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The Role of Feedback in Two-Way
Secure Communications
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Abstract—Most practical communication links are bidirectional.
In these models, since the source node also receives signals, its en-
coder has the option of computing its output based on the signals
it received in the past. On the other hand, from a practical point of
view, it would also be desirable to identify the cases where such an
encoder design may not improve communication rates. This ques-
tion is particularly interesting for the case where the transmitted
messages and the feedback signals are subject to eavesdropping.
In this paper, we investigate the question of how much impact the
feedback has on the secrecy capacity by studying two fundamental
models. First, we consider the Gaussian two-way wiretap channel
and derive an outer bound for its secrecy capacity region. We show
that the secrecy rate loss can be unbounded when feedback signals
are not utilized except for a special case we identify, and thus con-
clude that utilizing feedback can be highly beneficial in general.
Second, we consider a half-duplex Gaussian two-way relay channel
where the relay node is also an eavesdropper, and find that the im-
pact of feedback is less pronounced compared to the previous sce-
nario. Specifically, the loss in secrecy rate, when ignoring the feed-
back, is quantified to be less than 0.5 bit per channel use when the
relay power goes to infinity. This achievable rate region is obtained
with simple time sharing along with cooperative jamming, which,
with its simplicity and near optimum performance, is a viable al-
ternative to an encoder that utilizes feedback signals.

Index Terms—Cooperative jamming, feedback, information the-
oretic security, two-way relay channel, two-way wiretap channel.

I. INTRODUCTION

M OST communication links are bidirectional, where the
backward channel can carry information and/or provide

some form of feedback. For example, in ARQ schemes, the
backward channel provides the acknowledgment of receipt of
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the packets. In peer-to-peer networks, information is commu-
nicated in both directions. The impact of the existence of bidi-
rectionality on the channel capacity has been considered exten-
sively up to date. Shannon proposed the two-way channel model
in [1] where communication took place in both directions, and
derived the inner bound and the outer bound on its capacity re-
gion. These bounds were shown to match for the full-duplex
Gaussian two-way channel in [2]. An interesting implication of
this result is that the signals received in the past, i.e., the feed-
back signals, are not needed for encoding to achieve the capacity
region for this model. Though this feature is desirable in practice
for simpler encoder design, it is also known that this approach
is suboptimal in general, for example, as was proved in [3] for a
two-way channel where the two nodes share a common output
from the channel.
In secure communication, the question of whether feedback

signals should be used for encoding has been studied in sev-
eral special scenarios. Shannon showed that a completely secure
backward channel can be used to send a one-time pad to in-
crease the secrecy capacity of the forward channel [4]. In [5], it
was proved that such a strategy, where the source node decodes
the key from the destination, is optimal for a degraded wiretap
channel with a secure rate limited noiseless feedback link. An-
other achievable scheme, which does not require decoding of
the feedback, was first proposed in [6] in the setting of secret
key generation and later in [7]. The scheme proves even if the
forward channel and backward channel each has zero secrecy
capacity, a positive secrecy rate can still be achieved when these
two channels are used together. This is done by combining mul-
tiple channel uses and designing codes for the resulting equiva-
lent broadcast channel in which the eavesdropper is eventually
put at a disadvantage because of its lack of side information.
Reference [8] combines this scheme with the key strategy in [4]
and shows that a higher secrecy rate is achievable for the model
in [7].
In [5], [7], and [8], the destination has the freedom to design

the feedback signals. References [8] and [9] considered the sce-
nario where the destination was restricted to sending its obser-
vation of the channel output, and could not manipulate the feed-
back signal to its advantage. It was shown that feedback helped
to achieve a higher secrecy rate even in this case.
One feature that is common to the coding schemes in [5], [7],

and [8] is that the eavesdropper always receives two separate
sets of received signals: one from the forward channel and a
second set of signals from the backward channel if it is not se-
cure. While this is more inline with the conventional informa-
tion theoretic models with feedback [10, Sec. 7.12], [11], let-
ting the eavesdropper receiving the signals of the forward and
the backward channel separately might inadvertently give the
eavesdropper an advantage, as compared to superimposing them
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together. Specifically, when the eavesdropper receives the sum
of the outputs from the forward and the backward channels, in-
troducing artificial noise into the backward channel at the time
when the forward channel is in use can interfere with the eaves-
dropper’s observation of the forward channel and hence reduce
its recognizance of the message being transmitted on it. This
so-called cooperative jamming scheme has been shown to im-
prove secrecy rates in a Gaussian two-way channel with an ex-
ternal eavesdropper, i.e., the Gaussian two-way wiretap channel
[12]. Yet in [12], the source node does not take advantage of the
signals it received from the backward channel when encoding its
transmission signals. The question remains, therefore, in such a
cooperative jamming scheme, whether the achievable rates can
be improved by utilizing these signals.
In this paper, we consider the wireless communication sce-

nario where the eavesdropper observes the sum of the outputs of
the forward and the backward channel, and hence the legitimate
nodes in the network can potentially utilize feedback and coop-
erative jamming to protect the confidential message. We focus
on twomodels where both techniques are potentially useful: 1) a
class of Gaussian full-duplex two-way wiretap channels, and 2)
a Gaussian half-duplex two-way relay channel with an untrusted
relay. These two models represent two distinct communication
scenarios allowing us to provide a comprehensive analysis on
the merits of these techniques. They are also intimately related:
we shall see that the results we obtain for the former are instru-
mental for the latter.
For the first model, we derive a computable outer bound to

