# Performance Enhancement of CDMA Systems Using Smart Antennas: Joint temporal-spatial designs

1

**Aylin Yener** 

The Pennsylvania State University

yener@ee.psu.edu

March 2, 2004

### **Motivation for Using Smart Antennas**

- The demand for wireless communications is ever growing.
  - Each user requests higher data rates and reliability
  - More users requests request service simultaneously
- Bandwidth is limited!
- Radio channel is not particularly 'friendly'
  - Reflections results in signal arriving at the receiver via multiple paths with random phase and amplitude
  - Arrival of multiple paths introduce delay spread, intersymbol interference
  - Significant problems arise from other users interfering with the signal transmission

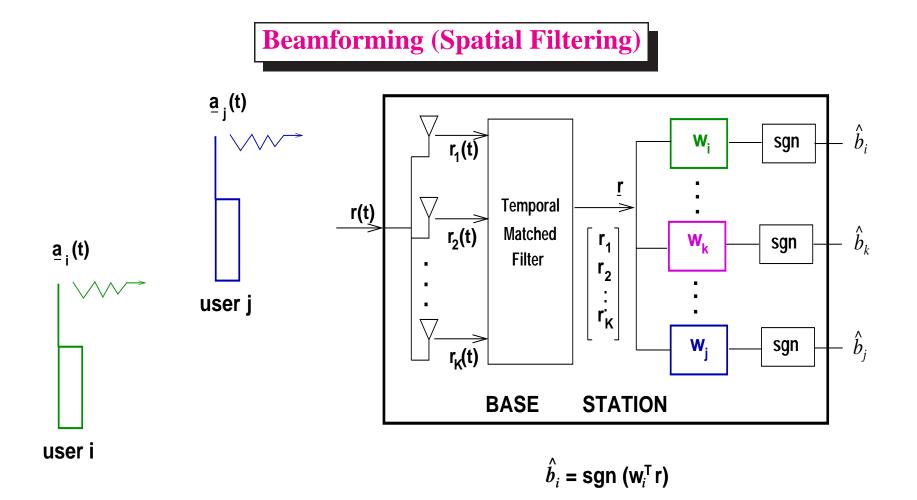
### How can Smart Antennas help?

- Antenna arrays at the receiver:
  - M-fold gain for M-antenna elements
  - Diversity gain against multipath fading
    - \* Depends on correlation of the fading
  - Interference mitigation
    - \* Separation of users with antenna arrays whose radiation pattern is not isotropic

# Diversity

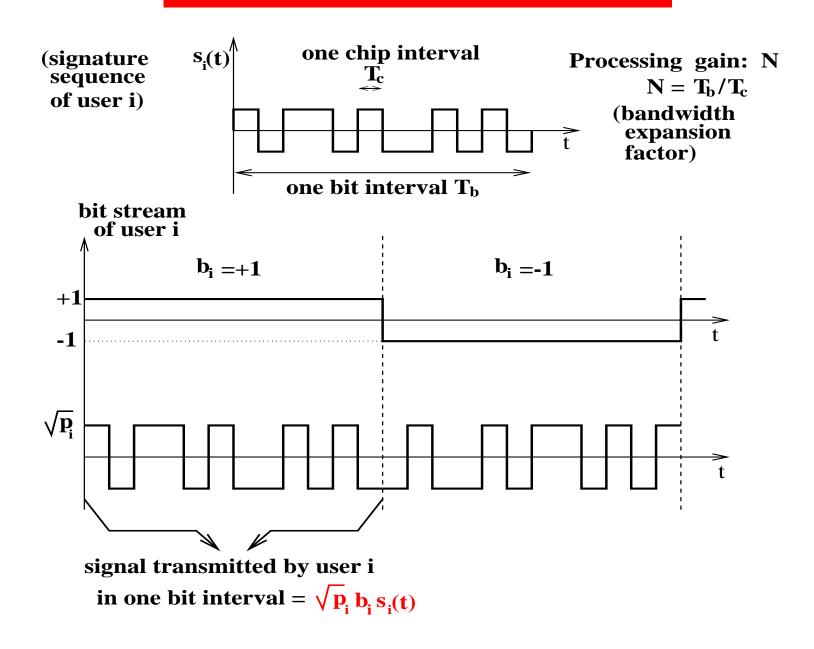
- Spatial Diversity
  - If the angle spread is large, then small separation of antennas (  $\lambda/4$ ) is sufficient for low correlation
  - Handsets, indoor base stations, urban area base stations typically have large angle spread
  - High towers may need a lot more antenna spacing (  $10\lambda$ ) for low correlation
- Polarization Diversity
  - Limited gain
- Angle Diversity
  - Adjacent narrow beams used
  - Small separation sufficient
- Diversity gain at the base station typically achieved by
  - Selection Diversity (select the antenna with best quality)
  - Maximum ratio combining (weighted sum of signals to max SNR)

### **Smart Antennas and Interference Suppression**


- Current cellular systems: 3 sector antennas, non-interfering channels
- Channel management becomes difficult (too many hand-offs) with too many sectors
- Multibeam antennas (multiple fixed beams) can cover each sector: No handoffs between beams, limited diversity, limited interference reduction

