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Abstract — Optimization of the capacity of a single cell Code
Division Multiple Access (CDMA) system, both from the perspec-
tive of the maximum number of users that can be served at a
required quality of service level and from the information theo-
retic perspective, has been recently shown to be achieved by the
same joint transmit and receive strategies. In this work, we pro-
pose an alternating minimization based iterative algorithm that
updates the transmitters and the corresponding receivers of the
users. The algorithm is suitable for online implementation in
contrast with previously proposed algorithms. We show that the
algorithm is provably convergent to the optimum signature se-
quences and the corresponding receivers.

I. I NTRODUCTION

Capacity of CDMA systems has been studied extensively [1–3]. Ref-
erence [1] defines theuser capacity of a CDMA cell as the number
of users that can be accommodated at the required quality of ser-
vice level defined in terms of the signal-to-interference ratio (SIR)
and computes the user capacity when random signature sequences
are used for matched filter receivers and for minimum mean squared
error (MMSE) receivers [4]. Theinformation theoretic capacity re-
gion of a synchronous CDMA cell was derived in [2] for a given
deterministic set of signature sequences. Reference [5] identified the
set that maximizes the information theoretic sum capacity with equal
power users, as one where all signature sequences are orthogonal to
each other if possible, i.e., when the number of users is less than or
equal to the processing gain, and as the Welch Bound Equality (WBE)
sequences otherwise. More recently [6] identified the optimum sig-
nature sequences for arbitrary (unequal) powers. An important result
that bridges the two capacity results is given by [3] where user capac-
ity is considered for a fixed signature sequence set. It is shown that,
for a single CDMA cell where each user has a required SIR level, the
capacity is achieved with minimum total power by each user having
equal received powers and using the signature sequence sets that are
identified in [5]. Furthermore, when such sets are used, the MMSE
filters reduce to scalar multiples of matched filters [3].

Following these developments that emphasize the importance of
transmitter optimization, iterative algorithms that converge to the op-
timum signature sequence sets are proposed [7–10]. Reference [7]
defines the total squared correlation (TSC), whose optimization re-
sults in the optimum signature sequence sets. Both algorithms pro-
posed in [8–10] work on minimizing the TSC. The algorithms are
distributed and their convergence can be proven only when the al-
gorithms are run off-line in a sequential manner, i.e., one signature
sequence update at a time needs to be performed. Once the optimum
signature sequences are found, the corresponding receivers are set to
be matched filters.

Our aim in this work is to design an algorithm that is amenable to
on-line implementation. Thus, we would like to introduce the notion
of receiver updates to the algorithm as well as transmitter updates
until the joint optimum transmitters and receivers are reached. We
also desire the algorithm to converge to the optimum set of signature

sequences and the corresponding receivers when users update their
transmitters in parallel since this alleviates the need to schedule user
updates. We show that, working with a closely related performance
measure, thesystem wide mean squared error (MSE), whose optimum
point is identical to that of information theoretic sum capacity and
total weighted squared correlation (TWSC), it is possible to come
up with such an algorithm. Specifically, we propose an algorithm
based on alternating minimization, that updates the transmitters and
the receivers of the users until the optimum signature sequence set
and the corresponding receivers (matched filters) are reached. We
prove the convergence of the algorithm, with parallel user updates, to
the optimum point.

II. SYSTEM MODEL AND PERFORMANCEMETRIC

We consider the uplink of a single cell synchronous CDMA system
with K users and processing gainN . In the presence of additive
white Gaussian noisen(t) with zero mean and power spectral density
σ2, the received signal in one symbol interval is

r(t) =

K∑
i=1

√
pibisi(t) + n(t) (1)

where, for useri, pi is the received power,bi is the bit, andsi(t)
is the signaturewaveform. The signaturewaveforms of the users,
which are zero outside the symbol interval, have unit energies, and
can be represented byN orthonormal basiswaveforms{ψj(t)}N

j=1

such thatsi(t) =
∑N

j=1 sijψj(t), wheresij = 〈si(t), ψj(t)〉. Pro-
jecting the received signal onto these basiswaveforms yields a set of
sufficient statistics{rj}N

j=1 whererj = 〈r(t), ψj(t)〉 [11]. By defin-
ing thesignature sequence of useri assi = [si1, · · · , siN ]� and the
received signal vectorr = [r1, · · · , rN ]�, we can write (1) in the
equivalent vector notation

r =
K∑

i=1

√
pibisi + n = SP1/2b + n (2)

whereS = [s1, . . . , sK ] is anN ×K matrix with the users’ signa-
ture sequences as its columns,P = diag{p1, · · · , pK} is aK ×K
diagonal matrix of the users’ received powers, andn is a zero mean
Gaussian random vector withE

[
nn�]

= σ2IN , whereIN denotes
theN ×N identity matrix.