its secrecy capacity region. We then compare it to the achiev-
able rates when the feedback is ignored at both nodes. Inter-
estingly, when the ratio of the power constraint of the two le-
gitimate nodes is fixed and the channel is fully connected with
independent link noise, the gap between the achieved secrecy
rate and the outer bound is bounded by a constant, which only
depends on the channel gains.
On the other hand, when the ratio of the power constraints is

not fixed, we show that ignoring feedback signals leads to un-
bounded loss in the secrecy rate when the power increases. The
loss is measured as the gap between the achievable rate when
the feedback is used and the upper bound when the feedback is
not used, hence is not caused by the potential suboptimality of
the achievable scheme. This result shows that utilizing the feed-
back for encoding at the legitimate nodes is highly beneficial for
this model in general.
In the second model, we consider the case where the eaves-

dropper is part of the network rather than being external to it. In
this model, two nodes wish to exchange information via a relay
node from whom the information needs to be kept secret. Here
the relay node is “honest but curious” [13], in that it will faith-
fully carry out the designated relaying scheme, but is not trusted
to decode the message it is relaying. This setting was first con-
sidered in [14] for the three node relay channel and later thor-
oughly studied in [15] and [16]. Later, in [17], we considered
a restricted version of the model in this paper, by studying the
case when the feedback signals were not used at the source or
the destination for encoding purposes. In this paper, we iden-
tify one case where doing so will not incur much loss in secrecy
rate. In establishing this result, we utilize the outer bound found
for the first model. Our analysis proves that if the power of the

Fig. 1. Two-way wiretap channel.

relay goes to , then the loss in the secrecy rates caused by
ignoring the feedback is bounded by 0.5 bit per channel use. In-
terestingly, a simple TDMA scheme with cooperative jamming
yields the achievable rate.
The channel models in this paper are closely related to the

channel-type model in the secret key generation literature; see
[6], [18]–[21] for example. The major difference from these
works is that our model accepts two inputs, one from the source,
the other from the destination. The eavesdropper observes a
noisy superposition of these two inputs. This is more compli-
cated than the channel-type model where the noisy part of the
channel is a wiretap channel which only accepts one input from
the source node, and any input from the destination can only be
transmitted over a noiseless public discussion link which is or-
thogonal to the wiretap channel. Recently, [22] has considered
a channel-type secret key generation model where the channel
component in the model accepts inputs from multiple nodes.
Yet, these nodes only receive from the noiseless public discus-
sion link [22, Sec. II], which is a fundamentally different model
from those considered in this paper.
The remainder of the paper is organized as follows. In

Section II, we describe the two models considered in this work.
Section III focuses on the Gaussian two-way wiretap channel.
Section IV focuses on the two-way relay channel with an
untrusted relay. Section V concludes the work.
Throughout the paper, the notation is defined as

. Also denotes the th component of vector
, while denotes . denotes a Gaussian
distribution with zero mean and variance .

II. CHANNEL MODELS

In this section, we describe the two channel models consid-
ered in this paper. Both models involve information exchange
between two nodes: Node 1 and Node 2. Node 1 wants to send
a message to Node 2. Node 2 wants to send a message
to Node 1. Both messages must be kept secret from the eaves-
dropper. The encoding functions used at the two nodes are al-
lowed to be stochastic. Without loss of generality, we use
to model the local randomness in the encoding function used by
Node , , 2.

A. Two-Way Wiretap Channel

The first model we consider in this paper is a two-way wiretap
channel model. The channel model is shown in Fig. 1. The
channel description is given by1

(1)

1Equation (1) includes the case where is correlated with when condi-
tioned on , . This could be useful, for example, when the channel is fading,
its states are correlated and the state values are not known to the transmitters or
receivers.
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From (1), we observe

(2)

is a Markov chain.
At each channel use, Node 1 and Node 2 transmit simultane-

ously. At the th channel use, the encoding function of Node 1
is defined as

(3)

The encoding function of Node 2 is defined as

(4)

Note that with the introduction of , , 2, we can define
, as deterministic encoders. Also note that another way to

define is . It is easy to see that
this definition is equivalent to the definition given in (3).
Let be the total number of channel uses. Node 2 must de-

code reliably from , , , . Node 1 must decode
reliably from , , , . Let the decoding results

be and , respectively. Then, we require

(5)

From Fano’s inequality [10], we have

(6)

(7)

where and , , 2.
In addition, both messages must be kept secret from the

eavesdropper. Hence, we need

(8)

where and .
Define , , 2 as

(9)

The secrecy rate region is defined as all rate pairs for
which (5) and (8) holds.
The Gaussian case of the two-waywiretap channel model was

first proposed in [12] and [23] and is shown in Fig. 2. Formally,
the channel is described as

(10)

(11)

(12)

where , , , are the channel gains. , ,
2, 3 are Gaussian random variables with zero mean and unit
variance, representing the channel noise. We assume that given
, is independent from :

(13)

We use to denote the correlation between and . de-
notes the correlation between and . Obviously,
, and .

Fig. 2. Gaussian two-way wiretap channel.

Fig. 3. Gaussian two-way half-duplex relay channel with an untrusted relay.

From (1) and (13), we readily see this channel belongs to the
class of channels described by (1) and shown in Fig. 1.
Observe that the terms and are not shown in

Fig. 2. This is because each node knows its own transmitted
signal and , , , , and can always subtract the
interference caused by its own transmitted signals. Hence, we
can remove and from (10) and (11). The channel
is thus equivalent to

(14)

(15)

(16)

In the sequel, we shall focus on this equivalent model instead.
Let the power constraint of Node 1 be , and of Node 2 be
, i.e.,

(17)

(18)

Remark 1: When is a constant, or, the feedback is ignored
by Node 1, the model reduces to the relay channel with a confi-
dential message to the relay, which was considered in [16], [24],
and [25].

