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Abstract — In this paper, we consider a minimum

mean-squared error (MMSE) based receiver structure

which combines multiuser detection (temporal filter-

ing) and receiver beamforming (spatial filtering). Mo-

tivated by the high complexity of the optimum re-

ceiver, we propose rank constrained temporal-spatial

filters which are simpler and near optimum. An iter-

ative algorithm based on alternating minimization is

used to find the filter coefficients. The adaptive im-

plementation, built upon least mean squares (LMS),

is formulated and its convergence properties are in-

vestigated.

I. Introduction

CDMA systems are known to suffer from multi-access in-
terference (MAI), which degrades performance. In this work
we focus on two receiver signal processing based methods that
combat MAI: multiuser detection (temporal filtering) and re-
ceiver beamforming (spatial filtering).

Multiuser detection [1] exploits the inherent structure of
multiple access interference to suppress it effectively. The
high computational complexity of the optimum multiuser de-
tector [2] resulted in the investigation of a number of subop-
timum detectors [3, 4]. One of the suboptimum detectors is
the MMSE detector, designed to minimize the mean-squared
error between the filter output and the information bit. Adap-
tive implementations of the MMSE detector based on training
bits as well as blind versions were studied in [3, 5, 6]. Beam-
forming using receiver antenna arrays, reduces the interference
by separating the desired signal from interfering signals that
originate from different locations [7]. It is shown in [8] that
for flat-Rayleigh fading channels, interferers can be nulled out
with a cost of one degree of freedom per user. The capacity
increase that is achieved with base-station antenna arrays in
CDMA systems is shown in [9], where perfect instantaneous
power control and matched filters are assumed for each user.

Combined temporal-spatial filtering was considered in [10]
and the necessary statistics were derived along with several
multiuser detectors. Many combined temporal-spatial struc-
tures were considered in the past with most of them being in
cascade form; beamformers followed by an interference can-
celler or vice versa [11, 12, 13]. A recent paper [14] examines
several two dimensional linear filter structures. It is shown
that joint optimum temporal-spatial filter (OTSF) achieves
the highest signal-to-interference ratio (SIR). The high com-
putational complexity of OTSF led the authors to propose
rank-1 constrained filters.

Rank-1 constrained filter’s simplicity is appealing from an
implementation point of view but the performance of such
filters may be severely suboptimal as compared to the opti-
mal filter due to the constrained solution space, especially un-
der heavy loads. Motivated by the performance gap between
the OTSF and the rank-1 constrained filter, in this work, we
search for filter structures whose performance lie between that
of the OTSF and the rank-1 constrained filter. We propose
a general class of rank constrained filters, which are found
according to a structural constraint on the receiver filter. It
will be shown that the strictness of the constraint determines
the resulting filter’s performance and complexity. The con-
straint can be relaxed in order to achieve a near optimum
performance, at the expense of additional complexity.

A recent popular approach that reduces the receiver com-
plexity is the reduced-rank method. In reduced-rank meth-
ods, the received signal is projected to a lower dimensional
subspace [15, 16]. The ‘rank’ reduction in these methods refer
to the rank of the autocorrelation matrix which results in a
dimension reduction of the received signal and the correspond-
ing filter. In contrast, in this work, the term ‘rank constrained’
refers to the rank of the linear matrix filter. More will be said
about the differences of these approaches in the remainder of
this paper.

In our approach, we express the temporal-spatial filter as
a receiver matrix filter. The MSE, with the appropriate rank
constraint, is iteratively minimized using an alternating min-
imization algorithm. We first derive the deterministic iter-
ations, which assume the knowledge of all users’ parame-
ters. Motivated by the fact that adaptive implementations
may require little information to track the constantly chang-
ing parameters in a wireless environment, we consider such
implementations in section 5. An adaptive algorithm which
is a combination of alternating minimization and least mean
squares (LMS) is formulated and the parameters that affect
the convergence are explained.

