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Abstract— We investigate the transceiver design problem for a
multiple input multiple output (MIMO) link considering the ef-
fect of channel estimation. We work with the total mean squared
error as the performance measure and develop transceiver struc-
tures considering the effect of maximum likelihood (ML) channel
estimation. The proposed transceiver structures are optimum in
the sense of minimizing the total MSE and distributing the MSE
equally among the parallel data streams. Next, an upper bound
for the number of data streams that can be transmitted for
a given target MSE is derived. Motivated by the substantial
effect the channel estimation process can have on the system
performance, we next investigate the problem of how the MIMO
link should distribute its total available power between power
expended for channel estimation versus data transmission. The
optimum power allocation between the training sequences for
ML estimation of the channel and data transmission is derived
given the total power budget. Numerical results supporting the
analysis and the power allocation schemes are presented.

I. INTRODUCTION

Improved spectral efficiency is needed to meet the rapidly
growing demand for high data rate and reliable wireless
communications. Recently, the use of multiple antennas at both
the transmitter and the receiver side has attracted attention due
to their potential to increase the spectral efficiency significantly
[1]. There has been considerable research in exploiting the
space dimension through transmit diversity, space-time coding
and spatial multiplexing for multiple input multiple output
(MIMO) systems that employ multiple transmit and/or receive
antennas [2]–[5].

Performance of a MIMO system is highly dependent on
the channel state information available at both the transmitter
and the receiver side. Hence, estimation of the channel at
the receiver side and feedback of this information to the
transmitter side have significant impact on the performance. In
the absence of channel state related feedback to the transmitter
side, multiple antennas can be used for spatial multiplexing
[6], or for space-time coding [2], [3], [6]. The effect of
receiver side channel estimation on such schemes is analyzed
in [3], [7]. Spatial multiplexing can significantly benefit from
transmit precoding when channel information is available at
the transmitter side. In such cases, designing the appropriate
precoding strategy has been studied under a variety of system
objectives [4], [5], [8], [9]. All of these studies have assumed
exact channel state information at the transmitter side.

In order to fully realize the substantial capacity gain for a
MIMO system, the MIMO channel has to be estimated at the
receiver, and in turn should be fedback to the transmit side if
precoding is to be employed. In this context, optimal trans-
mission strategies with channel estimation are investigated
for space-time coding and eigen beamforming transmission
schemes [10], [11]. In practice, it is likely that the total trans-
mission power budget would be limited for the MIMO system.
When this is the case, it is meaningful to ask what fraction
of the resources should be devoted to estimation versus actual
data transmission. Related previous work in this area includes
the design of optimum training sequences for ML estimation
of MIMO channels and the effect of channel estimation on
BLAST systems [12]. In the same context, considering the
sum capacity as the performance metric, optimum training
sequences and power allocation among the training sequences
and data transmission are found in [7], [12].

In this paper, we consider a MIMO system where the
transmitter and receiver have access to the same channel
state information (CSI). CSI is assumed to be obtained at the
receiver side by training and fedback to the transmitter side via
an error-free feedback channel. Throughout the paper we will
use the total mean squared error (MSE) as our performance
metric [5], [13]. The contribution of the paper is three fold. We
first investigate the effect of channel estimation process on the
design of the precoder and the decoder for the MIMO system,
with the objective of minimizing the total mean squared
error (MSE). Next, we consider fairness constraints and aim
at providing each symbol transmitted with an equal MSE
performance. Using the precoder-decoder pair we construct
and by allowing the data streams to be transmitted by the
MIMO link to interfere with each other, we next find an upper
bound for the number of independent data streams that can
be transmitted through the channel for a given target MSE.
The upper bound is achievable with the proposed structure,
and can be larger than the rank of the channel matrix, an
upper bound suggested by earlier work [5]. Third, motivated
by the profound effect of the quality of channel estimation on
the performance of the MIMO link, we consider the problem
optimum sharing of resources between the process of channel
estimation and data transmission. We consider the total power
as the limited resource, and show that, given the coherence
time of the channel, there is a unique solution to the optimum
allocation problem between the training based ML channel
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estimation and data transmission.
The organization of the paper is as follows. In Section II,

the system model is described. The MSE is formulated, the
optimum transceiver structure and the upper bound on the
number of independent data streams are derived in Sections III
and IV. The effect of power allocation is investigated and
a power allocation scheme minimizing the total MSE is
given in Section V. Section VI provides the numerical results
supporting the analysis. Section VII concludes the paper.

