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Motivation for Using Smart Antennas'

e The demand for wireless communications is ever growing.
— Each user requests higher data rates and reliability

— More users requests request service simultaneously
e Bandwidth is limited!

e Radio channel is not particularly 'friendly’

— Reflections results in signal arriving at the receiver via multiple paths with random phase
and amplitude

— Arrival of multiple paths introduce delay spread, intersymbol interference

— Significant problems arise from other users interfering with the signal transmission
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How can Smart Antennas help;.]

e Antenna arrays at the receiver:
— M-fold gain for M-antenna elements

— Diversity gain against multipath fading
+x Depends on correlation of the fading

— Interference mitigation
x Separation of users with antenna arrays whose radiation pattern is not isotropic



A. Yener, WCAN@Penn State 4

Diversity I

— If the angle spread is large, then small separation of anterag s sufficient for low
correlation

e Spatial Diversity

— Handsets, indoor base stations, urban area base stations typically have large angle sprea

— High towers may need a lot more antenna spacing\j idr low correlation

Polarization Diversity

— Limited gain

Angle Diversity
— Adjacent narrow beams used

— Small separation sufficient

Diversity gain at the base station typically achieved by
— Selection Diversity (select the antenna with best quality)

— Maximum ratio combining (weighted sum of signals to max SNR)
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Smart Antennas and Interference Suppressio'

Current cellular systems: 3 sector antennas, non-interfering channels

Channel management becomes difficult (too many hand-offs) with too many sectors

Multibeam antennas (multiple fixed beams) can cover each sé&tbdnandoffs between
beams, limited diversity, limited interference reduction

Adaptive Arrays

— Combine the signals received at each array element in a way to improve the performance
for the signal of each user, e.g., max SIR

— Effective interference suppression

— M antennas can null out M-1 interferers, can significantly reduce interference even when
there are more than M interferers

— A vehicle to provide multiple access capability for a narrow band system: SDMA
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Array Combining (Beamforming) I

e Suppress interferer’s by adjusting the weights with which the signals are combined
e Changes in the channel/interference structure can be tracked with adaptive methods
e More complex than multibeam antennas siraeh usemeeds a different combiner

e Typically for narrowband systems, if delay spread is non-negligible; temporal equalization is
needed

e For wideband systems, i.e., CDMA, a combiner for multiple paths is used

e Adaptive arrays are used in
— GSM and 1S-136 systems along with temporal equalization
— 1S-95 systems along with RAKE receiver

e The temporal and array combining is done in cascade, each optimized for the
corresponding domain



A. Yener, WCAN@Penn State

user |

Beamforming (Spatial Filtering) I

Y Temporal :
—
r(t) | Matched | ['f ] W

sgn

I=<

Filter r

sgn

sgn

BASE STATION

b = sgn (wr)

>



A. Yener, WCAN@Penn State
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Code Division Multiple Access: Principlea

(signature  S(t) one chip interval Processing gain:
sequence Tc N =T /T
of user i) — - bl e

(bandwidth
i expansion
factor)
one bit interval Ty
bit stream
of user i , ,
by =+1 i b =-1 i
+1 ' —
S b t

signal transmitted by user i
in one bit interval = \/p b s (1)



A. Yener, WCAN@Penn State

Interference Management for CDMAI

e CDMA systems arinterferencdimited because
— Users haveinique butnon-orthogonasignatures

e Strong users can destroy weak user’'s communicatiamear-far problem

¢ Interference Managemeistneeded!
5;(t)

VY a BASE
STATION

user i
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Interference Management Technique’

e Power Contro[Zander] [Yates] [Hanly]

e Multiuser Detection (Temporal Filteringyerdu][Xie et. al.][Madhow,Honig]
e Beamforming (Spatial FilteringNaguib et. al.]

e Power ControandMultiuser DetectiorfUlukus, Yates]

e Power ControandBeamformingRashid-Farrokhi et. al.]

e Multiuser DetectiorandBeamformind Yener, Yates, Ulukus]

e Power ContrglMultiuser DetectionandBeamforming Yener, Yates, Ulukus]

e Power ControandAdaptive cell sectorizatiofSaraydaryener]

11
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Beamforming (Spatial Filtering) I
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e More intelligent filters in spatial domain
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Linear Multiuser Detection (Temporal Filtering) I
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Temporal and Spatial Filtering I
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R and X are matrices! b = sgn(tr(XR))

e Moreintelligent filters in both domains
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Temporal-Spatial Filtering I