II. System Model

We consider a single cell synchronous DS-CDMA system with
processing gain N . An antenna array of M elements is em-
ployed. Over one bit period, the received signal at the output
of the antenna array is given by:

r(t) =

K∑
k=1

√
Pkbksk(t)ak + n(t) (1)

where Pk, bk and sk(t) represent the transmit power, infor-
mation bit and the temporal signature of user k. ak is the
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Fig. 1: Receiver structure

combined array response vector and channel coefficient of user
k. The temporal signatures of the users are of the form:

sk(t) =

N∑
n=1

s
(n)
k φ(t− (n− 1)Tc) with s

(n)
k = ±1/

√
N (2)

where φ(t) is the unit energy chip waveform and Tc is the chip
duration. After chip matched filtering and sampling at the
chip rate, there are N observations at the output of each of
the M antenna elements, which can be arranged in a N ×M
dimensional matrix:

R =

K∑
k=1

√
Pkbkska

T
k + N (3)

The mth column of R represents the chip matched filtered
observations at the output of the mth antenna element. The
N matrix represents the spatially and temporally white noise,
E[N∗klNmn] = σ2δkmδln where (·)∗ denotes the conjugate op-
eration. For the rest of this paper, the desired user will be
denoted by index i. A linear matrix filter Xi is used to com-
pute the decision statistic yi, and the bit decision is made by
taking the sign of the real part of yi:

yi =

N∑
n=1

M∑
m=1

[Xi]
∗
nmRnm = tr(XH

i R) (4)

where tr(·) and (·)H denote the trace and hermitian operations
respectively.

III. Previous Work

The optimum temporal-spatial filter (X̄i) minimizes the
mean-squared error between the decision statistic and the in-
formation bit. Note that X̄i also achieves the highest SIR
amongst all possible linear matrix filters [17]. We want to
find X̄i such that:

X̄i = arg min
X

E

[∣∣∣tr (XHR
)
− bi

∣∣∣2] (5)

After reformulating the optimization problem with vector
variables, the solution is given by [17, 14, 3]:

x̄i =
√
Pk

(
K∑
k=1

Pkqkq
H
k + σ2I

)−1

qi (6)

where qk is the long vector obtained by stacking up columns
of ska

T
k . To reconstruct Xi, we take every N element of xi

and place as a column to Xi. From (6), it is seen that finding

the optimum filter requires the inversion of an NM ×NM di-
mensional matrix which may be computationally costly. Mo-
tivated by this complexity of OTSF, the authors of [17] pro-
posed a simpler receiver. In this case, the filter space (i.e. the
solution space of the optimization problem) is constrained to
contain filters of rank 1 only. Note that any Xi of rank 1 can
be decomposed as Xi = ciw

T
i , where ci and wi are N and M

dimensional vectors respectively. The optimization problem
and the MSE function are expressed in terms of ci and wi as:

[c̄i, w̄i] = arg min
ci,wi

E

[∣∣∣tr (w∗i cHi R
)
− bi

∣∣∣2]
= arg min

ci,wi
E

[∣∣∣cHi Rw∗i − bi
∣∣∣2] (7)

MSE =

K∑
k=1

Pk

∣∣∣cHi ska
T
kw∗i

∣∣∣2 + σ2
(
cHi ci

)(
wH
i wi

)
− 2
√
Pk<

{
cHi ska

T
kw∗i

}
+ 1

(8)

where <{·} denotes the real part of a complex number. A
closed form expression for the minimizer of MSE does not ex-
ist and the MSE is not jointly convex in both vector variables.
However, it is convex for a single variable given the other
variable is fixed. An alternating minimization based iterative
algorithm (Gauss-Seidel iterations) was proposed in [18, 17].
In this iterative method, while one variable (say wi) is fixed
the other variable (ci) is updated to maximally decrease MSE.
At the next step, the previously updated variable (ci) is kept
constant and the previously fixed variable (wi) is updated.
This procedure continues in a round-robbin fashion until con-
vergence. Following the notation in [17], the values of wi and
ci that maximally decrease MSE are given as follows:

ĉi = MMSE(wi)

=
√
Pk(wH

i ai)

(
K∑
k=1

Pk|wH
i ak|2sksHk + σ2I

)−1

si (9)

ŵi = MMSE(ci)

=
√
Pk(cHi si)

(
K∑
k=1

Pk|cHi sk|2akaHk + σ2I

)−1

ai (10)

Note that each step of this iterative algorithm consists of 2
sub-steps: equations (9) and (10). The n+ 1th step is shown
below:

ci(n+ 1) = MMSE (wi(n)) (11)

wi(n+ 1) = MMSE (ci(n+ 1)) (12)

It was observed that with power control the performance of
rank-1 constrained filters were near optimal [17].