II. SYSTEM MODEL AND PERFORMANCE METRIC

We consider a communication link consisting of �� trans-
mitter antennas and �� receiver antennas. The transmitter
multiplexes a fixed number of data streams � through its ��

transmit antennas employing an �� �� linear transmitter �
in one symbol period. We assume that the number of data
streams is given and fixed first, and analyze the effect of
channel estimation on the design process of linear transmitter
and receiver. We remove this assumption later in the paper, and
determine the maximum number of data streams that can be
transmitted with a certain MSE target. Similar to the notation
in [5], the received vector is

� � ���� � (1)

where, � is the ��� symbol vector,� is the ����� matrix
of complex channel gains and � is the zero mean complex
Gaussian noise vector with �

�
���

�
� ���, and ���� denotes

the hermitian of a vector or matrix.
We assume that the channel is flat fading with coherence

time of ��� � �� symbols where �� symbol intervals are
dedicated to training sequences, and the remaining � to data
transmission. The total power available to the system for the
entire interval is ������ where ��� portion of it is used for
the transmission of the training sequences and the remaining
portion is distributed equally among the � symbols. Thus,
the precoder should be designed with the power constraint
������� � �� � ������� � ����	�.

Throughout the paper, it is assumed that the receiver has
the ML estimate of the MIMO channel � � � �� that is
perfectly fedback to the transmitter via an error-free and low-
delay feedback channel. Following the ML estimate model of
the MIMO channel in [7], [12], � is a random matrix with
i.i.d. complex Gaussian entries having 
���� ��

	 � �
��� �
���

�
and is independent of the MIMO channel �. In this model,
� is a realization of a random matrix with i.i.d. complex
Gaussian entries having 
���� ��
�. Using Bayes’ rule, the
distribution of ����� � ��� and ����� � 
�� for a given
estimate ����� � ��� can be expressed as

������ ����� � ������ � ��� ����� (2)

�
������������� � �����
������������� � ��������

(3)

resulting in

����� ����� � 
�����
��


��
 � ��	
�

��
�
�
	

��
 � ��	
� (4)

��
�� ����� � 
�����
��	

��
 � ��	
�

��
�
�
	

��
 � ��	
� (5)

Observe that from the receiver’s perspective, the actual channel
is a random MIMO channel with i.i.d. complex Gaussian
entries of 
��


��

�
�
�
��

������ �

��


�

�


�
�
�
��

�.
Let us denote the ���� linear receiver by�; the decision

statistic 	 is given by

	 � ������� (6)

Then, the total MSE is

MSE � �
�
��� ���

�
� (7)

�
�
tr
�
�
�
�
�
�
�
���� ����

�
� ����� �� �����

��

where tr�
� denotes the trace of matrix 
.
Total MSE minimization by choosing the transmitters and

receivers has recently been studied for MIMO systems with
exact channel state information [5]. In practice, the channel
state information available to the transmitter and receiver may
not be perfect. In addition, it is meaningful to consider a
system where fairness is facilitated by ensuring that each
symbol experiences equal MSE. In the following section, we
pose the problem of minimizing the total MSE considering
fairness among the parallel data streams, in the presence of
a given ML estimate of the channel at both transmitter and
receiver, and construct the optimum transceiver structure.

III. OPTIMUM TRANSCEIVER STRUCTURE

Our aim in this section is to find the optimum transceiver
structure in the sense of minimizing the total MSE and
distributing the total MSE equally among the parallel data
streams while considering the effect of ML channel estimation.
Formally, the optimization problem is

min
�����

MSE � tr��� (8)

s.t. ��� � ��� MSE� � MSE� � ��� � MSE�

� � �
�
���������������� ����� �� ������ (9)

and MSE� is the individual MSE of data stream �, and is the
��� ��th entry of �.

As we mentioned in the previous section, the actual channel
matrix is not known at the receiver side and from the receiver’s
perspective it is a random MIMO channel with a known
distribution. Defining � �


��

���


�

�

and using the distribution

in (4), � can be modelled as � � �� � � where �
is a random matrix with i.i.d. complex Gaussian entries of

���� ��� �


��

�

�


�
�
�
��

�. Reformulating the MSE in terms of �
and � we have

MSE � ��tr������
�
�
�
���� ����

�
�
���

������
�
�
���� ����

�
�
�
���

�����
�
�
� �����

�
�

���������

�� ������� (10)
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Using the properties of random matrices with zero mean i.i.d.
entries, ��
�� � � and ���

���� � ������



��� for
an arbitrary matrix 
, and taking the expectation with respect
to �, the MSE can be expressed as

MSE � tr������
�
�
�
���������

�
�
�������������

��
(11)

where �� � ������	��. Observe that the MSE in (11) has the
same form of the MSE expression of a MIMO system with a
channel matrix �� and an AWGN factor with variance ��.