B. Two-Way Relay Channel With an Untrusted Relay

The second model we consider in this paper is the Gaussian
two-way relay channel with an untrusted relay node. The
channel model is shown in Fig. 3. At any time slot, the channel
either behaves as a multiple-access channel (MAC), shown on
the left, or as a broadcast channel (BC), shown on the right.
After normalizing the channel gains, the MAC can be expressed
as

(19)
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The BC can be expressed as

(20)

(21)

where is the channel gain, . , , are indepen-
dent zero mean Gaussian random variables with unit variance.
We assume Node 1 and Node 2 transmit simultaneously

during the MAC mode. , , 2 denote the signals
transmitted by Node during the th channel use such that
the channel is in MAC mode, . We use to denote the
number of channel uses that the channel was in the broadcast
mode before this channel use. The notation denotes the set
of signals: .
Similarly, denotes the signal transmitted by the relay

node during the th channel use that the channel is in broadcast
mode, . We use to denote the number of channel uses
that the channel was in the MAC mode before this channel use.

, , are received signals defined in the same
fashion.
The channel switches between theMACmode and the broad-

cast mode according to a globally known schedule. We assume
the schedule is independent from the local randomness at each
node, the messages and the channel noise. The first mode is as-
sumed to be the MAC mode. The case where the first mode is a
broadcast mode can be viewed as a special case of invoking the
MAC mode first by transmitting nothing during the first MAC
mode. The rate loss caused by the wasted channel use is negli-
gible as the number of channel uses goes to .
Suppose the MAC mode is activated for channel uses. The

broadcast mode is activated for channel uses. Hence, the
communication spans over channel uses. It should be
noted that, in general, neither the channel uses of the MAC
mode, nor the channel uses of the broadcast mode have to be
consecutive. We assume the schedule is stable, in the sense that
the following limit exists:

(22)

For a given , we use to denote a sequence of schedules
with increasing total number of channel uses such that
(22) holds, and is the limit of the time sharing factor of the
MAC mode in the schedule as .
The average power constraints for Node 1, Node 2, and the

relay can be expressed as

(23)

(24)

For the purpose of completeness, we also introduce the nota-
tion , to denote the average power of Node during
the MAC mode. Since these two nodes are only transmitting
during the MAC mode, and are related as

(25)

Similarly, we use to denote the average power of the relay
node during the broadcast mode. Since the relay node only
transmits during the broadcast mode, is related to as
follows:

(26)

For the th channel use in which the channel operates in the
MAC mode, the encoding functions at Node 1, , is defined
as

(27)

Similarly, the encoding functions at Node 2, , is defined as

(28)

Note that , are deterministic functions, and we use to
model the local randomness at the relay. For the th channel use
in which the channel operates in broadcast mode, the encoding
function of the relay node is defined as:

(29)

where is a deterministic function.
The eavesdropper knows , , . Therefore, the se-

crecy constraint is expressed as

(30)

Since is a Markov chain, we have

(31)

Therefore, the secrecy constraint can be expressed as

(32)

Let , , 2 be the decoding result computed by the
intended receiver of , , 2. Then, the reliable communi-
cation requirement is expressed as

(33)

Define , as

(34)

The secrecy capacity region is defined as the union of all rate
pairs such that there is an , a sequence of schedules

and a choice of encoding function for which (32) and
(33) are satisfied.
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Remark 2: In general,

(35)
This can be proved by a counterexample: consider the commu-
nication protocol:
1) First the relay node randomly generates and broadcasts a
key via to Node 1 and Node 2 using a channel code.

2) Node 1 uses the key as a one-time pad [4] to encrypt its
confidential message and sends it to the relay using a
channel code. The other nodes remain silent.

3) The relay decodes the codeword sent by Node 1 and en-
codes and forwards it to the destination.

4) The destination recovers the codeword sent by Node 1 by
decoding the signals from the relay. It then decrypts it with
the key it received in step 1 and recovers .

Since the one-time pad is a perfectly secure cipher [4], for this
communication protocol, we have

(36)

However, since the key is determined by , given the key,
is uniquely determined by . Therefore, we have

(37)

III. FEEDBACK IN THE TWO-WAY WIRETAP CHANNEL

A. Improvement on the Known Achievable Secrecy Rate: A
Motivating Example

For the two-way wiretap channel, reference [12] derived an
achievable rate using Gaussian codebooks. However, in this
scheme, the signal received by Node 1 is not used to com-
pute the signal transmitted by Node 1. Likewise, the signal
received by Node 2 is not used to compute the signal

transmitted by Node 2. We next show that this scheme can be
improved upon with respect to the achievable secrecy rate. To
show this, it is sufficient to show that a larger is achievable
for Node 1 for a set of channel gains. In the following, we pro-
vide such an example.
We assume , , which means , , are

all independent, which was the setting considered by [12]. The
largest rate for Node 1 achievable with the scheme of [12] is
given by

(38)

which is achieved by letting Node 2 transmit an i.i.d. Gaussian
sequence with variance . When , we observe
from (38) that the secrecy rate is always 0. Below, we choose

, , , such that this condition
is fulfilled and prove a positive secrecy rate is achievable with
our scheme.
The coding scheme we use is similar to that of [6]. It is com-

posed of one channel use described in Fig. 4, followed by one
channel use described in Fig. 5. In an odd step, Node 1 sends

Fig. 4. Odd step.

Fig. 5. Even step.