### Adaptive Arrays

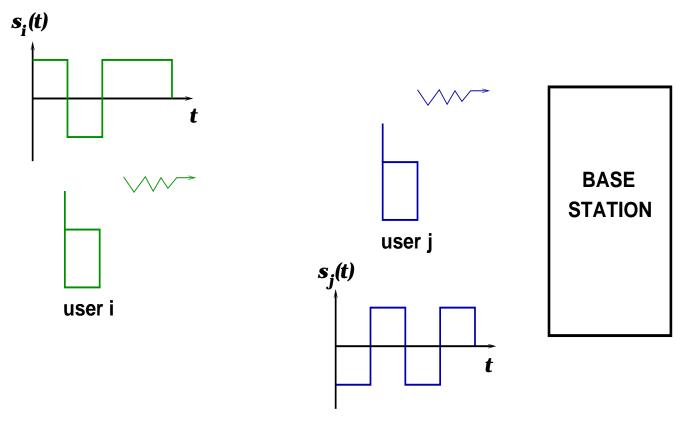
- Combine the signals received at each array element in a way to improve the performance for the signal of each user, e.g., max SIR
- Effective interference suppression
- M antennas can null out M-1 interferers, can significantly reduce interference even when there are more than M interferers
- A vehicle to provide multiple access capability for a narrow band system: SDMA


### Array Combining (Beamforming)

- Suppress interferer's by adjusting the weights with which the signals are combined
- Changes in the channel/interference structure can be tracked with adaptive methods
- More complex than multibeam antennas since each user needs a different combiner
- Typically for narrowband systems, if delay spread is non-negligible; temporal equalization is needed
- For wideband systems, i.e., CDMA, a combiner for multiple paths is used
- Adaptive arrays are used in
  - GSM and IS-136 systems along with temporal equalization
  - IS-95 systems along with RAKE receiver
- The temporal and array combining is done in cascade, each optimized for the corresponding domain