Let us now consider the minimization of the MSE in terms
of the precoder and decoder. The first order condition with
respect to the linear receiver (decoder) results in the well-
known MMSE receiver

� � ����
� �

���� �������
����

(12)

Using (12), the total MSE function can be reformulated as

MSE � tr�� � �����
�
�
���� �

�
���

�
�
�
���

��� (13)

� � ��� � tr����� (14)

where 
 � � � ��

��
�����

�
. Notice that the optimum

linear transmitter and receiver set that minimizes the MSE
is not unique and any linear transmitter that achieves the
same covariance ��� � ����� achieves the same total MSE.
Specifically, all optimum linear transmitters are in the form of
������� � �����

� where � is any arbitrary matrix satisfying
��� � �.

It is evident that the minimum MSE without any constraints
lower bounds the minimum MSE with fairness constraints.
However, as we explain below, the optimum transceiver struc-
ture with fairness constraints lies in this set of transmitters that
yield the unconstrained minimum MSE for a special structure
of �.

Reference [5] suggests that one possible optimum linear
transmitter is in the form of ��� where � is the unitary

matrix that has columns as eigenvectors of �
�
� � ����

and�� � ���������������������� is a diagonal matrix with
� factor satisfying the power constraint, and ���� � ��
��� ��.
Specifically, all optimum linear transmitters are in the form of
���� � ����

� where ��� � �. Then, the MSE of each
data stream can be expressed by the diagonal entries of

	 � �� �����
�
�
���� �

�
���

�
�
�
���

�� (15)

� 
�

� (16)

where � is a diagonal matrix.
Now, consider a MIMO system where equal MSE values

for each symbol is required. The eigenvalues of � in (15) are
the diagonal entries of�, and are independent of�. Thus, the
sum of the achieved MSE’s of the data streams is independent
of the choice of �. However, the individual MSE that each
data stream achieves does depend on �. Since the diagonal
entries of �, the achieved MSE of each data stream, are
desired to be equal, a � that results in a � matrix with equal
diagonal entries is needed. Observe that the eigenvalues of �

always majorizes the equal diagonal entries which ensures the
existence of such a matrix � [14]. Thus, for a given optimum
linear transmitter, there always exists another optimum linear
transmitter that provides equal MSE for each data stream. An
example of such a transceiver structure is given in [13] where
each entry of the unitary matrix � is given by ��� � ��

����	



�.

IV. RATE ALLOCATION

In the previous section, we considered the transceiver op-
timization problem for a given number of symbols to be
transmitted. In this section, we investigate how many parallel
data streams the transmitter can send given that each symbol
has to experience an MSE lower than or equal to a given MSE
target.

The optimization problem is

max
�����

M (17)

s.t. tr����� � ��� MSE� � MSE� � ��� � MSE� � �

Using the transceiver structure proposed in the previous
section, one can always distribute the total MSE to each
parallel data streams equally. Thus, individual MSE constraints
simply reduces to the total MSE constraint:

MSE �

��
���

MSE� ��� (18)

Using (14) an upper bound for the number of parallel data
streams can be formulated as

� ��� � tr�
��� � ��

� �
�� � tr�
���

�� �
(19)

where 
 � � � ��

��
�����

�
with � � ��� . Observe that

the bound can exceed the rank of � depending on the value
of �. Especially for large values of �, that is if a larger MSE
can be tolerated, the upper bound can be much higher than
the rank of the channel matrix which is an upper bound for
orthogonal transmissions [5].