IV. Rank Constrained Temporal-Spatial

Filters

Rank-1 constrained filter’s simplicity is an advantage, but
because of the tight constraint on the solution space, its per-
formance is suboptimal as compared to the OTSF’s. This
performance difference could be quite pronounced in heavily
loaded systems: as the number of interfering users increase
with respect to the dimensions provided by the temporal and
spatial domains, the solutions found in the constrained space



of rank-1 filters become more inadequate. Under such con-
ditions, filters whose performance lie between that of OTSF
and the rank-1 constrained filter may be desired. We propose
to achieve this performance increase by replacing the rank
constraint with a looser version. By relaxing the constraint,
the solution space will expand (including the matrices of rank
1) and the filters found in this new larger space will possi-
bly perform better. Here we will investigate the general class
of rank-r constrained filters, where 1 ≤ r ≤ min{N,M}. In
other words, the solution space of the optimization problem
will be the space of up to rank r matrices in CN×M . Note
that any matrix filter whose rank is less than or equal to r
can be expressed in terms of at most r temporal-spatial filter
pairs:

Xi =

r∑
j=1

cijw
T
ij (13)

where cij and wij are N and M dimensional vectors respec-
tively. With this new representation, the decision statistic and
the MSE can be expressed as:

yi = tr

(
r∑
j=1

w∗ijc
H
ijR

)

=

r∑
j=1

cHijRw∗ij (14)

MSE =

r∑
l=1

r∑
j=1

K∑
k=1

Pkc
H
ilQkw

∗
ilw

T
ijQ

H
k cij

+ σ2
r∑
l=1

r∑
j=1

(
cHil cij

)(
wH
il wij

)
− 2

r∑
j=1

√
Pi<

(
cHijQiw

∗
ij

)
+ 1

(15)

where Qk = ska
T
k . As in the case with the rank-1 con-

strained filter, there is no closed form expression for the min-
imizer of (15) and MSE is not jointly convex in all vector
variables. Note that in this case we have 2r vector variables
{ci1, . . . , cir,wi1, . . . ,wir}. Fortunately, since MSE is convex
for each variable given that the remaining 2r− 1 variables are
fixed, alternating minimization approach can be used here as
well to iteratively minimize the MSE. The expanded solution
space causes the increase in the number of variables, and con-
sequently, each step of the iterative algorithm will consist of 2r
sub-steps. At each sub-step of the algorithm, a single variable
will be updated and the remaining 2r−1 variables will be fixed.
With some abuse of notation let MMSE({c̃ij}j 6=x, {w̃ij}rj=1)
and MMSE({c̃ij}rj=1, {w̃ij}j 6=x) denote values of cix and wix

that minimize the MSE given that the remaining 2r − 1 vari-
ables are fixed. After setting the gradient equal to zero and
solving for vector variables, the following equations are found:

cix =MMSE({cij}j 6=x, {wij}rj=1)

=

(
K∑
k=1

PkQkw
∗
ixw

T
ixQ

H
k + σ2|wix|2I

)−1

×

(
√
PiQiw

∗
ix−

r∑
j 6=x

( K∑
k=1

PkQkw
∗
ixw

T
ijQ

H
k + σ2wH

ixwijI

)
cij

)
(16)

FOR s = 1 : S DO
FOR x = 1 : r DO

ĉix = MMSE({c̃ij}j 6=x, {w̃ij}rj=1)
ŵix = MMSE({c̃ij}rj=1, {w̃ij}j 6=x)

END
END

Table 1: Summary of the alternating minimization algo-
rithm for the rank r case

wix =MMSE({cij}rj=1, {wij}j 6=x)

=

(
K∑
k=1

PkQ
T
k c∗ixc

T
ixQ

∗
k + σ2|cix|2I

)−1

(
√
PiQ

T
i c∗ix−

r∑
j 6=x

( K∑
k=1

PkQ
T
k c∗ixc

T
ijQ
∗
k + σ2cHixcijI

)
wij

)
(17)

A summary of this algorithm is shown in Table 1. Although
Table 1 shows that the variables are updated in the order
{ci1,wi1, . . . , cir,wir}, in general we may exchange the order
in which the variables are updated. The convergence of the
overall algorithm is guaranteed by the fact that each sub-step
guarantees to decrease the MSE function which is bounded
below. Due to the nonconvexity of MSE (8), the global min-
imum is not attained by a unique filter pair. This can be
observed by noting that for any nonzero value of β, all fil-
ter pairs [βcix,wix/β] will produce the same MSE. As a final
remark, note that since MSE is possibly multimodal, the algo-
rithm may get stuck in a local minima. However experimen-
tally, our full-rank filter (r = min{N,M}) always converged
to the MMSE value that OTSF achieved. For the case of
1 ≤ r < min{N,M}, the randomly initialized filter coeffi-
cients always converged to the same MSE value.