Previous work showed that the information theoretic sum capacity
of this system is given by [2]

Csum=
1

2
log

[
det

(
IN + σ−2SPS�

)]
(3)

When the received powers of the users are the same,pi = p for all i,
Csumis maximized by [5]

S�S = IK (4)

if K ≤ N , and by

SS� =
K

N
IN (5)



if K > N . The signature sequence sets satisfying (4) containK
orthonormal signature sequences inN dimensional vector space, and
the sequence sets satisfying (5) are the Welch Bound Equality (WBE)
sequences [5]. For generalK andN , the signature sequence sets that
satisfy (4) forK ≤ N and (5) forK > N , are those that achieve the
minimumTotal Squared Correlation, TSC, defined as

TSC=
K∑

i=1

K∑
j=1

(s�i sj)
2 (6)

References [7–10] then devise algorithms that minimize the TSC to
find the optimum signature sequence sets. Specifically, they give sin-
gle signature sequence update algorithms that are guaranteed to de-
crease the TSC of the set at each update.

For unequal (arbitrary) powers, the signature sequences that max-
imize the sum capacity in (3) are identified in [6]. It was shown
that, whenK ≤ N , Csum is again maximized by orthonormal se-
quences. In the case ofK > N , the capacity is maximized when
users with relatively high received powers, termed asoversized users
in [6], are assigned sequences orthogonal to all other users, and the
remaining users are assigned generalized WBE sequences in the re-
duced dimensionality signal space [6]. Assuming that the users are
ordered according to their powersp1 > · · · > pK , and the firstL
users are oversized, the eigenvalues ofSPS� with the optimumS
are{p1, · · · , pL, λ, · · · , λ} whereλ = (

∑K
l=L+1 pl)/(N −L), and

the multiplicity of λ is N − L. In other words, the characteriza-
tion of the optimum signature sequences is that the eigenvalues of
SPS� with the optimum signature sequences are majorized by the
eigenvalues of the same matrix with any other feasible signature se-
quence set. The eigenvalues ofSPS� corresponding to the optimum
signature sequences is aSchur-minimal element of the space of all
feasible eigenvalues corresponding to all possible signature sequence
sets. We will use the fact that a Schur-minimal point maximizes all
Schur-concave functions and minimizes all Schur-convex functions
in the sequel [12].

Let us now turn our attention to another important quantity; the
mean squared error (MSE) incurred by a user, say useri, at the output
of a linear filterci

MSEi = E
[
(r�ci − bi)

2
]

= c�
i

(
SPS� + σ2IN

)
ci − 2

√
pic

�
i si + 1 (7)

Let us define the total mean squared error of the system as

MSE =
K∑

i=1

MSEi

= tr
[
C�

(
SPS� + σ2IN

)
C − 2C�SP1/2 + IK

]
(8)

whereC = [c1, · · · , cK ] is anN×K matrix containing the receiver
filters of the users in its columns. Consider the MMSE filters for all
users for fixed signature sequences. In this caseC becomes

C =
(
SPS� + σ2IN

)−1

SP1/2 (9)

Substituting (9) into (8), we obtain the MMSE of the system with
signature sequence setS as

MMSE = K − tr

[
SPS�

(
SPS� + σ2IN

)−1
]

(10)

Note that the totalweighted square correlation (TWSC) correspond-
ing to this system is

TWSC=
K∑

i=1

K∑
j=1

pipj(s
�
i sj)

2 = tr
[
(SPS�)2

]
(11)

In terms of the eigenvalues ofSPS�, {λi},

Csum=
1

2

N∑
i=1

log(1 +
λi

σ2
)

MMSE = K −
N∑

i=1

λi

λi + σ2

TWSC=
N∑

i=1

λ2
i (12)

It is easy to see that,Csumis Schur-concave, and MMSE and TWSC
are Schur-convex functions of the eigenvalues ofSPS� [12]. There-
fore, the signature sequence matrix yielding Schur-minimum eigen-
values, i.e., one with eigenvalues that are majorized by all other feasi-
ble eigenvalues, which maximizesCsum, also minimizes the MMSE
and the TWSC.

Since our aim is to obtain an on-line iterative joint re-
ceiver/transmitter update algorithm, we will concentrate on the MSE
criterion given (8) which is a function of all signature sequences and
receiver filters. Clearly, the minimization of (8) over the signature
sequences and the receivers is equivalent to the minimization of the
MMSE in (10) over the signature sequences. This, in turn, is also
equivalent to the minimization of TWSC and the maximization of (3)
over the signature sequences. When all users have the same received
power, minimization of TSC is also equivalent to these problems.