Fig. 6. Equivalent channel.

a signal denoted by and Node 2 sends a signal denoted by
. After this step, Node 1 adds its received signal to

a new signal and transmits it in the following even step. At
the same time, Node 2 sends a signal denoted by . We use the
notation to denote the channel noise in the odd step and
to denote the channel noise in the even step.
Combining these two steps, we obtain an equivalent memo-

ryless channel shown in Fig. 6. The achievable secrecy rate for
this channel is given by [26]

(39)

where

(40)

(41)

(42)

We then choose , , , as zero mean independent
Gaussian random variables with unit variance. From Figs. 4
and 5, this choice satisfies the average power constraints.
Evaluating (39) for this distribution, we obtain

(43)

where .
Since the original channel takes twice as many channel uses

to implement this scheme, the actual secrecy rate is half the
value indicated by (43). Nevertheless, the achievable secrecy
rate is positive.
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This means that the scheme that utilizes feedback signals
leads to higher achievable secrecy rate for this channel com-
pared to the scheme of [12].

B. Utilizing Feedback is Beneficial: A Definitive Answer

Althoughwe have shown that using feedback can improve the
secrecy rate, it remains unclear whether this can only be done by
letting Node 1 use the signal to compute , or whether there
are smarter schemes that can outperform those with feedback. In
this section, we settle this question by showing that the secrecy
rate that is achieved by utilizing feedback can exceed an upper
bound on the secrecy rate when feedback is ignored.
We begin with the achievable rates. Let us use to denote

. Then, we have the following theorem.
Theorem 1: Define as

(44)
and as

(45)

Define the region as the convex hull of the following three
rate pairs of :

(46)

The rate region is achievable.
Proof: The proof is given in Appendix C.

Remark 3: The achievable scheme is composed of two
phases. During phase 1, with a time sharing factor of ,
Node 2 sends a key to Node 1. During phase two, Node 1 uti-
lizes this key to encrypt its message and transmits the result to
Node 2. Hence, corresponds to the case when both nodes
ignore their received signals when computing their transmitting
signals.
Fig. 7 plots the achievable secrecy rate with . Also

plotted in the figure is an upper bound on found without uti-
lizing , i.e., without feedback in the model. This upper bound,
given later by Theorem 5, is derived from a more general result
in Theorem 3 and hence is relegated to Section III-C. Fig. 7
shows that the achieved secrecy rate with feedback can exceed
the upper bound without feedback by an amount that increases
with power, a fact we shall state formally in Theorem 8. This
means that it is impossible to achieve the same secrecy rate by
designing the encoder at Node 2 if Node 1 ignores the feedback
signal .
Having made our point, we now provide the derivation of an

outer bound on the secrecy capacity region of Gaussian two-way
wiretap channel, for which the upper bound in Fig. 7 is a special
case.

Fig. 7. Comparison of the sum secrecy rate when ,
, , . Achievable secrecy rate at Node 1 is computed
according to (44). Upper bound on the secrecy rate at Node 1 when is ignored
is computed with Theorem 5 in Section III-C.

C. Outer Bound

We begin by deriving an upper bound on .
Theorem 2: For the channel model in Fig. 1, is upper

bounded by

(47)

Proof: See Appendix A.
Remark 4: Ignoring at Node 1 is equivalent to viewing

as a constant. From (47), , in this case, is upper bounded by

(48)

which is the upper bound proved in [25].
Theorem 3: The secrecy capacity region of the channelmodel

in Fig. 1 is bounded by

(49)

(50)

(51)

(52)

Proof: The proof is provided in Appendix B.
For a deterministic binary wire-tap channel, Theorem 3 leads

to the equivocation capacity region, as shown by the following
theorem.
Theorem 4: When , are binary and

, the secrecy capacity region is given by

(53)

(54)



HE AND YENER: ROLE OF FEEDBACK IN TWO-WAY SECURE COMMUNICATIONS 8121

Proof: The achievability follows from [23, Th. 2]. The con-
verse follows from Theorem 3. The sum rate bound specializes
as follows:

(55)

(56)

(57)

(58)

(59)

We next consider the Gaussian channel.
Theorem 5: When is a constant, i.e., is ignored by Node

1, the secrecy rate is upper bounded by

(60)
Proof: Define as a Gaussian random variable such that

and is independent from , , 2, 3. Recall
that is the signal received by the eavesdropper. We next con-
sider a channel where the eavesdropper receives . Since

is a degraded version of , we can find an upper bound
of the original channel by deriving an upper bound for this new
channel. This upper bound is found by applying the bound (48).
We next prove that all terms in the upper bound (48) is max-

imized when , are independent and each has a Gaussian
distribution with zero mean and maximum possible variance:

is obviously maximized by this distribution. For the
other two terms, we have

(61)

(62)

(63)

(64)

and
(65)

(66)

(67)

(68)

Equations (64) and (68) show that the second term in (48) is
maximized when and are independent. Moreover, (64)
is known to be maximized when has a Gaussian distribution
with the maximum possible variance; see [27]. Equation (68) is
also maximized when has a Gaussian distribution with the
maximum possible variance. Hence, we have shown the optimal
input distribution for , is an independent Gaussian distri-
bution. For this distribution, it can be verified the second term
in (48) becomes (60).
Hence, we have proved the theorem.

