener et.al.]

� We focus on joint temporal-spatial MMSE filter designs.
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Previous work

� Assume synchronous users; single path. Received signal matrix over one bit period:

R �
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∑
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Received Signal
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Optimum Temporal-Spatial Filter (OTSF)

� Find the matrix filterX i that yields the minimum MSE betweenyi andbi.

x̄i �
�

Pi

�

K

∑
k�1

PkqkqH
k �σ2I

��1

qi

whereskaT
k � qk

� This filter results in the minimum MSE overall possiblefiltering schemes in temporal and

spatial domains

� Resulting jointoptimum filter has a closed form

� Complexity due to the inversion of aNM�NM matrix� Find a simpler receiver structure

� MN could be large! (e.g.N � 64,M � 4)
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OTSF Receiver for Useri
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Constrained Temporal-Spatial Filters (CTSF)
[Yener et.al.]

� Separable temporal-spatial filters for reduced complexity:X̃i � ciw�

i

� Decision statistic for useri:

yi � tr�wic�i R� � c�i Rwi

� Find the separable filters that arejointly optimumin MSE sense

� Rank-1 filters: Constrain the feasible set of possible matrix filters to ones of the form

Xi � ciwT
i

– The sameN dimensional temporal filter,ci at the output of each antenna

– Combine the outputs via theM dimensional beamformer,w i

– Jointly optimumci andwi are found iteratively. Rank-1 filters work well when

� system is not overloaded

� reasonably good power control
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OTSF vs. CTSF Receiver for Useri
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Motivation for Rank-r Filters
[Filiz, Yener]

� Rank-1 constrained filters:

– Suboptimal performance due to the constrained solution space

– Performance difference can be pronounced in heavily loaded systems

*Filters with performance between OTSF and the rank-1 constrained filter are needed

� Multipath environments:Need to take advantage of temporal diversity.

� Adaptive Implementation

– Suitable for a cellular environment

– Only the knowledge of training bits is required

*Algorithms that do not require the explicit channel estimates are desirable



A. Yener, WCAN@Penn State 23

Multipath Channel Model

� Transmitted signal of userk
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Simplified Multipath Channel Model
� Synchronous users

� Each user hasL paths with chip synchronous delays

� τk�l �� T such that ISI can be ignored

� Received signal over the observation interval
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Rank-r Constrained Filters
� Achieve the performance improvement by relaxing the constraint:

X̄i �argmin
X

E

���tr�XHR

��bi

��2�

s.t. rank�X�
 r� 1
 r 
min�N �L�1�M�

� Satisfy the rank constraint by decomposingX i as:
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r

∑
j�1

ci jwT
i j

� The MSE and the optimization problem expressions become:
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Receiver Structure
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Performance Metric

� MSE expression becomes:

MSE�
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� Note that MSE is a function of 2r variables

�ci1� � � � �cir�wi1� � � � �wir�

� MSE is not jointly convex in all variables

� MSE is convex for a single variable, given that the other 2r�1 variables are fixed

� Use alternating minimization algorithm to iteratively minimize the MSE
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Alternating Minimization Algorithm

� Each step consists of 2r sub-steps

� At each sub-step, update a single variable to minimize the MSE

� The algorithm can be expressed as

FOR t � 1 : S

FOR x � 1 : r

ĉix � MMSE��ci j� j ��x��wi j�r
j�1�

ŵix � MMSE��ci j�r
j�1��wi j� j ��x�

END

END

whereĉix andŵix denote the values that minimize MSE

S is the total number of steps
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Adaptive Implementation
� All users’ parameters needed in deterministic iterations.

� Adaptive implementation is needed in practice.

� Combination of alternating minimization with LMS

– Keep the main structure of the alternating minimization algorithm

– Solve each sub-step using the classical LMS approach

� The classical LMS rule:

wi�n�1� � wi�n��µ�di�n�� yi�n��
�u�n�

� Define the desired response, decision statistic and the input signal

di � bi�
r

∑
j ��x

cH
i jRw�

i j

yi � cH
ixRw�

ix

u�n� � Rw�

ix �or RT c�ix�
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Parameters that Affect Convergence

� Block sizeB

– LMS converges to optimum in infinite iterations (training bits)

– At each sub-step we truncate the LMS afterB training bits

– SmallerB � premature jumping to the next step

– LargerB � slower overall algorithm

� Step sizeµ

– Smallerµ � slower convergence but higher accuracy

– Largerµ � faster convergence but more residual error



A. Yener, WCAN@Penn State 31

Numerical Results

� A single cell CDMA system with

� N � 16 processing gain

� Linear antenna array withM � 8 elements, equispaced atλ�2

� Channel coefficients are zero mean complex Gaussian variables, normalized such that

E�
hk�l 
2� � 1

� SNR of desired user is 10 dB
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MSE v.s The Iteration Index (K � 40, N � 16, M � 8, L � 3)
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SIR v.s The Iteration Index (K � 40, N � 16, M � 8, L � 3)

5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

Iteration Index

S
IR

 (
dB

)

OTSF
rank−4
rank−2
rank−1



A. Yener, WCAN@Penn State 34

SIR v.s The Iteration Index (K � 10, N � 16, M � 8, L � 3)
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SIR v.s The Number of Paths (K � 40, N � 16, M � 8)
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SIR v.s The Training Bits (K � 40, N � 16, M � 8, L � 3, µ � 0�01)
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SIR v.s The Training Bits (K � 40, N � 16, M � 8, L � 3, rank�X� � 2)
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SIR v.s The Training Bits (K � 40, N � 16, M � 8, µ � 0�01, rank�X� � 4)
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Conclusions

� Smart antennas provide additional wireless capacity

� Joint temporal-spatial multiuser detectors improve the performance of CDMA systems

� Rank constrained filters

– Relaxing the constraint increases the performance

– Near optimal performance can be achieved with a mild increase in complexity

– Trade-off between complexity and performance

� Adaptive implementations

– Only the training bits and the timing of the first path of the desired user are required

– B andµ affect convergence speed and the residual error

� The existence of multipath provides diversity
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Further Reading, Current Research
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� Transmitter design issues for multiple antenna systems (narrowband)

� Transmit beamformer design for CDMA systems with receiver antenna arrays

Seehttp://labs.ee.psu.edu/labs/wcanfor papers and the copy of this talk


