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Abstract — Optimization of the capacity of a singlecell Code sequences and the corresponding receivers when users update their
Division Multiple Access (CDMA) system, both from theperspec-  transmitters in parallel since this alleviates the need to schedule user
tive of the maximum number of users that can be served at a Updates. We show that, working with a closely related performance
required quality of service level and from the information theo-  Measure, theystemwide mean squared error (MSE), whose optimum

retic per spective, has been recently shown to be achieved by the point is identical to that of information theoretic sum capacity and
same joint transr‘nit and receive strategies. In thiswork, we pro- total weighted squared correlation (TWSC), it is possible to come

A . . i Igorithm. ifically, Igorith
pose an alternating minimization based iterative algorithm that up with such an algorithm. Specifically, we propose an algorithm

. ) . based on alternating minimization, that updates the transmitters and
updates the transmitters and the corresponding receivers of the e receivers of the users until the optimum signature sequence set

users. The algorithm is suitable for online implementation in  anq the corresponding receivers (matched filters) are reached. We
contrast with previously proposed algorithms. We show that the  prove the convergence of the algorithm, with parallel user updates, to
algorithm is provably convergent to the optimum signature se-  the optimum point.
quences and the corresponding receivers.

Il. SYSTEM MODEL AND PERFORMANCEMETRIC

. INTRODUCTION We consider the uplink of a single cell synchronous CDMA system

Capacity of CDMA systems has been studied extensively [1-3]. R@fith K users and processing gaM. In the presence of additive
erence [1] defines thaser capacity of a CDMA cell as the number white Gaussian noise(t) with zero mean and power spectral density
of users that can be accommodated at the required quality of set-the received signal in one symbol interval is

vice level defined in terms of the signal-to-interference ratio (SIR) K

and computes the user capacity when random signature sequences _ S

are used for matched filter receivers and for minimum mean squared r(t) = Z vpibisi(t) +n(t) @

error (MMSE) receivers [4]. Thaformation theoretic capacity re-

gion of a synchronous CDMA cell was derived in [2] for a givenwhere, for uset, p; is the received powet; is the bit, ands;(t)
deterministic set of signature sequences. Reference [5] identifiedithéhe signaturavaveform. The signaturevaveforms of the users,
set that maximizes the information theoretic sum capacity with equehich are zero outside the symbol interval, have unit energies, and
power users, as one where all signature sequences are orthogorz@ndoe represented by orthonormal basisvaveforms{v; (¢)}_,

each other if possible, i.e., when the number of users is less tharsuch thats; (t) = E;V:l sij;(t), wheres;; = (s;(t),¢;(¢)). Pro-
equal to the processing gain, and as the Welch Bound Equality (WB&gting the received signal onto these bagweforms yields a set of
sequences otherwise. More recently [6] identified the optimum sigifficient statistic§r; } ), wherer; = (r(t),v;(t)) [11]. By defin-
nature sequences for arbitrary (unequal) powers. An important redutf thesignature sequence of useri ass; = [si1,--- , siv] ' and the

that bridges the two capacity results is given by [3] where user capegeeived signal vectar = [r1,--- ,rn] ', we can write (1) in the

ity is considered for a fixed signature sequence set. It is shown tlegjuivalent vector notation

for a single CDMA cell where each user has a required SIR level, the

i=1

capacity is achieved with minimum total power by each user having K 1/2

equal received powers and using the signature sequence sets that are r= Z vpibisi +n =SP ”b+n )

identified in [5]. Furthermore, when such sets are used, the MMSE =

filters reduce to scalar multiples of matched filters [3]. whereS = [s1,...,sk] isanN x K matrix with the users’ signa-
Following these developments that emphasize the importancew sequences as its columiis,= diag{pi, - ,px}isaKk x K

transmitter optimization, iterative algorithms that converge to the ogiagonal matrix of the users’ received powers, anid a zero mean
timum signature sequence sets are proposed [7-10]. ReferenceS@issian random vector witli[nn"| = oIy, wherely denotes
defines the total squared correlation (TSC), whose optimization tee N x N identity matrix.
sults in the optimum signature sequence sets. Both algorithms proPrevious work showed that the information theoretic sum capacity
posed in [8-10] work on minimizing the TSC. The algorithms aref this system is given by [2]
distributed and their convergence can be proven only when the al- 1
gorithms are run off-line in a sequential manner, i.e., one signature Csum= - log [det (IN + 072SPST)] (3)
sequence update at a time needs to be performed. Once the optimum 2
signature sequences are found, the corresponding receivers are $&tin the received powers of the users are the same,p for all 4,
be matched filters. Csumis maximized by [5]