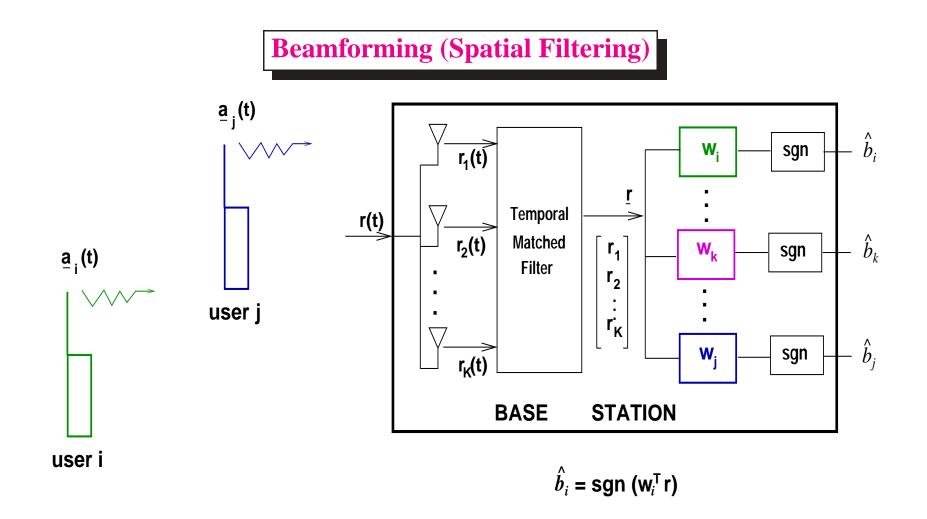





### **Code Division Multiple Access: Principles**

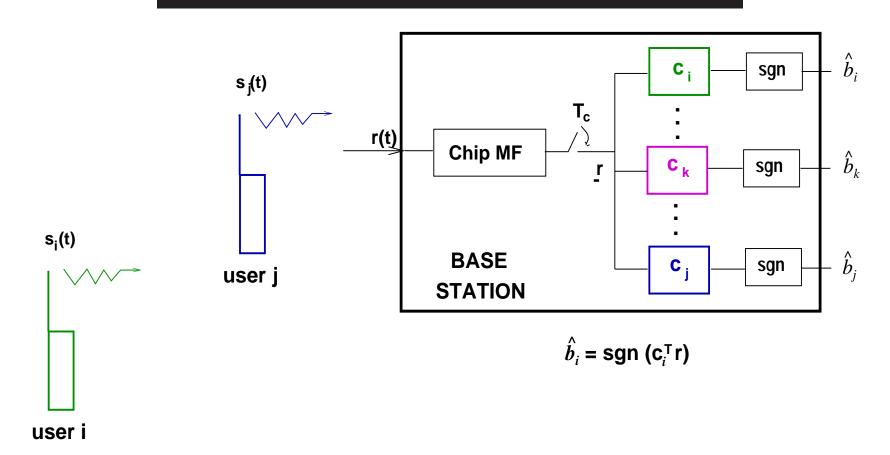


#### A. Yener, WCAN@Penn State

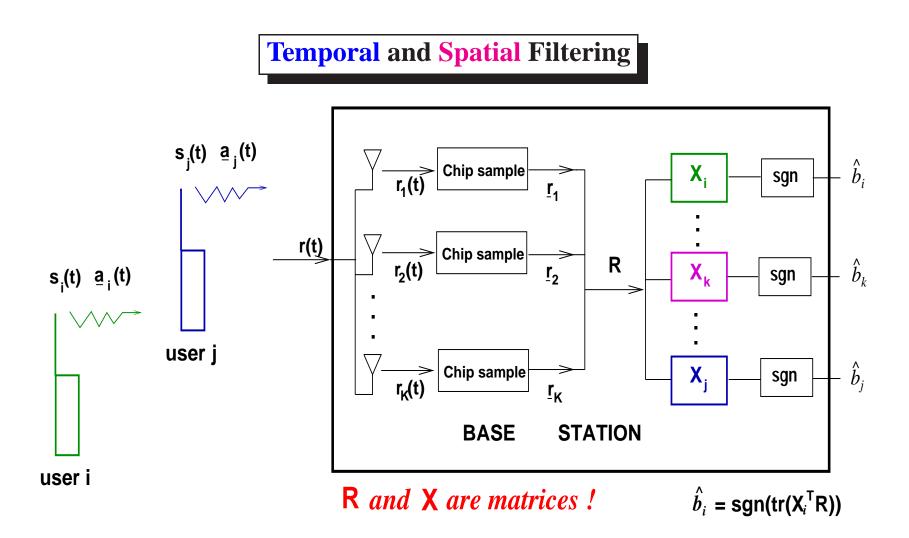

### **Interference Management for CDMA**

- CDMA systems are interference limited because
  - Users have unique, but non-orthogonal signatures
- Strong users can destroy weak user's communication  $\leftarrow$  near-far problem
- Interference Management is needed!




### **Interference Management Techniques**

- Power Control [Zander] [Yates] [Hanly]
- Multiuser Detection (Temporal Filtering) [Verdú][Xie et. al.][Madhow,Honig]
- Beamforming (Spatial Filtering) [Naguib et. al.]
- Power Control and Multiuser Detection [Ulukus, Yates]
- Power Control and Beamforming [Rashid-Farrokhi et. al.]
- Multiuser Detection and Beamforming [Yener, Yates, Ulukus]
- Power Control, Multiuser Detection, and Beamforming [Yener, Yates, Ulukus]
- Power Control and Adaptive cell sectorization [Saraydar, Yener]




• More *intelligent* filters in spatial domain

**Linear Multiuser Detection (Temporal Filtering)** 



• More *intelligent* filters in temporal domain



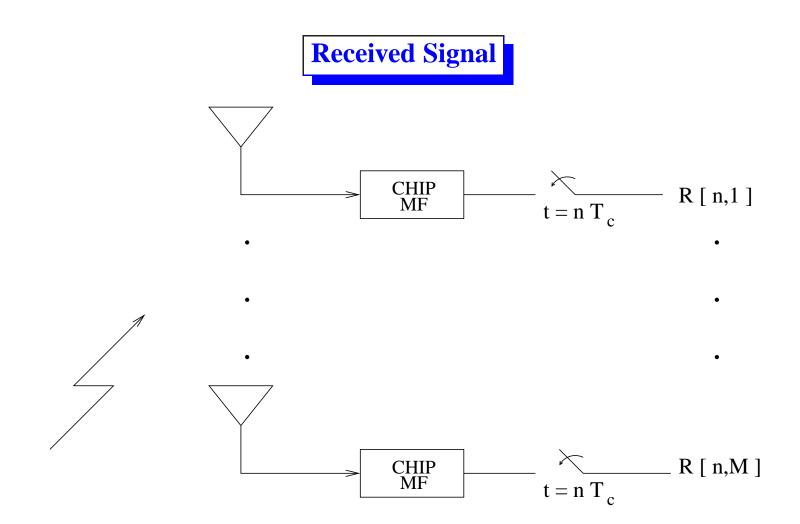
• More *intelligent* filters in both domains

# **Temporal-Spatial** Filtering

- Several possible filter structures:
  - Single user approach: Temporal-spatial matched filter [Naquib et. al]
  - Single user multiuser approach: Temporal matched filter + Spatial MMSE or vice versa
     [Honig et. al] [Rashid-Farrokhi et. al]
  - <u>Cascaded</u> structures: MMSE temporal combiners cascaded with an MMSE spatial combiner, or vice versa [Yener, Yates, Ulukus]
- Each of these filters can be expressed as a matrix filter.
- Joint optimum temporal-spatial filter perform better than any cascade structure [Yener et.al.]
- We focus on joint temporal-spatial MMSE filter designs.

## **Previous work**

• Assume synchronous users; single path. Received signal matrix over one bit period:


$$\mathbf{R} = \sum_{k=1}^{K} \sqrt{P_k} b_k \mathbf{s}_k \mathbf{a}_k^T + \mathbf{N}$$

- $E[N_{kl}^*N_{mn}] = \sigma^2 \delta_{km} \delta_{ln}$
- Decision statistic computed via linear matrix filter  $\mathbf{X}_i$

$$y_i = \sum_{n=1}^N \sum_{m=1}^M [X_i]_{nm}^* R_{nm} = tr(\mathbf{X}_i^H \mathbf{R})$$