Remark 5: When , (60) converges to , which
corresponds to the first term in (48). Thus, (60) is written as one
term instead of the two terms as in (48).
Remark 6: We introduce to further tighten the bound. For

example, consider the case where . In this case, the
upper bound can be expressed as

(69)

where . Consider choosing the remaining pa-
rameters as , , , . It can be
verified that the minimum is attained around , and not
at . Hence, the bound presented here is tighter than the
bound in [25].
Next, we present the following theorem.
Theorem 6: The secrecy capacity region of the Gaussian

two-way wiretap channel is outer bounded by

(70)

(71)

(72)

Proof: Again we consider a channel where the eaves-
dropper receives and derive an outer bound for this
new channel. is as defined in the proof of Theorem 5.
To prove the theorem, we first show ,

, , ,
and are maximized simultaneously when
and are independent, , and .
Due to the symmetry of the channel model, we only need to

show , , and are maxi-
mized by this distribution.
The case of was shown in the proof of The-

orem 5.
For , we have

(73)

(74)

(75)

(76)

Hence, is maximized when and are in-
dependent, and . The theorem
then is a consequence of Theorem 3 when evaluated at this input
distribution.
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Fig. 8. Comparison of the sum secrecy rate when , ,
. The sum secrecy rate computed with (218), when is ignored at

Node 1. The upper bound on the sum rate is computed with (72).

Remark 7: The introduction of is again useful in tight-
ening the bound. For example, consider the case where
, , , , .
In this case the upper bound on , which is , is about

3.3291. The first term inside the minimum in (72), which is also
an upper bound on takes the form

(77)

where . It can be verified that the minimum
is smaller than 3.24 and is attained around . Hence,
the upper bound on is dominated by the first term inside the
minimum in (72) and is not attained at .

D. Comparing the Achievable Rates and the Outer Bound

1) : First let us consider the case with independent
link noise, i.e., the model considered in [12].
Theorem 7: When , , is a positive

constant, and , , 2, the loss in secrecy rates when
received signals are not used to compute transmitting signals at
Node , , 2 is bounded by a constant, which is only a
function of and .

Proof: The proof is given in Appendix D.
Fig. 8 illustrates the case described in Theorem 7. In this

figure, we fix , increase , and compare the achiev-
able sum secrecy rate and its upper bound. It is observed that
the gap between these two does not increase with .
Next, the following theorem states the fact illustrated in

Fig. 7.
Theorem 8: Even in the case where cooperative jamming is

possible , when is not linearly increasing
with , ignoring at Node 1 can lead to unbounded loss in
the secrecy rate.

Proof: The proof is given in Appendix E.
2) , and is a Constant: We next consider

a special case of the model that attracted some interest in the

Fig. 9. Two-way wiretap channel with additional public noiseless forward link.

past, see for example, [25], [28]. In this model, is a degraded
version of given , and is ignored by Node 1.
In this case, can be written as , where is

independent from , , and . Then, the
signals received by the eavesdropper can be expressed as

(78)

(79)

From this, we observe that, given , is a degraded version
of .
Corollary 1: When , , and ,

is a constant, then the achievable rate of using cooperative
jamming is at most 0.5 bit per channel use from the secrecy
capacity.
Remark 8: Corollary 1 was first proposed in [28] and later

appeared in [25]. Here we describe the approach of [25]. The
approach of [28] is different and uses results on the wiretap
channel with noisy feedback, which can be found in [29].
From Theorem 1 and Remark 3, the achievable rate for in

this case is obtained by letting and evaluating . In this
case,

(80)

The upper bound proposed in [25] on is

(81)

Here we observe (81) can be obtained from (60) when evaluated
with and . Reference [25] proves Corollary 1
by comparing (80) and (81). It can be readily verified that the
gap between (80) and (81) is less than 0.5 bit per channel use.

IV. FEEDBACK IN HALF-DUPLEX TWO-WAY RELAY CHANNEL
WITH AN UNTRUSTED RELAY

In this section, we derive an outer bound for the secrecy ca-
pacity region of the two-way relay channel with an untrusted
relay in Section II-B (see Fig. 3). To find the outer bound, we
first consider the channel in Fig. 9.
We assume and have the same power constraint as the
, in Fig. 3. is now accessible to Node 1 and delivered

to the other nodes via a public noiseless link. The remaining
part of the channel is activated when the original two-way relay
channel is in the MAC mode, and is inactive when the original
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two-way relay channel model is in the broadcast mode. Doing
so ensures the overall number of channel uses to be the same
between these two models.
Recall that , , 2 still models the local randomness at

Node , , 2. The encoding function of Node 1 at the th
channel use when the channel is active can be defined as

(82)

Similarly, the encoding function of Node 2 at the th channel
use when the channel is active can be defined as

(83)

With these preparations, we present the following theorem.
Theorem 9: The secrecy rate region of the channel in Fig. 9

includes the secrecy capacity region of the two-way relay
channel in Fig. 3.

Proof: Consider the model in Fig. 3. Suppose during a
MACmode, a genie reveals to Node 1 and Node 2.
We also add a public noiseless link that takes inputs from Node
1 and provides outputs to Node 2 and the relay. We make
accessible to Node 1 and use the public noiseless link to deliver

to Node 2 and the relay. This side information does not in-
crease the knowledge of the relay and hence will not decrease
the secrecy capacity region of the channel.
During a broadcast mode, a genie reveals the link noise level
to Node 2. Similarly, the link noise is revealed to Node

1. This side information will not decrease the secrecy capacity
region of the channel either.
With the side information provided to the nodes, the links

from the relay to Nodes 1 and 2 can be removed. This is because
1) Nodes 1 and 2 have the signal received by the relay

.
2) Node 1 sends via the public noiseless forward link.
With available at Node 2, it can compute the signal
transmitted by the relay node. Due to the same reason,
Node 1 knows the signal transmitted by the relay node as
well.

3) With noise available at Node 2, Node 2 can compute
the signal it received from the relay. For similar reasons,
Node 1 can compute the signal it received from the relay
as well.