Our aim in this work is to design an algorithm that is amenable to .
on-line implementation. Thus, we would like to introduce the notion S 8=1Ix (4)
of receiver updates to the algorithm as well as transmitter updax?{

. . . . . ] < N, and by
until the joint optimum transmitters and receivers are reached. We K

also desire the algorithm to converge to the optimum set of signature ss’ = NIN (5)



if K > N. The signature sequence sets satisfying (4) coriin In terms of the eigenvalues 8PS ", {\:},
orthonormal signature sequencesNirdimensional vector space, and
the sequence sets satisfying (5) are the Welch Bound Equality (WBE)
sequences [5]. For gener&l and N, the signature sequence sets that
satisfy (4) forK' < N and (5) forK > N, are those that achieve the

1 o Ai
Csum= 3 ZIOg(l + ;)

i=1

N
minimum Total Squared Correlation, TSC, defined as MMSE = K — Z Ai
K K ' \; + 02
i=1
TSC= i s5)°
> D (sls) 6) N
o1 =1 TWSC= ) "X} (12)
References [7-10] then devise algorithms that minimize the TSC to i=1

find the optimum signature sequence sets. Specifically, they give siris easy to see tha€/sumis Schur-concave, and MMSE and TWSC
gle signature sequence update algorithms that are guaranteed tadeSchur-convex functions of the eigenvalueSBS' [12]. There-
crease the TSC of the set at each update. fore, the signature sequence matrix yielding Schur-minimum eigen-
For unequal (arbitrary) powers, the signature sequences that masues, i.e., one with eigenvalues that are majorized by all other feasi-
imize the sum capacity in (3) are identified in [6]. It was showble eigenvalues, which maximizé&um, also minimizes the MMSE
that, whenK < N, Csumis again maximized by orthonormal se-and the TWSC.
quences. In the case &f > N, the capacity is maximized when Since our aim is to obtain an on-line iterative joint re-
users with relatively high received powers, termed\assized users  ceiver/transmitter update algorithm, we will concentrate on the MSE
in [6], are assigned sequences orthogonal to all other users, andctiterion given (8) which is a function of all signature sequences and
remaining users are assigned generalized WBE sequences in theetiver filters. Clearly, the minimization of (8) over the signature
duced dimensionality signal space [6]. Assuming that the users seguences and the receivers is equivalent to the minimization of the
ordered according to their poweps > --- > px, and the firstL. MMSE in (10) over the signature sequences. This, in turn, is also
users are oversized, the eigenvalueSBS"™ with the optimumS  equivalent to the minimization of TWSC and the maximization of (3)
are{p1, -+ ,pr, A, -+ , A} wherel = (Z{iLH p)/(N —L),and over the signature sequences. When all users have the same received
the multiplicity of A is N — L. In other words, the characteriza-power, minimization of TSC is also equivalent to these problems.
tion of the optimum signature sequences is that the eigenvalues ofNext, we will devise an algorithm that minimizes the total MSE
SPST with the optimum signature sequences are majorized by tine(8) over all transmitters (signature sequences) of unit energy and
eigenvalues of the same matrix with any other feasible signature eeivers.
quence set. The eigenvaluesS®S" corresponding to the optimum
signature sequences isSahur-minimal element of the space of all !!l. AN ALTERNATING MINIMIZATION ALGORITHM AND
feasible eigenvalues corresponding to all possible signature sequence ITS CONVERGENCE
sets. We will use the fact that a Schur-minimal point maximizes &lur aim is to minimize the cost function in (8) over the signature
Schur-concave functions and minimizes all Schur-convex functiossquence$s; } and the receivergc; }. We assume the received pow-

in the sequel [12]. ers are given, and require the resulting signature sequences to have
Let us now turn our attention to another important quantity; thenit energy. That is, we impose the set of constraigts,; = 1, for

mean squared error (MSE) incurred by a user, sayiys¢the output all: = 1,--- , K. The Lagrangian for this constrained optimization

of a linear filterc; problem is expressed as

MSE; = F (rTci — bZ)Q K K
[ } L{eid {sih{aih) =) pileis)? =2 Vpilels)
—c (SPST + aQIN) ci—2ypicisi+1 (7) pc e

=1

Let us define the total mean squared error of the system as 2 T

c; ci + i (s;rsi —-1) (13)
1 i=1

1
K K
+o

7

K
MSE = Z MSE;