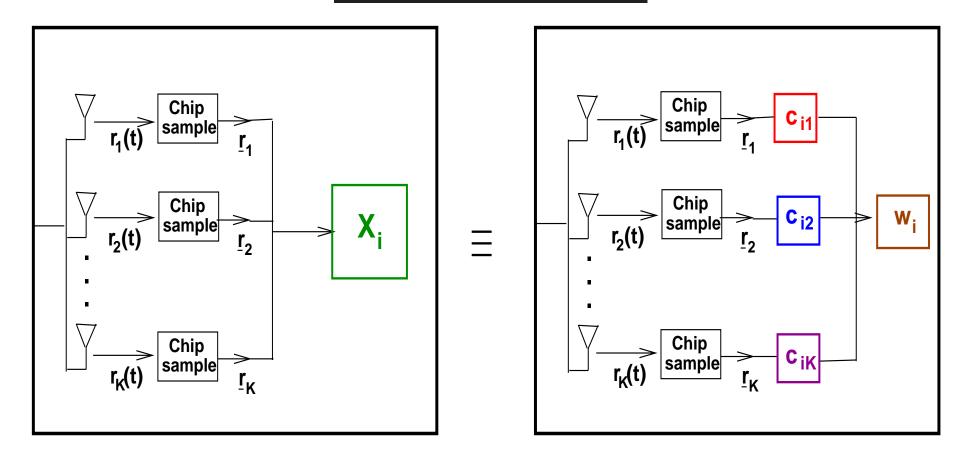
• Design matrix filters to minimize the MSE

$$\bar{\mathbf{X}}_{i} = rg\min_{\mathbf{X}} E\left[\left|tr\left(\mathbf{X}^{H}\mathbf{R}\right) - b_{i}\right|^{2}\right]$$



Synchronous system with processing gain N, M antenna elements and K users

# **Optimum Temporal-Spatial Filter (OTSF)**


• Find the matrix filter  $X_i$  that yields the minimum MSE between  $y_i$  and  $b_i$ .

$$\bar{\mathbf{x}}_i = \sqrt{P_i} \left( \sum_{k=1}^K P_k \mathbf{q}_k \mathbf{q}_k^H + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{q}_i$$

where  $\mathbf{s}_k \mathbf{a}_k^T \rightarrow \mathbf{q}_k$ 

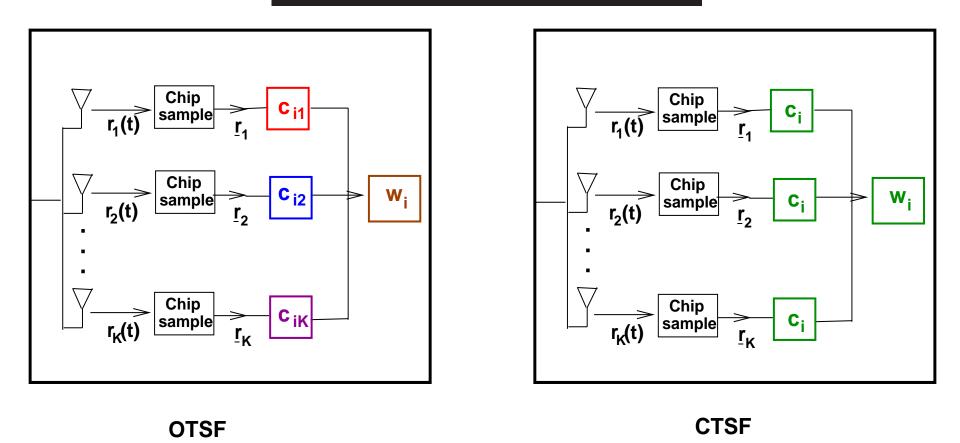
- This filter results in the minimum MSE over all possible filtering schemes in temporal and spatial domains
- Resulting joint optimum filter has a closed form
- Complexity due to the inversion of a  $NM \times NM$  matrix  $\Rightarrow$  Find a simpler receiver structure
- MN could be large! (e.g. N = 64, M = 4)

## **OTSF Receiver for User** *i*



**Constrained Temporal-Spatial Filters (CTSF)** [Yener et.al.]

- *Separable* temporal-spatial filters for reduced complexity:  $\tilde{\mathbf{X}}_i = \mathbf{c}_i \mathbf{w}_i^{\top}$
- Decision statistic for user *i*:


$$y_i = \operatorname{tr}(\mathbf{w}_i \mathbf{c}_i^{\top} \mathbf{R}) = \mathbf{c}_i^{\top} \mathbf{R} \mathbf{w}_i$$

- Find the separable filters that are *jointly* optimum in MSE sense
- Rank-1 filters: Constrain the feasible set of possible matrix filters to ones of the form

$$\mathbf{X}_i = \mathbf{c}_i \mathbf{w}_i^T$$

- The same N dimensional temporal filter,  $\mathbf{c}_i$  at the output of each antenna
- Combine the outputs via the M dimensional beamformer,  $\mathbf{w}_i$
- Jointly optimum  $\mathbf{c}_i$  and  $\mathbf{w}_i$  are found iteratively. Rank-1 filters work well when
  - \* system is not overloaded
  - \* reasonably good power control

### **OTSF vs. CTSF Receiver for User** *i*



• **CTSF:**First combine all the chip vectors using  $\mathbf{c}_i$  then combine the resulting vector using  $\mathbf{w}_i$ 

# **Motivation for Rank-r Filters** [Filiz, Yener]

- Rank-1 constrained filters:
  - Suboptimal performance due to the constrained solution space
  - Performance difference can be pronounced in heavily loaded systems

\*Filters with performance between OTSF and the rank-1 constrained filter are needed

- Multipath environments: Need to take advantage of temporal diversity.
- Adaptive Implementation
  - Suitable for a cellular environment
  - Only the knowledge of training bits is required

\*Algorithms that do not require the explicit channel estimates are desirable

# Multipath Channel Model

• Transmitted signal of user *k* 

$$z_k(t) = \sqrt{P_k} \sum_{n=-\infty}^{\infty} b_k(n) s_k(t - nT_s)$$

• Multipath channel impulse response

$$h_k(t) = \sum_{l=1}^L h_{k,l} \,\delta(t - \tau_{k,l})$$

• Received signal at the output of the antenna array

$$\mathbf{r}(t) = \sum_{k=1}^{K} \sum_{l=1}^{L} h_{k,l} z_k (t - \mathbf{\tau}_{k,l} - \mathbf{v}_k) \mathbf{a}_{k,l} + \mathbf{n}(t)$$