V. Adaptive Implementations

In this section, adaptive implementations of the rank con-
strained filters will be formulated. The deterministic case as-
sumes the knowledge of all users’ temporal signatures, array
response vectors, transmit powers and channel information.
Not all these parameters may be available to the system, es-
pecially in a cellular scenario. Adaptive implementations are
preferred because the only side information required are the
desired user’s training bits and signature sequence.

The adaptive implementation that we propose here will be
a combination of the alternating minimization approach of the
previous section and the least mean squares (LMS) algorithm.
While keeping the main structure of the alternating minimiza-
tion algorithm, each sub-step (Equations (16) and (17)) will be
treated as an independent LMS problem. In the deterministic
case at each sub-step, one variable is updated to maximally
decrease MSE. LMS on the other hand is a recursive method
that uses noisy estimates of the gradient to update the filter
estimate along the direction of the steepest descent. Because
of the stochastic nature of LMS, in principle infinite iterations
are required to reach the optimal point, whereas in the deter-
ministic case, the same is accomplished with a single update
(equations (16) and (17)). Since it is not feasible to wait for
such long periods, for each sub-step, we will only use B train-
ing bits. When the algorithm moves on to the next sub-step,
the MSE function (error surface) will be changed and a new



LMS algorithm will begin. Therefore, the same set of training
bits could be reused, for a more efficient use of the resources,
bandwidth and time.

The classic update rule of LMS is given by [19]:

w(n+ 1) = w(n) + µ
[
b(n)−wH(n)u(n)

]∗
u(n) (18)

where w(n), µ, u(n) and b(n) represent the filter estimate,
step size, received signal and the desired response respectively.
Applying this rule to our case results in the following equa-
tions:

cix(n+ 1)=cix(n)

+µ
[
b(n)− tr

(
cHi (n)R(n)w∗i

)]∗
R(n)w∗ix

(19)

wix(n+ 1)=wix(n)

+µ
[
b(n)− tr

(
cHi (n)R(n)wi(n)∗

)]∗
RT (n)c∗ix

(20)

Step size is an important parameter in LMS algorithms. When
a small step size is used, the algorithm converges slower but
eventually it achieves better performance (higher SIR in this
case) with respect to a larger step size. We expect our algo-
rithm to exhibit the same characteristics. Although in princi-
ple an infinite number of iterations are required to reach the
optimal point in the LMS algorithm, in our implementation
we limit the number of recursive iterations to B. The value of
B should be chosen large enough to avoid premature jumping
to the next step, but small enough to avoid unacceptably slow
convergence of the overall adaptive algorithm. Both the step
size (µ) and the number of recursive iterations (B) are impor-
tant parameters that affect the convergence of the adaptive
algorithm as investigated in the next section.

VI. Numerical Results and Discussions

We consider a single cell CDMA system that employs a
base station antenna array. We assume a linear array of an-
tennas equispaced at half a wavelength [20]. The results are
time averages of 100 runs, both the temporal signatures and
the users’ positions are randomly generated for each run. The
directions of arrival of users’ signals are uniformly distributed
over (−π/3, π/3]. To simulate a near-far situation, interferers’
powers are set 10 dB stronger than the desired user and the
SNR level of the desired user is kept at 10 dB. For different
experiments, the signal-to-interference ratio (SIR) for the de-
sired user versus the iteration index is plotted to investigate
the behaviors of the algorithms.

We first consider a system with processing gain N = 16,
M = 8 array elements and K = 40 users. Figures 2 and 3 show
the output MSE and SIR respectively. Note that with appro-
priate scaling, MSE and SIR produced by every linear matrix
filter can be related [17], thus for the remaining experiments
we will only plot the SIR graphs. It is seen that each itera-
tion decreases the MSE and increases the SIR monotonically,
which indicates that the alternating minimization algorithm is
working as expected. Increasing the maximum allowable rank
of Xi (relaxing the constraint to expand the solution space)
also increases the realized SIR level. At the convergence point,
rank-1 constrained filter achieves 4.23 dB SIR whereas rank-2
and rank-4 filters converge to values of 6.35 and 7.08 dB re-
spectively. Note that the maximum SIR that OTSF performs
is very close to rank-4’s SIR level. This indicates that near

full-rank (r = 8 in this case) performance can be achieved
with a mild increase in complexity.