—~ where{a; } are the Lagrange multipliers. One can devise an iterative

. . , s algorithm to optimize this function based on the block coordinate de-
=tr [C (SPS +0o IN) c-2Cc"spY/? 4 IK] (8) scent method, also known as alternating minimization [13]. The idea
. . . . isto fix the value of all but one of the vector variables in the function
whereC = [c1, -+, ck]isanN x K matrix containing the receiver

. e . . nd optimize over that variable. One then iterates between different
filters of the users in its columns. Consider the MMSE filters for qij P

for fixed signat In this @ ariables optimizing one at a time.
users for fixed signature sequences. n this comes Consider the receiver filters first. As mentioned before, minimiza-

C— (SPST 4 021N> -1 spl/2 © tion of the total MSE with respect to the receiver filter of uses
equivalent to minimizing MSE This is a simple consequence of the
Substituting (9) into (8), we obtain the MMSE of the system witfact that a user’s receiver does not affect the MSE of any other user
signature sequence sefas butitself. Thus, if we keep the signature sequences fixed, all receivers
1 need to be set to the MMSE filters for all users. More specifically, for
MMSE = K —tr {SPST <SPST + O'QIN) } (10) useri, setting the gradient of the Lagrangian with respect;tdo
zero, we have:
Note that the totalveighted square correlation (TWSC) correspond- .
ing to this system is i = /pi (spsT + 021N> . (14)
TWSC = i ipipj(siTSj)Q —tr [(SPST)Q] (11) Note that all users can update their receivers in a parallel fashion,

Pt since the receiver updates are independent of each other.



Next, consider the signature sequence updates. Once again
useri, we need to optimize the Lagrangian by keeping all other va
ables fixed. The signature sequence update foriisdound as:

16 N

14H ]
s:= VFi (pCCT + ailly) " (15)
12r b
whereq; is the Lagrange multiplier which needs to be chosen su
that the resulting signature sequesgés of unit energy. Thisis sim- 1o ]
ply accomplished by substituting (15) into the norm constraint fi
s: and using eigen-decomposition 6C" = VDV ' with eigen- £ |
value matrixD = diag{di, - ,dn}. Simple algebra reveals that
we should choose; such that

N pr
= (16) | ]
; (pid; + ci)? ¢

withx = V'c;. 2r 1
Note that the signature sequence update of uiskxpends on all

users’ receiver filters and not the signature sequences of the o1 o, m 0 © m m m - %

users. Thus, all users can update their signature sequences in iteration inex - n

allel as well. Note also that each signature sequence update closely

resembles an MMSE-type update. More specifically, the update ég- 1: Total MSE,N = 6, K = 10, equal powersp; = 1 for all .

places the signature sequence ofiteuser by a generalized MMSE

receiver filter of a system where the signature sequences of the users i . hich b idered to be th
are their receiver filters, and all users have equal powers equal toJIPRIAUre sequences, 1.&;,= s, which may be consiaered to be he

power of user, p;. Lastly, we note that the signature sequence uéﬁrft _5|gnr:1ture sequencesﬂ? sta SEt_’ satisfy (10?)' _N_ott_a alsl\,/CIJStEat the
date is similar to one of the updates proposed in [14] for multipa st signature sequences that maximizem and minimize

%nd TWSC, satisfy (18) too.

channels. Iterative algorithms that aim at minimizing the total MS N hat the fixed poi f the algorith dh

have previously been presented in [14,15] without any claims on their ext, we note t att_ € Tixec points of the agqu_t M proposed here

convergence. are th_e same as the fixed points of the TS_C minimization algorithm
The convergence of the overall algorithm is established by fidyenin [9] (for equal powers). Itwas noted in [9] that when the algo-

observing that each update decreases the total MSE function whicrHt was started from a set of randomly generated initial signature

bounded from below, and then investigating the properties of the fixegiuences, dlways converged to an optimum signature sequence

. . . : t. This claim is supported by the recent paper [16] which proves
oints of the algorithm. Let us consider a complete cycle of signatde . ) . .
b 9 P Y 9 that suboptimum fixed points of the MMSE algorithm of [9] are un-

sequence and receiver filter updates for all us&s— C — S. X . ;
The receiver filter€C are obtained from the signature sequencésetsmble' in that the lterations never converge to any one of them gnless
using (14) for all users. Then, the next set of signature sequeéﬁ,cesthey are started exactly with one of them. In fact, [16] considers
are obtained fronC using (15) for all users. The signature sequen(ﬁ?e more general unequal (arbltrar)_/) received powers for_the USers,
of theith user is obtained using (15) by inserti@ggiven in terms of ence its results apply to the algorithm proposed here without any
Siin (9): need for further generalization. Therefore, we conclude that the algo-

' rithm proposed here converges to an optimum signature sequence set

T T ) -1 - 9 -1 and corresponding receivers with probability one with random start-
8 = {sps <SPS to IN> + (sps to Iwﬂ Si  ing points.