### **Simplified Multipath Channel Model**

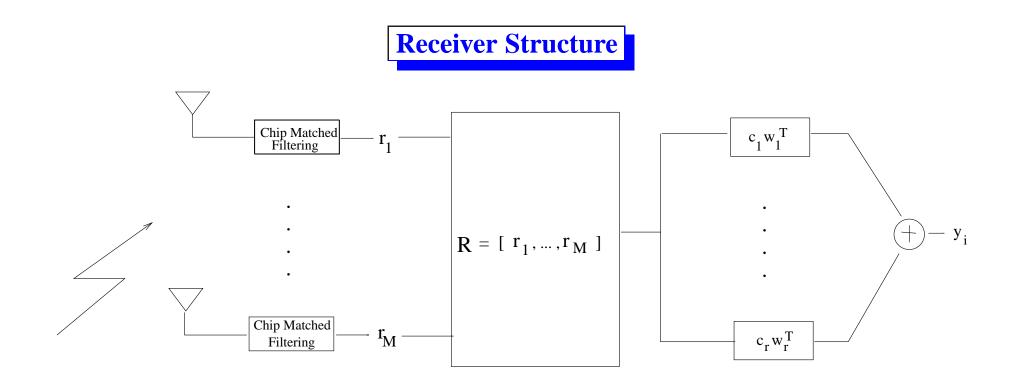
- Synchronous users
- Each user has *L* paths with chip synchronous delays
- $\tau_{k,l} \ll T$  such that ISI can be ignored
- Received signal over the observation interval

$$\mathbf{R} = \sum_{k=1}^{K} \sqrt{P_k} b_k \mathbf{S}_k \mathbf{H}_k \mathbf{A}_k^T + \mathbf{N}$$

$$\mathbf{S}_{k} = \begin{bmatrix} s_{k}[1] & \mathbf{0} \\ & \ddots & \\ \vdots & & s_{k}[1] \\ s_{k}[N] & \vdots \\ & \ddots & \\ \mathbf{0} & & s_{k}[N] \end{bmatrix} \quad \mathbf{H}_{k} = \begin{bmatrix} h_{k,1} & \mathbf{0} \\ & \ddots & \\ & \mathbf{0} & & h_{k,L} \end{bmatrix} \quad \mathbf{A}_{k} = [\mathbf{a}_{k,1}, \cdots, \mathbf{a}_{k,L}]$$

## **Rank-***r* **Constrained Filters**

• Achieve the performance improvement by relaxing the constraint:


$$\bar{\mathbf{X}}_{i} = \arg\min_{\mathbf{X}} E\left[\left|tr\left(\mathbf{X}^{H}\mathbf{R}\right) - b_{i}\right|^{2}\right]$$
  
s.t.  $\operatorname{rank}(\mathbf{X}) \leq r, \quad 1 \leq r \leq \min\{N + L - 1, M\}$ 

• Satisfy the rank constraint by decomposing **X**<sub>*i*</sub> as:

$$\mathbf{X}_i = \sum_{j=1}^r \mathbf{c}_{ij} \mathbf{w}_{ij}^T$$

• The MSE and the optimization problem expressions become:

$$MSE = E\left[\left|\sum_{j=1}^{r} \mathbf{c}_{ij}^{H} \mathbf{R} \mathbf{w}_{ij}^{*} - b_{i}\right|^{2}\right]$$
$$\{\bar{\mathbf{c}}_{i1}, \dots, \bar{\mathbf{c}}_{ir}, \bar{\mathbf{w}}_{i1}, \dots, \bar{\mathbf{w}}_{ir}\} = \underset{\mathbf{c}_{i1}, \dots, \mathbf{c}_{ir}, \mathbf{w}_{i1}, \dots, \mathbf{w}_{ir}}{\arg\min} E\left[\left|\sum_{j=1}^{r} \mathbf{c}_{ij}^{H} \mathbf{R} \mathbf{w}_{ij}^{*} - b_{i}\right|^{2}\right]$$



### **Performance Metric**

• MSE expression becomes:

$$MSE = \sum_{l=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{K} P_k \mathbf{c}_{il}^H \mathbf{V}_k \mathbf{w}_{il}^* \mathbf{w}_{ij}^T \mathbf{V}_k^H \mathbf{c}_{ij}$$
$$+ \sigma^2 \sum_{l=1}^{r} \sum_{j=1}^{r} \left( \mathbf{c}_{il}^H \mathbf{c}_{ij} \right) \left( \mathbf{w}_{il}^H \mathbf{w}_{ij} \right) - 2\sqrt{P_i} \sum_{j=1}^{r} \Re \left\{ \mathbf{c}_{ij}^H \mathbf{V}_i \mathbf{w}_{ij}^* \right\} + 1$$

where  $\mathbf{V}_k = \mathbf{S}_k \mathbf{H}_k \mathbf{A}_k^T$ 

• Note that MSE is a function of 2*r* variables

$$\{\mathbf{c}_{i1},\ldots,\mathbf{c}_{ir},\mathbf{w}_{i1},\ldots,\mathbf{w}_{ir}\}$$