We note that the bound in (19) is achievable via the
appropriate choice of the precoder-decoder pair as explained
in Section III and serves as a feasibility constraint for the
MIMO system. Observe that the MIMO system can be viewed
as a CDMA system with channel and power constraints. For
a CDMA system without any channel and power constraints a
well-known upper bound exists on the user capacity [15]. The
feasibility condition is

��
���

����
� � ����

� �� (20)

where ���� is the SIR target of user �. Using ����

������
�

������, and MSE target �, we can obtain an upper bound
for the number of data streams that can be transmitted with
an MSE target as

� �
��

�� �
(21)

1227



for the CDMA system. Observe however that the bound in
(19) which is attainable is tighter than (21) for the MIMO
system. This is due to the fact that the upper bound derived in
(19) considers the constraints of the MIMO system, i.e., the
channel constraints and power constraints.

After finding the maximum number of data streams that
can be transmitted through the MIMO channel, one can easily
construct a transceiver structure by changing the structure of
the matrix � to satisfy the equal MSE constraints.

V. OPTIMAL POWER ALLOCATION

It is evident from the preceding discussion in this paper
as well as several other references, e.g., [7], [10]–[12], [16]
that the availability of an accurate channel estimate has a
substantial impact on the performance of a MIMO link.
Therefore, it makes sense to devote some part of system
resources to the channel estimation process if in turn the gain
in performance is worth the effort. In practice, it is likely
that, in a given interval, where the channel is likely to be
static, the link would operate with a limited total budget. It
is then meaningful to ask what fraction of this total power
budget should be expended on the transmission of training
sequences that are used in estimating the channel, versus the
transmission of actual data. In this section, we investigate this
optimum power allocation problem and show that it has a
unique solution. The performance metric we consider for the
system is total MSE. We note that minimizing the total MSE
is equivalent to minimizing tr�
���

min MSE � min�tr�

	
��

��

��
���

�
�
�

��

�� (22)

Recall that � is a random matrix with i.i.d. complex
Gaussian entries with 
���� ���
 � ��	 �� and tr����� � ��.
Normalizing the entries � and ��� in the MSE expression,
we have

min MSE � min�tr�

	
��

������
�

� � ����

��
�� �� ���


��

�� (23)

where 	� � ��	�����
� and 	� � �	���
 � ��	 �

����. Due to
normalization 	� has independent and identically distributed
entries with unit variance and 	� has unit trace. Thus, the
expression �	 �

�����

�

��
���
��

acts like the effective SNR of
the system.

Note that as the effective SNR is increased the MSE
function is decreased. Hence the minimization of MSE is
equivalent to the maximization of �	 in terms of power allo-
cation. Recall that we have the following relationship between
data transmission power and training sequences power

���� ��� � ������ (24)

Defining � to be the fraction of the total power devoted to
data transmission, i.e.,

� �
���

������
� � � � � (25)

and � � ��������
��	
��

���
�����
��	
�� , the effective SNR �	 can be

expressed as

�	 �
� �
������


�

�����
������� ������

���� ��

��� �
(26)

Let us define the function

���� �
���� ��

��� �
(27)

The maximization of the effective SNR, �	 is equivalent to
maximizing ���� over � � � � �. The result is given by the
following theorem.

Theorem 1: The maximizer of ���� always lies in 
�� ��.
The optimum fraction of power allocated to data transmission,
����, is given by

���� �

�	

	�

�������
� � for �� � �;

�
� � for �� � �;
�������

� � for �� � �;

(28)

Proof: The optimization problem is at hand the max-
imization of ���� over � � � � � with ���� given by
(27). Observe that ���� has an asymptote at � � ��

� . When
� � �� ��� � � and when � � �� ��� � �. Thus, the pole
always lies outside the interval of interest. In order to find
the maximum, we first analyze the derivatives of the function
���� 	�. The first and the second derivatives of the function
with respect to � are

 ������

 �
�

������� ��� �

�� � ����
(29)

 �������

 ��
�

��� ��

�� � ����
(30)

The behavior of the derivatives of the function is as shown
below:

1. When � � �,
����� ��
� � � � for � � ��

�
����� ��
� � � � for � � ��

� .

2. When � � �,
����� ��
� � � � for � � ��

�
����� ��
� � � � for � � ��

� .

3. When � � �, ����� ��
� � � � 	�.

Observe that the first derivative has two zeroes. When � � �
as � 
 ���� �� and as � 
 �� ���� 
 ��. Also as � 

���� �� and as � 
 ��� ���� 
 �. These properties along

with the fact that ����� ��
� � � � in � � 
�� �� implies that a

maximum exists in this interval. A similar analysis for when
� � � enables us to say that a maximum exists in the interval
[0,1].