%

= Bys; 17 IV. NUMERICAL RESULTS

In this section, we present numerical examples to support our anal-
that the signature sequence of uget;, should be an eigenvector ofYSIS: We consider example CDMA systems with processing gain

B, with eigenvaluel. Moreover, we note that the eigenvectordf N = 6_ and investigate different scenarios. In all experiments, the
are the eigenvectors &fPS . Therefore, the fixed point signature|n|t|al signature sequences are created randomly. All users update
sequences satisfy their receivers in parallel once followed by their update of the signa-

ture sequences in parallel once, thus a tota@ §fupdates are done
SPS's; = \is; i=1,--,K (18) between iterations and(n + 1) of the algorithm.
Our first example is a system witki = 10 users each with equal

When the signature sequences satisfy (18), the corresponding fisexabived powers which we set to unity. Figure 1 shows the total MSE
point receiver filters obtained froi using (14) are scaled matchedvhich monotonically decreases and converges to its minimum possi-
filters, i.e.,c; = (is. ble value. Figure 2 shows the minimum and maximum eigenvalues

Equation (18) gives a complete description of the set of all possiSS T which converge td</N = 1.67, verifying that the resulting
ble fixed points. Fixed points are those for which MSE or SIR cannsignature sequence set satis®#&’ = K/NIy, i.e., it is a WBE
be improved by linear filtering, i.e., MMSE filters are scaled matchest [5].
filters. Unfortunately, the set of fixed points described by (18) in- Next, we consider the same system where two of the users’ re-
cludes a wide spectrum of signature sequences, ranging from the weiyed powers are replaced with = 10 andp. = 5. The re-
best signature sequences that we wish our algorithm to converge tan#oning eight users have unity received powers. Using the algorithm
the absolutely worst signature sequences. For instance, the all-eguedn in [6] to identify the oversized users, it is easy to see that, in

At the fixed point of the algorithm$; = s;, for all i. This implies
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Fig. 2: Minimum/maximum eigenvalues 887 for the system in Fig. 1.

iteration index - n

Fig. 4: Eigenvalues aBPS for the system in Figure 3.

this system, the two users with higher powers are oversized. Thigseived powers. For this example, we have used the received pow-
the optimum signature sequence set dedicates each of the overg¥e®fp; = ifori = 1,...,6. Figure 5 shows the MSE values as
users their own signal dimensions, and the rest of the users areV¢grun the iterative algorithm converging to the sunésingle-user
signed generalized WBE sequences in the remaigidgnensions. MSE values as the signature sequences converge to an orthonormal
The eigenvalues B8PS with the optimum signature sequence seiet. Figure 6 shows the evolution of the eigenvalueSBS ' con-

ared; = 10, Ao = 5, and\, = 2fork = 3,--- ,6. Figure 4 shows Vverging to the optimal values, i.e., the received powers of the users.

the evolution of the eigenvalues 8PS' and their convergence to

the optimum values as we run the iterative transmitter receiver op- V. CONCLUSION

timization algorithm with the corresponding MSE values plotted Hhe algorithm proposed in this paper is one where users iteratively

Figure 3.

22
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Fig. 3: Total MSE,N = 6, K = 10, two oversized users.

60

update their transmitters (signature sequences) and receivers. The re-
ceiver updates depend on the signature sequences of all users while
the transmitter updates depend on the receivers of all users. Thus,
users do not need to be scheduled for transmitter updates as is re-
quired for the convergence proof of the TSC minimization based
MMSE or eigen update algorithms [7—10]. Furthermore, the algo-
rithm can be implemented online and receivers can be constructed in
an adaptive or blind adaptive fashion at each iteration of the algo-
rithm [4,17]. The algorithm is shown to converge to the joint op-
timum transmitters and receivers with probability one with random
initial points. We have presented numerical results that support the
analysis under different system scenarios.

It is worth noting that, the MMSE algorithm of [9] can be viewed
as a sequential (one user at a time) transmitter—receiver update algo-
rithm where the receivers are instantaneously set to matched filters.
To that end, a related problem is the convergence of the parallel ver-
sion of the MMSE update of [9].
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