- MSE is not jointly convex in all variables
- MSE is convex for a single variable, given that the other 2r 1 variables are fixed
- Use alternating minimization algorithm to iteratively minimize the MSE

### **Alternating Minimization Algorithm**

- Each step consists of 2*r* sub-steps
- At each sub-step, update a single variable to minimize the MSE
- The algorithm can be expressed as

FOR 
$$t = 1: S$$
  
FOR  $x = 1: r$   
 $\hat{\mathbf{c}}_{ix} = \text{MMSE}(\{\mathbf{c}_{ij}\}_{j \neq x}, \{\mathbf{w}_{ij}\}_{j=1}^{r})$   
 $\hat{\mathbf{w}}_{ix} = \text{MMSE}(\{\mathbf{c}_{ij}\}_{j=1}^{r}, \{\mathbf{w}_{ij}\}_{j \neq x})$   
END  
END

where  $\hat{\mathbf{c}}_{ix}$  and  $\hat{\mathbf{w}}_{ix}$  denote the values that minimize MSE *S* is the total number of steps

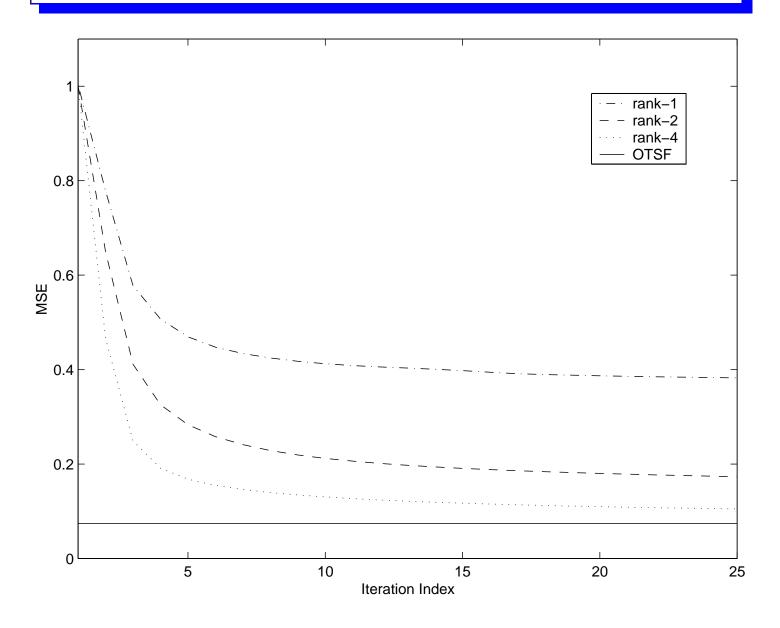
# **Adaptive Implementation**

- All users' parameters needed in deterministic iterations.
- Adaptive implementation is needed in practice.
- Combination of alternating minimization with LMS
  - Keep the main structure of the alternating minimization algorithm
  - Solve each sub-step using the classical LMS approach
- The classical LMS rule:

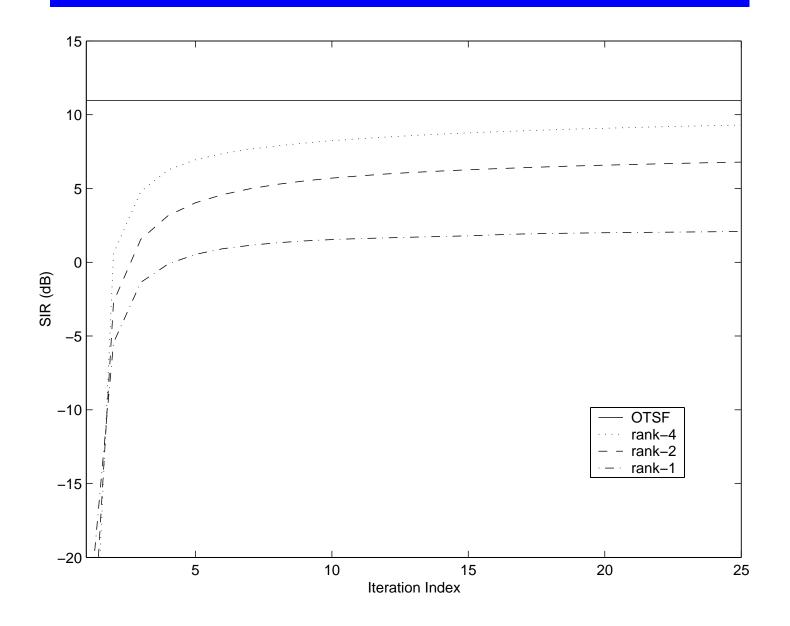
$$\mathbf{w}_i(n+1) = \mathbf{w}_i(n) + \mu \left( d_i(n) - y_i(n) \right)^* \mathbf{u}(n)$$