Since , , are independent, and can be incorpo-
rated as the local randomness at Nodes 1 and 2, respectively.
After removing the links from the relay to Nodes 1 and 2, the

channel indeed becomes that which is described by Fig. 9, where
Node 3 corresponds to the relay node whose output broadcast
link to Nodes 1 and 2 is removed. Since, every step we took
during this transformation could only expand the secrecy ca-
pacity region, we have proved the theorem.
To derive an outer bound for the secrecy capacity of the

channel in Fig. 9, we first consider the case when the channel
is active regardless of whether the two-way relay channel is in
MAC mode or broadcast mode. We recognize that in this case,
the channel becomes a special case of the two-way wiretap
channel defined in Section II. Utilizing this connection leads to
the following corollary.

Corollary 2: The secrecy capacity region of the channel in
Fig. 9 is outer bounded by

(84)

(85)

where is the average power constraint of Node .
Proof: The channel in Fig. 9 is a special case of the channel

defined in (1), where

(86)

in (1) correspond to

(87)
in Fig. 9, respectively, and becomes

.
Therefore, the corollary follows as a direct consequence of

Theorem 6 with , , .
Remark 9: It is interesting to note that despite the fact that

the two models considered in this paper are distinct, the outer
bound we obtained for the two-way wiretap channel is useful
and in fact necessary to obtain the outer bound for the two-way
untrusted relay channel.
Note that to apply Corollary 2 to the half-duplex two-way

relay channel, we need to take into account the channel uses
when the channel in Fig. 9 is inactive during the channel uses
when the original two-way relay channel is in the broadcast
mode. Hence, the outer bound in Corollary 2 becomes the fol-
lowing region :

(88)

(89)

which reflects the number of channel uses during which some
nodes are inactive.
Define region as

(90)

(91)

Then, we have the following theorem.
Theorem 10: An outer bound for the secrecy capacity of

two-way relay channel is given by

(92)

Proof: Region follows by applying Corollary 2 and
taking into account the fact that the channel is inactive when
the original two-way relay channel is in broadcast mode as
described above. Region follows from removing the secrecy
constraint and applying the cut-set bound [10, Th. 15.10.1], by
considering the cut where the set includes the relay node and
Node 2, which leads to (91). Equation (90) is derived similarly
due to the symmetry of the channel model.
Remark 10: When , and , then the region is

maximized when . The outer bound thus becomes

(93)

(94)
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A. Comparison With Achievable Rates

In this section, we compare the outer bound with the achiev-
able secrecy rate region. We begin by restating an achievable
rate for from [17]. The achievable strategy involves Node 2
to act as a cooperative jammer whenever Node 1 transmits the
message to be kept secret from the relay. The relay uses com-
press-and-forward. Both Nodes 1 and 2 ignore their received
signals when computing the transmitted signals.
Theorem 11 [17, Th. 1]: The following secrecy rate of is

achievable for the model in Fig. 3:

(95)

where is the variance of the Gaussian quantization noise de-
termined by

(96)

was defined in (25), was defined in (26).
The rate region then follows from time sharing.
Remark 11: For any fixed such that , if the

power of the relay , then , the achievable rate
converges to

(97)

Equation (97) is a monotonically increasing function of .
Hence, as long as , we can always increase and in-
crease the achievable secrecy rate. Therefore, when ,
the optimal time sharing factor . The achievable rate
then converges to

(98)

The secrecy rate region is obtained with time sharing and it con-
verges to

(99)

(100)

Hence, the achieved sum secrecy rate goes to when
and .
Utilizing this result, we have the following corollary.
Corollary 3: When , the gap between the outer

bound and the achievable rate is bounded by 0.5 bit per channel
use.
To prove this corollary, we use the following simple fact. De-

fine the following functions:

(101)

(102)

Let . Then, .
Corollary 3 can then be proved by letting , .

The upper bound on the sum rate and the achievable sum secrecy

rate then become and when , which
means the gap between the upper bound and lower bound of the
sum secrecy rate is less than 0.5 bit per channel use. Since the
achievable region and the outer bound are only different on the
bounds for the sum rate, this proves the gap between the inner
bound and outer bound of the secrecy capacity region is also
less than 0.5 bit per channel use when . Hence, we
have proved Corollary 3.

V. CONCLUSION

In this paper, we have investigated the merit of using the
signals received by the source node, i.e., the feedback, for
encoder design on achieving a larger secrecy rate region. In
order to answer this question, we have studied two models: the
Gaussian two-way wiretap channel, and the Gaussian half-du-
plex two-way relay channel with an untrusted relay. For each
model, we have derived a computable outer bound for the se-
crecy capacity region. For the first model, by measuring the gap
between the outer bound and the achievable rate region, we have
found that the loss in secrecy rate due to ignoring the feedback
signals can be unbounded. Hence, the use of feedback can be
highly beneficial in this model. For the second model, we have
found that the feedback can be safely ignored if the power of the
relay is abundant. In particular, the gap between the achievable
rate region and the outer bound is bounded by 0.5 bit per channel
usewhen the power of the relay goes to . It isworthmentioning
that the achievable rate region in this case is attained via a time
sharing cooperative jamming scheme, which, with its simplicity
and near optimum performance, is a viable alternative to an
encoding scheme that utilizes feedback signals.