Several possible filter structures:

— Single useapproach: Temporal-spatial matched filter [Naquib et. al]

— Single user — multiusapproach: Temporal matched filter + Spatial MMSE or vice versa
[Honig et. al] [Rashid-Farrokhi et. al]

— Cascadedtructures: MMSE temporal combiners cascaded with an MMSE spatial
combiner, or vice versa [Yener, Yates, Ulukus]

Each of these filters can be expressed as a matrix filter.
e Joint optimum temporal-spatial filter perform better than any cascade str{iaumer et.al.]

e \We focus on joint temporal-spatial MMSE filter designs.
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Previous work.

e Assume synchronous users; single path. Received signal matrix over one bit period:

K
R=7% v Pdsag +N
=

Decision statistic computed via linear matrix filber

N M
Yi = nzlmzl[xi];man =tr(X{'R)

Design matrix filters to minimize the MSE

- . 2
X; = arg n)1<|nE Utr (X7R) — by }

16
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Received Signa'

CHIP N RIn.1
MF t=nT, [n.1]
CHIP AN R[nM]
MF t=nT

Synchronous system with processing gdirM antenna elements alkdusers

17
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Optimum Temporal-Spatial Filter (OTSF) I

Find the matrix filterX; that yields the minimum MSE betwegnandb;.

1
K

Xi = /P (Z Pakal +02|> of
=1

wheresca} — gk

This filter results in the minimum MSE oveil possibléfiltering schemes in temporal and
spatial domains

Resulting jointoptimum filter has a closed form

Complexity due to the inversion offdM x NM matrix= Find a simpler receiver structure

MN could be large! (e.gN = 64,M = 4)

18
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OTSF Receiver for Userl I
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Constrained Temporal-Spatial Filters (CTSF)
[Yener et.al.]

Separable temporal-spatial filters for reduced complexit{; = ciw;

e Decision statistic for usar
yi = tr(w; CiTR) = CiTRWi

e Find the separable filters that goently optimumin MSE sense

Rank-1 filters: Constrain the feasible set of possible matrix filters to ones of the form

Xi = CiW?-

— The saméN dimensional temporal filteg; at the output of each antenna
— Combine the outputs via thd dimensional beamformeuy;

— Jointly optimumc; andw; are found iteratively. Rank-1 filters work well when

* system is not overloaded
* reasonably good power control

20
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OTSF vs. CTSF Recelver for Useni.

21

Chip

ample

YWS

Chip

Y=l
- I‘z(t) sample .

Y
sample

Y Chip c
< |sample il
I‘l('[) P I
Chip
Y = |samplgl =1 Ci2
rz(t) [2
Y Chip
e C.
sample iK
r(t) B
OTSF

e CTSF:First combine all the chip vectors usingthen combine the resulting vector usiwg

Chip
rK(t) [K
CTSF



A. Yener, WCAN@Penn State

Motivation for Rank-r Filters ' [Filiz, Yener]

e Rank-1 constrained filters:
— Suboptimal performance due to the constrained solution space
— Performance difference can be pronounced in heavily loaded systems

*Filters with performance between OTSF and the rank-1 constrained filter are needed

e Multipath environmentd\eed to take advantage of temporal diversity.

e Adaptive Implementation
— Suitable for a cellular environment
— Only the knowledge of training bits is required
*Algorithms that do not require the explicit channel estimates are desirable

22
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Multipath Channel Model I

e Transmitted signal of usédr

e Multipath channel impulse response
L
hk(t) = Z hk,| 6('[ — Tk,|)
=1

e Received signal at the output of the antenna array

K L

rt) =5 > hgzt—Ti) — Vi) ax +n(t)
&S

23
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Simplified Multipath Channel Model I

Synchronous users

Each user hak paths with chip synchronous delays

Tk) << T such that ISI can be ignored

Received signal over the observation interval

K
R=7% v PbSHAL +N
=1

.
) - .
SHl
_[ | Hy = Ak = a1,
0 hi L
s(N] |

g
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Rank-r Constrained FiIters.

e Achieve the performance improvement by relaxing the constraint:
X; =arg |T>1<inE [\tr (X"R) —b; \Z]
s.t. rankX) <r, 1<r<mn{N+L-1,M}

e Satisfy the rank constraint by decomposkgas:
r
Xi= Z CijWi-I}
]=1

e The MSE and the optimization problem expressions become:

2
;
MSE = E ||y cfjRwj;—b
=1
{Cil,...,Cir,Wil,...,Wir} — argmin  E zCinWi*j—bi
Ci1,.--,Cir ,Wij1,...,Wir J:l

2

25
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Filtering

Chip Matche
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Receiver Structure'
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Performance Metric.

e MSE expression becomes:
AL H T\/H
MSE: Z Z Z PkC“ VkWﬁWiij Cij
[I=1j=1k=1

2
I

+0

M-

S () (whwiy) —2VA S 0 {dfiViw } +1
=1 =1

whereVy = S¢HAL

Note that MSE is a function ofr2variables

{Ci1,...,Cir,Wi1,..., Wi }

MSE is not jointly convex in all variables

MSE is convex for a single variable, given that the other 2 variables are fixed

Use alternating minimization algorithm to iteratively minimize the MSE

27
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Alternating Minimization Algorithm I

e Each step consists of 2ub-steps
e At each sub-step, update a single variable to minimize the MSE

e The algorithm can be expressed as
FOR t=1:S
FOR x=1:r
Cix = MMSE({Gij } j£x, {Wij }j=1)
Wix = MMSE({Cij }| 1, {Wij }jx)
END
END

wherec€iy andwiy denote the values that minimize MSE
Sis the total number of steps

28
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Adaptive Implementation I

All users’ parameters needed in deterministic iterations.

e Adaptive implementation is needed in practice.

e Combination of alternating minimization with LMS
— Keep the main structure of the alternating minimization algorithm

— Solve each sub-step using the classical LMS approach

e The classical LMS rule:
Wi (n-+1) = wi(n) + K(di(n) - yi(n))" u(n)

e Define the desired response, decision statistic and the input signal

r

d — bi_zcil_j'RWi*j
2t

yi — CcIRwW

uin) — Rwj, (orR™cy)

29
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Parameters that Affect Convergencj

— LMS converges to optimum in infinite iterations (training bits)

e Block sizeB

— At each sub-step we truncate the LMS afBaraining bits
— SmallerB — premature jumping to the next step
— LargerB — slower overall algorithm
e Step sizeu
— Smallery — slower convergence but higher accuracy

— Largery — faster convergence but more residual error

30
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Numerical Results.

A single cell CDMA system with
N = 16 processing gain
Linear antenna array withl = 8 elements, equispacedst2

Channel coefficients are zero mean complex Gaussian variables, normalized such that
2
Eflhe | =1

SNR of desired user is 10 dB
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SIR v.s The Iteration Index (K =40,N=16,M =8,L = 3)
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SIR v.s The Iteration Index (K =10,N=16,M =8, L = 3)
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SIR v.s The Number of Paths K =40,N =16, M = 8)'
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SIR v.s The Training Bits (K =40,N =16, M =8, L = 3, rank(X) = 2)

0.7

0.6 N

MSE

0.5 n

04r N

0.3+ H= 0.05 ]

0.2

H=0.01

01 | | | | | | | | |
200 400 600 800 1000 1200 1400 1600 1800 2000

Training Bits



A. Yener, WCAN@Penn State

SIR v.s The Training Bits (K =40, N = 16, M = 8, = 0.01, rank (X) = 4)
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Conclusions'

Smart antennas provide additional wireless capacity
Joint temporal-spatial multiuser detectors improve the performance of CDMA systems

Rank constrained filters
— Relaxing the constraint increases the performance
— Near optimal performance can be achieved with a mild increase in complexity

— Trade-off between complexity and performance

Adaptive implementations
— Only the training bits and the timing of the first path of the desired user are required

— B andy affect convergence speed and the residual error

The existence of multipath provides diversity
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Further Reading, Current Research'

— J. Winters, “Smart Antennas for Wireless Systems”, IEEE Personal Communications,
Feb 1998

— A. Paulraj, C. Papadias, “Space-Time Processing for Wireless Communications”, IEEE
Signal Processing Magazine, November 1997

e References

— J. Liberti, T. Rappaport, Smart Antennas for Wireless Communications, Prentice-Hall,
1999

e Transmitter design issues for multiple antenna systems (narrowband)
e Transmit beamformer design for CDMA systems with receiver antenna arrays

Seehttp://labs.ee.psu.edu/labs/wdanpapers and the copy of this talk