• Define the desired response, decision statistic and the input signal

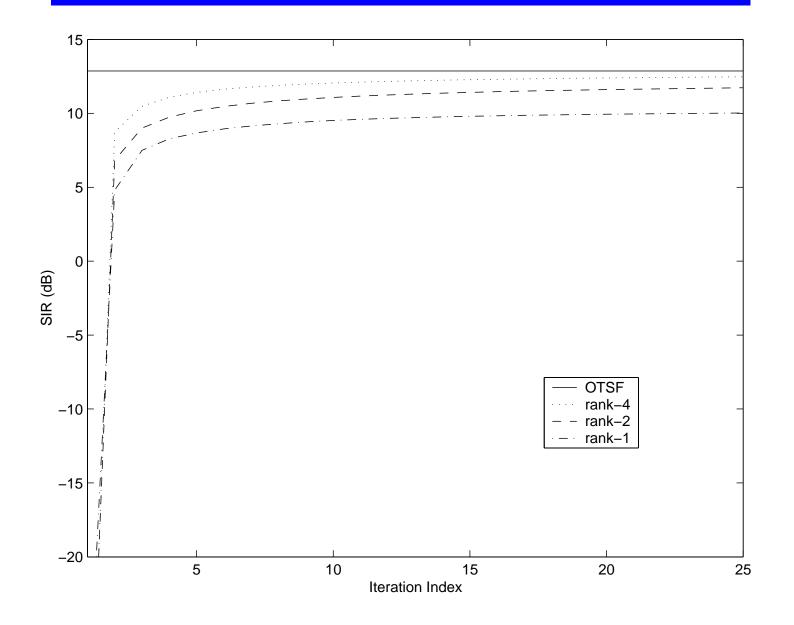
$$d_i \rightarrow b_i - \sum_{j \neq x}^r \mathbf{c}_{ij}^H \mathbf{R} \mathbf{w}_{ij}^*$$
$$y_i \rightarrow \mathbf{c}_{ix}^H \mathbf{R} \mathbf{w}_{ix}^*$$
$$\mathbf{u}(n) \rightarrow \mathbf{R} \mathbf{w}_{ix}^* \quad (\text{or } \mathbf{R}^T \mathbf{c}_{ix}^*)$$

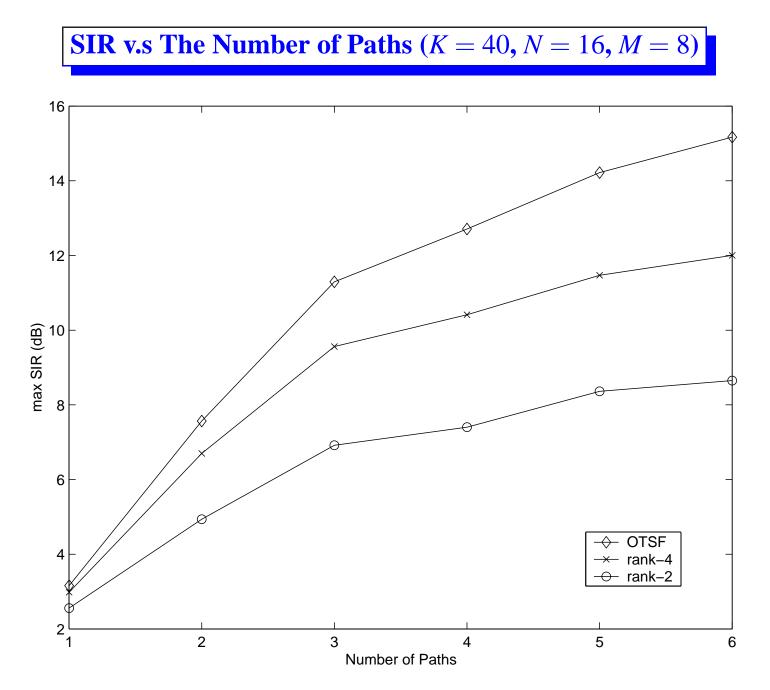

### **Parameters that Affect Convergence**

- Block size B
  - LMS converges to optimum in infinite iterations (training bits)
  - At each sub-step we truncate the LMS after B training bits
  - Smaller  $B \rightarrow$  premature jumping to the next step
  - Larger  $B \rightarrow$  slower overall algorithm
- Step size  $\mu$ 
  - Smaller  $\mu \rightarrow$  slower convergence but higher accuracy
  - Larger  $\mu \rightarrow$  faster convergence but more residual error

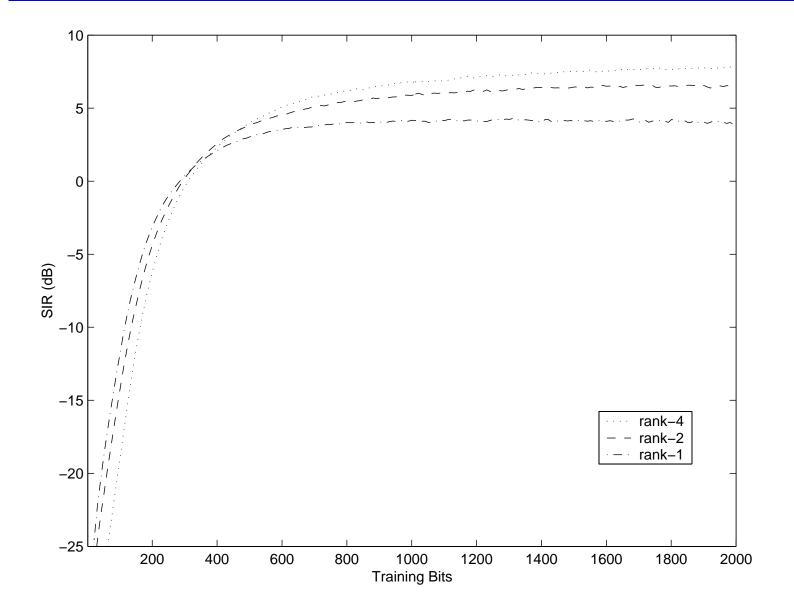

**Numerical Results** 

- A single cell CDMA system with
- N = 16 processing gain
- Linear antenna array with M = 8 elements, equispaced at  $\lambda/2$
- Channel coefficients are zero mean complex Gaussian variables, normalized such that  $E[|h_{k,l}|^2] = 1$
- SNR of desired user is 10 dB