APPENDIX A
PROOF OF THEOREM 2

Let , where was defined in (6), and was
defined in (8). To simplify the notation, we use to denote

. Then, we have

(103)

(104)

(105)

(106)

(107)

(108)

(109)

where (104) follows from (6) and (8). Note that since, in this
proof, we are only bounding the rate of , we omit from
the condition term of (6). Equation (107) follows from the fact
that is a deterministic function of and , as shown
in (4).
Then, we rewrite the first term in (109) as

(110)

(111)
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For the first term in (111), we have

(112)

(113)

(114)

(115)

(116)

(117)

In (113), we use the fact that is a deterministic function
of , as shown by (4). In (115), we use the fact that

is a deterministic function of , as shown
by (3). In (116), we use the fact that

(118)
is a Markov chain, due to (1), the channel being memoryless
and the fact that encoding functions are causal. In particular, (1)
allows us to remove from the condition term. Applying this
result, we find that (109) is upper bounded by

(119)
The second term in (119) can be rewritten as

(120)

(121)

The second term in (121) can be upper bounded as

(122)

(123)

(124)

(125)

(126)

(127)

(128)

In (123), we use the fact that is a deterministic function of
, as shown by (3). In (126), we use the fact

that is a deterministic function of , , as shown by
(4). In (127), we use the fact that

(129)
is a Markov chain. This is because the encoding functions are
causal and the channel is memoryless.

Applying this result, we find that (119) is now upper bounded
by

(130)

The last term in (130) can be rewritten as

(131)

The second term and the last term in (131) can be upper bounded
together

(132)

(133)

(134)

(135)

(136)

(137)

(138)

In (135), we use the fact that is a deterministic function
of , and is a deterministic function of

. In (137), we use the fact that

(139)
is a Markov chain. This is due to the fact that the channel is
memoryless and the encoding functions (3) and (4) are causal.
Applying this result to (131), we find that (130) is now upper

bounded by

(140)

Hence, we have shown that

(141)

Applying this result repeatedly for , we have

(142)

(143)
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Fig. 10. Two-way wiretap channel with a public noiseless forward link.

Define as a random variable that is uniformly distributed
over . Define , , ,

, . Then, the right-hand side of (143)
equals

(144)

(145)

where we use the fact that is a Markov
chain and is a Markov chain. Applying
this result in (143) and letting , we obtained the upper
bound in the theorem.

APPENDIX B
PROOF OF THEOREM 3

Equation (50) follows from removing the eavesdropper and
applying the bounds of two-way channel from [1]. Equation (51)
can be derived similarly thanks to the symmetry of the channel
model.
We next derive (52).We focus on the first term inside the min-

imum in (52). The second term can be derived similarly thanks
to the symmetry of the channel model.
First we add a public noiseless broadcast channel to the

channel in Fig. 1. The new channel model is shown in Fig. 10.
The broadcast channel takes the input from Node 1. Its outputs
are received by Node 2 and the eavesdropper. Since the channel
is noiseless, the outputs equal the input, and is denoted by .

is continuous. The introduction of the public noiseless
broadcast channel certainly does not decrease the secrecy
capacity region. Hence, to upper bound the secrecy capacity
region of the original channel, we can consider this new model
instead. We next apply Theorem 2 to this channel, which says
is bounded by

(146)
The first term in (146) is upper bounded by

(147)

(148)

(149)

(150)

(151)

(152)

In (151), we use the fact that is a Markov
chain.

The second term is (146) is upper bounded by

(153)

(154)

(155)

(156)

(157)

In (156), we use the fact that is a
Markov chain.
Hence, (146) is upper bounded by

(158)

This means introducing a public noiseless forward channel
brings no change in the expression of the upper bound of .
We next prove (158) is also an upper bound on .

This is done by showing if , is achievable,
then is also achievable.
Construct a message set which has the same cardinality

of themessage set . Let part of the secret message be trans-
mitted via . The remaining part of the secret message is trans-
mitted via . The role of is to serve as a secret key. Let
be taken from the set according to a uniform distribution.

is independent from and .
Let be the modulus addition defined over ,

where is the cardinality of the set . Recall that
denotes the result obtained by Node 1 when it tries to decode
. We let Node 1 transmit over the public channel.

Since the public channel is noiseless with continuous input, it
can transmit with a single channel use. Because Node
2 knows , it can recover from when .
The signal available to the eavesdropper now becomes the

output of the wiretap channel , and the output of the public
link, which is . Conditioned on these signals, the equiv-
ocation of , can be computed as

(159)

(160)

(161)

(162)

(163)

(164)

(165)

(166)

(167)
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In (167), we use the fact that can be reliably decoded by
Node 1. Hence, (167) follows from Fano’s inequality.
The first term in (167) can be bounded as follows:

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

Equation (171) is due to the fact that is independent from
, , which leads to

(176)

(177)

Equation (172) follows from the fact that is independent
from , , . Equation (174) follows from the fact that col-
lective secrecy implies one message is secure even if the other
message is revealed to the eavesdropper [12].
The argument above shows the rate of , is the secrecy

rate . Since is chosen from the message set ac-
cording to a uniform distribution, we have .
Therefore, is upper bounded by (158).
Hence, we have proved the theorem.

APPENDIX C
PROOF OF THEOREM 1

We prove , is achievable. The achievability
of , can be proved similarly due to the sym-
metry of the channel model.
The communication is divided into two phases:
1) The first phase lasts channel uses. During it, Node 2
sends a key to Node 1. At the same time, Node 1
performs cooperative jamming by transmitting an i.i.d.
Gaussian noise sequence with power .

2) The second phase lasts channel uses, during which
Node 1 encrypts the confidential message with , and
sends the result back to Node 2. At the same time, Node
2 performs cooperative jamming by transmitting an i.i.d.
Gaussian noise sequence with power .