The first order condition for finding the optimum � is

������� ��� � � � (31)

Solving the equation for all cases we obtain the following
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Fig. 1. MSE target vs upper bound for the number of data streams for ���
MIMO system with �� � �, ��� � ��

roots,

� �

�	

	�

��
� 


�
���
� � � � � ;

��
� 


�
���
� � �� � � � � ;

�� � � �� ;
(32)

It can be seen that, for all cases, there is only one root which
lies in the interval 
�� �� and ����� ��

� � � � in this interval.
Recalling the fact that the pole always lies outside the interval

�� �� we conclude, there exists a unique ���� in the interval

�� �� which maximizes the effective SNR.

The value of ���� depends upon the number of transmitter
antennas and the length of the time interval used for symbol
transmission. We observe that when the number of transmit
antennas is larger than the time interval used for data trans-
mission interval i.e �� � � then ���� lies in the range of

�� �� �. This result suggests allocating more power to training
process for such systems due to the large number of transmitter
antennas. As the number of antennas is increased more power
is allocated to the estimation process. When �� 
 �, then
� 
 ��
��	
�

�


�� . This implies that even when the number of
transmitter antennas is very large, the power that should be
allocated to the training sequences has a limit.

Similarly, when the number of symbols to be transmitted is
greater than the number of transmit antennas, i.e., �� � �,
then the range of ���� is ��� � ��. This implies that when the
data transmission interval is much larger than the number of
transmitter antennas, significant portion of the system power
should be allocated to symbol transmission rather than the
estimation process. When �
�, then �
 ���
��	
��

��
��	
�����
�
.

Thus, however long the channel coherence interval is, a
nonzero portion of the total power should be allocated to
training.

For the case where the number of transmit antennas is equal
to the number of symbols to be transmitted, i.e., �� � �, ����
is �

� . That is, the available power should be allocated equally
between training and data transmission.
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Fig. 2. � vs MSE for �� � MIMO system with � � � and �����	 � ���

VI. NUMERICAL RESULTS

In this section, we present numerical results related to
the performance of the proposed transceiver structures and
power allocation for channel estimation and data transmission.
For numerical results, we consider a 
 � 
 MIMO system
transmitting 
 data streams. The channel values are generated
as realizations of a random matrix with i.i.d. complex Gaussian
entries of 
���� �� and the variance of AWGN is 0.05.

We consider a 
 � 
 MIMO system with a given channel
and estimation procedure. Power used for training is � �� � ��
and the power used for data transmission per symbol interval
is �� � 
. We plot, in Figure 1, the number of data streams
that can be transmitted with a given MSE target, to highlight
the differences between the bounds suggested by this paper,
[5] and [15]. The MSE approach bound is achievable by the
proposed precoder and decoder structure in Section IV, and
is larger than what is achievable by orthogonal transmissions
[5]. The CDMA user capacity bound [15] is not achievable
due to the constraints on the power and the MIMO channel
structure.

To investigate the effect of the power allocation among the
channel estimation process and data transmission, we consider
three different values of �. First we consider a 
� 
 MIMO
System with � � � and ������ � ���, and evaluate the
total MSE over 10000 realizations of the MIMO channel for
different power allocation schemes. Figure 2 shows the effect
of power allocation on the MSE as � changes. It is observed
that the optimal power allocation achieves the minimum MSE.
For �� � � � 
, the effect of power allocation on the MSE
is presented in Figure 3 where ���� � �	�. The third case,
�� � � with � � �� is investigated in Figure 4. In Fig 5, �
vs the scaled version of the effective SNR, ���� is presented
where ���� maximizes the effective SNR. Observe that as �
increases the power allocation favors to the data transmission
rather than the estimation process.
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VII. CONCLUSIONS

In this paper we have considered the linear transceiver
structure for a MIMO link which minimizes the total MSE
in the presence of channel estimation errors, and distributes
the MSE equally among the parallel data streams. Using the
proposed optimum precoder and decoder, we have derived an
upper bound on the maximum number of data streams that can
be transmitted by a MIMO system for a given target MSE. This
upper bound is achievable with the appropriate choice of the
precoder and decoder and can be larger than the rank of the
channel matrix. This paper also considers the resource trade-
off between channel estimation and data transmission for a
MIMO link with limited total power. Specifically, the optimal
power allocation scheme between the training sequences and
data transmission is derived. We observe that the power allo-
cation depends on the system parameters, namely the number
of transmit antennas and data transmission interval.
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