In Figure 3, we see that there is approximately 3dB gap be-
tween the OTSF and the rank-1 constrained filter. It was men-
tioned earlier that this difference is smaller in lightly loaded
systems. In Figure 4, a system with processing gain N = 16,
M = 8 array elements and K = 10 users is considered. It
is seen that the difference between possible filter structures is
rather indistinguishable with only 0.5 dB difference between
OTSF and rank-1 constrained filter. For such systems, the
performance improvement that is gained from extra complex-
ity may become insignificant, however we observe that the
rank-4 constrained filter converges faster than its rank-1 coun-
terpart. This is due to the fact that the number of coefficients
updated at each step (iteration index) of rank-4 is four times
the number of coefficients updated in rank-1 case.

The purpose of Figure 5 is to emphasize the difference be-
tween rank-constrained filters and reduced-rank methods. For
the system described in Figure 3, the maximum SIR of rank
constrained filters are compared with the reduced-rank multi-
stage wiener filter (MSWF). The MSWF curve is generated by
formulating equation (5) with long vector variables (matrices
X and R in equation (5) become vectors x and r ) and apply-
ing the MSWF techniques described in [15, 16]. The reduced-
rank algorithms project the received signal r to a lower dimen-
sional subspace and the ‘rank’ term refers to the rank of the
autocorrelation matrix E[rrH ]. In these methods, the dimen-
sion of the r vector and correspondingly the dimension of the
receiver filter x is decreased. Full-rank indicates an x vector
of length NM . In rank constrained filters on the other hand,
‘rank’ refers to the rank of X, with full-rank being equal to
min{N,M}. Unlike the reduced-rank methods, the dimen-
sions of the ‘constrained’ and ‘optimum’ filters are the same.
Figure 5 shows that the near optimum performance of our
rank-4 filter is achieved by a reduced-rank filter of dimension
7.

For the rest of this section, the system considered has
M = 8 antenna array elements, N = 16 processing gain and
K = 40 users. Figure 6 compares the adaptive implementa-
tions of different rank constrained filters. Blocks of B = 100
training bits are used at each sub-step of the alternating min-
imization algorithm such that each block of 100 bits corre-
sponds to one step (iteration index) of the deterministic case.
Similar to Figure 3, filters with higher maximum allowable
rank perform better. Although the performance difference be-
tween different filters is preserved, adaptive implementations
typically perform approximately 2dB worse than their deter-
ministic counterparts. For the same system, the effects of the
step size and B on convergence are shown in Figures 7 and 8.
In classic LMS applications, small step size indicates slower
convergence but a higher SIR. The same phenomenon can be
observed in Figure 7; the curve with µ = 0.001 displays slower
convergence than the curve with µ = 0.01, but as the algo-
rithm evolves, it achieves a higher SIR. The effect of B on
the convergence of the adaptive algorithm is seen in Figure 8.
Note that for a duration of 1000 bits, the curve with B = 100
corresponds to an alternating minimization algorithm with
10 steps where each step uses 100 bits, B = 1 case, on the
other hand, is an alternating minimization algorithm of 1000
steps with only 1 bit per step. Even though the latter case
has more steps of alternating minimization, because each step
performed poorly as compared to the former, it converges to
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a lower SIR value.

VII. Conclusion

In this paper, we have proposed the rank constrained
temporal-spatial filters and derived their deterministic and
adaptive implementations. It is shown that with a looser
rank constraint, better performance can be achieved at the
expense of additional complexity. Even in heavily loaded sys-
tems, where there is a significant performance gap between
OTSF and the rank-1 filter, near full-rank (optimal) perfor-
mance can be achieved with a mild increase in complexity with
respect to the rank-1 constrained filter. Adaptive implemen-
tations based on LMS are formulated and their convergence
properties are investigated. It is seen that when a combination
of LMS and alternating minimization is employed, the number
of recursive iterations (B), becomes an important parameter
that affect convergence, together with step size.

We conclude by noting that interference management capa-
bility of the system can be further enhanced by combining the
rank constrained filters with power control algorithms [17].
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