Let be the time sharing factor of the first
phase. and is a constant.
The following notation is used in the remainder of the proof:
denotes any signal which is related to the second phase. Oth-
erwise, the signal is related to the first phase. With this notation,
the signals received by the eavesdropper during the two phases
are given by

(178)

(179)

The codebooks used by Nodes 1 and 2 are denoted by and
, respectively, and are generated in the following way: is

composed of i.i.d. sequences sampled from the Gaussian distri-
bution . The codebook is then randomly binned into
several bins. The size of the codebook depends on the number
of bins needed to represent the key and the size of the bin
necessary to confuse the eavesdropper. Specifically, the size of
the bin is chosen to be

(180)

where denotes the largest integer smaller or equal to ,
and .
Let be the rate of the secret key. Then, there are

bins. is given by

(181)

(182)

Observe that the key rate is chosen to be smaller than

to keep the key secret from
the eavesdropper. As will be shown later, the key is used to
compensate the rate loss of the forward channel needed to con-
fuse to eavesdropper. Hence, the rate of the key is chosen not

to exceed this rate loss, which leads to the term
in (182).

is composed of codebooks. Each codebook is com-
posed of i.i.d. sequences sampled from the Gaussian distribution

, and is composed of i.i.d. Gaussian sequences.
The sequences of each codebook are randomly binned into sev-
eral bins. The size of each bin is chosen to be

(183)

where and .
During the first phase, Node 2 generates a secret key ac-

cording to a uniform distribution over and se-
lects the bin from according to . Then, it chooses a code-
word from this bin according to a uniform distribution and trans-
mits it to Node 1.
Since Node 1 is transmitting an i.i.d. Gaussian noise sequence

during the first phase, the channel model in this phase is equiv-
alent to the Gaussian wiretap channel [30], which uses the same
codebook and encoding scheme as we do here. Reference [30]
proves that, by doing so, is kept secret from the eavesdropper
and can be reliably decoded by Node 1. That is,

(184)

(185)

where .

Let be the estimate of Node 1 decodes from its received
signal. Node 1 computes its transmitted signals as follows: it
first chooses the codebook according to the key it decoded
from the first phase. Then, it chooses the bin from the code-
book according to the secret message . Finally, it chooses
the transmitted codeword from this bin according to a uniform
distribution.
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If , then Node 2 knows the subcodebook used by
Node 1. The subcodebook is composed of i.i.d. Gaussian se-
quences and its rate is within the AWGN channel capacity be-
tween Nodes 1 and 2. This observation, along with (185), leads
to the following fact:

(186)

We next bound the equivocation

(187)

It is understood that , is always on the condition term.
Hence, we omit it in the sequel to simplify the notation and
reinstate it only when necessary.
The equivocation rate is then bounded as follows:

(188)

(189)

(190)

(191)

(192)

(193)

(194)

Here, (189) follows from the fact that given , the number of
possible equals the cardinality of the bin that corresponds to

from all the codebooks, which is .
Note that these candidates of form a Gaussian codebook
by itself with a rate of . Since Node 2 is
transmitting i.i.d. Gaussian noise, the channel between Node 1
and the eavesdropper is an AWGN channel whose capacity is

. Therefore, given , the eavesdropper can deter-

mine from using joint typical decoding. Equation (189)
then follows by applying Fano’s inequality.
Equation (191) follows since is a deterministic function

of .
The third term in (194) can then be bounded as follows:

(195)

(196)

(197)

(198)

(199)

(200)

(201)

(202)

(203)

Equation (198) is because is a sequence of i.i.d.
Gaussian noise, which is independent from and .
Equation (200) follows from the fact that is a

Markov chain. Equation (203) follows from (184).
Substituting (203) into (194), we have

(204)

(205)

The second term in (205) can be bounded as follows. For this
purpose, we reinstate the , on the condition term

(206)

(207)

(208)

(209)

(210)

(211)

Equation (209) follows from the fact that given , only de-
pends on the jamming signal and channel noise. Therefore, we
can drop codebooks , from the conditioning term. Equation
(211) follows from the fact that Node 2 transmits i.i.d. Gaussian
noise during the second phase, and the codebook used by Node
1 is composed of i.i.d. Gaussian sequences.
Since

(212)

(213)

we have

(214)

(215)

(216)

Therefore, .
This, along with (186), gives us

(217)

From the linearity of expectation and nonnegativity of mutual
information and probability, we see that there must exists code-
books , such that both terms on the left-hand
side of (217) go to 0 as . This observation, along with
that fact that channel uses are involved, proves that the
secrecy rate pair is achievable.
Hence, we have proved the theorem.

APPENDIX D
PROOF OF THEOREM 7

Since received signals are not used to compute transmitting
signals at Node , , 2, we let in Theorem 1. In this
case, when , becomes

(218)

(219)

The sum rate bound given by Theorem 6 is upper bounded by

(220)
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To prove Theorem 7, it is sufficient to show both and are
within constant gaps of (220), as we show below.

(221)

(222)

(223)

(224)

(225)

(226)

(227)

For , we have

(228)

(229)

(230)

(231)

(232)

(233)

Hence, we have proved the theorem.

APPENDIX E
PROOF OF THEOREM 8

To prove this theorem, we only need show that it is possible to
achieve a secrecy rate for Node 1 that exceeds the upper bound
given by Theorem 5. Consider the case when .
Then, by evaluating (60) at and with
, we find the secrecy rate is bounded by

(234)

when is ignored by Node 1. Choose and such that

(235)

For this power configuration, from (234), we observe that is
upper bounded by .
Let the in Theorem 1 be . then becomes

(236)
A sufficient condition for is that

(237)

It can be verified that this condition is equivalent to

(238)

A sufficient condition for it to hold is

(239)

which means

(240)

Choose . For sufficiently large , both (235)
and (240) can be fulfilled. In this case, the achievable rate is

, which is greater than the upper bound . The
difference is , which is not a bounded function of .
Hence, we have proved the theorem.
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