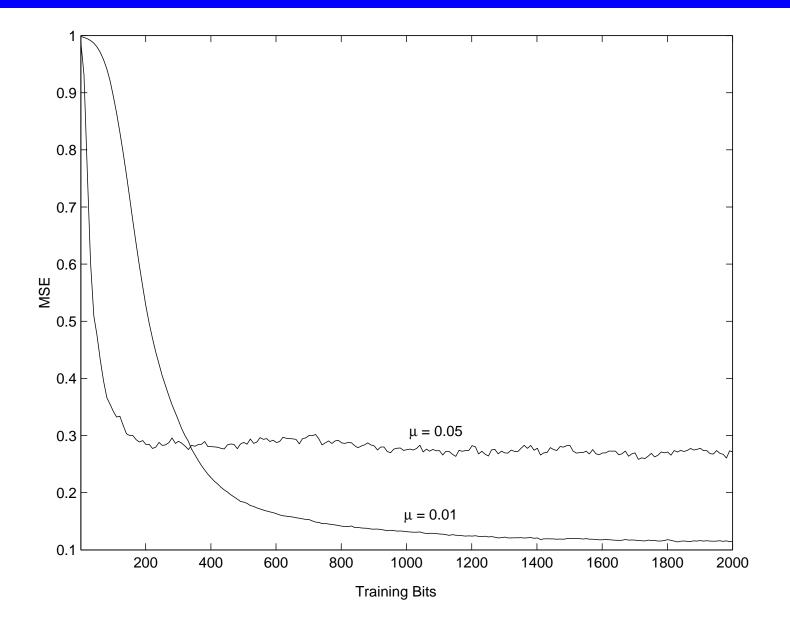

## **MSE v.s The Iteration Index** (K = 40, N = 16, M = 8, L = 3)



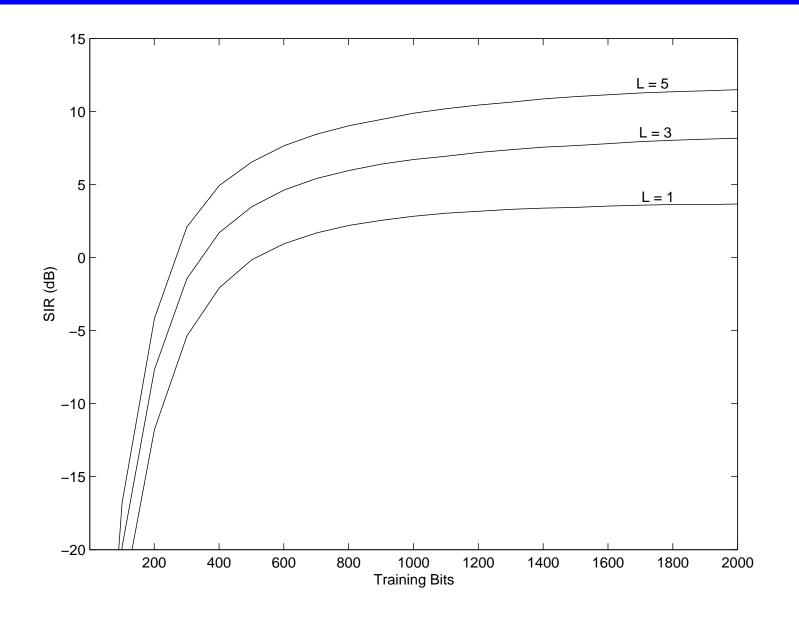

### **SIR v.s The Iteration Index** (K = 40, N = 16, M = 8, L = 3)




### **SIR v.s The Iteration Index** (K = 10, N = 16, M = 8, L = 3)







**SIR v.s The Training Bits** ( $K = 40, N = 16, M = 8, L = 3, \mu = 0.01$ )



### **SIR v.s The Training Bits** (K = 40, N = 16, M = 8, L = 3, rank(X) = 2)



**SIR v.s The Training Bits** ( $K = 40, N = 16, M = 8, \mu = 0.01, rank(X) = 4$ )



# Conclusions

- Smart antennas provide additional wireless capacity
- Joint temporal-spatial multiuser detectors improve the performance of CDMA systems
- Rank constrained filters
  - Relaxing the constraint increases the performance
  - Near optimal performance can be achieved with a mild increase in complexity
  - Trade-off between complexity and performance
- Adaptive implementations
  - Only the training bits and the timing of the first path of the desired user are required
  - B and  $\mu$  affect convergence speed and the residual error
- The existence of multipath provides diversity

### **Further Reading, Current Research**

- References
  - J. Winters, "Smart Antennas for Wireless Systems", IEEE Personal Communications, Feb 1998
  - A. Paulraj, C. Papadias, "Space-Time Processing for Wireless Communications", IEEE Signal Processing Magazine, November 1997
  - J. Liberti, T. Rappaport, Smart Antennas for Wireless Communications, Prentice-Hall, 1999
- Transmitter design issues for multiple antenna systems (narrowband)
- Transmit beamformer design for CDMA systems with receiver antenna arrays

See http://labs.ee.psu.edu/labs/wcan for papers and the copy of this talk