Next, we will devise an algorithm that minimizes the total MSE
in (8) over all transmitters (signature sequences) of unit energy and
receivers.

III. A N ALTERNATING MINIMIZATION ALGORITHM AND
ITS CONVERGENCE

Our aim is to minimize the cost function in (8) over the signature
sequences{si} and the receivers{ci}. We assume the received pow-
ers are given, and require the resulting signature sequences to have
unit energy. That is, we impose the set of constraints,s�i si = 1, for
all i = 1, · · · ,K. The Lagrangian for this constrained optimization
problem is expressed as

L({ci}, {si}, {αi}) =
K∑

i=1

K∑
j=1

pj(c
�
i sj)

2 − 2
K∑

i=1

√
pi(c

�
i si)

+ σ2
K∑

i=1

c�
i ci +

K∑
i=1

αi(s
�
i si − 1) (13)

where{αi} are the Lagrange multipliers. One can devise an iterative
algorithm to optimize this function based on the block coordinate de-
scent method, also known as alternating minimization [13]. The idea
is to fix the value of all but one of the vector variables in the function
and optimize over that variable. One then iterates between different
variables optimizing one at a time.

Consider the receiver filters first. As mentioned before, minimiza-
tion of the total MSE with respect to the receiver filter of useri is
equivalent to minimizing MSEi. This is a simple consequence of the
fact that a user’s receiver does not affect the MSE of any other user
but itself. Thus, if we keep the signature sequences fixed, all receivers
need to be set to the MMSE filters for all users. More specifically, for
useri, setting the gradient of the Lagrangian with respect toci to
zero, we have:

ci =
√
pi

(
SPS� + σ2IN

)−1

si (14)

Note that all users can update their receivers in a parallel fashion,
since the receiver updates are independent of each other.



Next, consider the signature sequence updates. Once again, for
useri, we need to optimize the Lagrangian by keeping all other vari-
ables fixed. The signature sequence update for useri is found as:

si =
√
pi

(
piCC� + αiIN

)−1

ci (15)

whereαi is the Lagrange multiplier which needs to be chosen such
that the resulting signature sequencesi is of unit energy. This is sim-
ply accomplished by substituting (15) into the norm constraint for
si and using eigen-decomposition ofCC� = VDV� with eigen-
value matrixD = diag{d1, · · · , dN}. Simple algebra reveals that
we should chooseαi such that

N∑
j=1

pix
2
j

(pidj + αi)2
= 1 (16)

with x = V�ci.
Note that the signature sequence update of useri depends on all

users’ receiver filters and not the signature sequences of the other
users. Thus, all users can update their signature sequences in par-
allel as well. Note also that each signature sequence update closely
resembles an MMSE-type update. More specifically, the update re-
places the signature sequence of theith user by a generalized MMSE
receiver filter of a system where the signature sequences of the users
are their receiver filters, and all users have equal powers equal to the
power of useri, pi. Lastly, we note that the signature sequence up-
date is similar to one of the updates proposed in [14] for multipath
channels. Iterative algorithms that aim at minimizing the total MSE
have previously been presented in [14,15] without any claims on their
convergence.

The convergence of the overall algorithm is established by first
observing that each update decreases the total MSE function which is
bounded from below, and then investigating the properties of the fixed
points of the algorithm. Let us consider a complete cycle of signature
sequence and receiver filter updates for all users:S → C → Ŝ.
The receiver filtersC are obtained from the signature sequence setS
using (14) for all users. Then, the next set of signature sequences,Ŝ,
are obtained fromC using (15) for all users. The signature sequence
of theith user is obtained using (15) by insertingC given in terms of
S in (9):

ŝi =

[
SPS�

(
SPS� + σ2IN

)−1

+
αi

pi

(
SPS� + σ2IN

)]−1

si

= Bisi (17)

At the fixed point of the algorithm̂si = si, for all i. This implies
that the signature sequence of useri, si, should be an eigenvector of
Bi with eigenvalue1. Moreover, we note that the eigenvectors ofBi

are the eigenvectors ofSPS�. Therefore, the fixed point signature
sequences satisfy,

SPS�si = λisi i = 1, · · · ,K (18)

When the signature sequences satisfy (18), the corresponding fixed
point receiver filters obtained fromS using (14) are scaled matched
filters, i.e.,ci = βisi.

Equation (18) gives a complete description of the set of all possi-
ble fixed points. Fixed points are those for which MSE or SIR cannot
be improved by linear filtering, i.e., MMSE filters are scaled matched
filters. Unfortunately, the set of fixed points described by (18) in-
cludes a wide spectrum of signature sequences, ranging from the very
best signature sequences that we wish our algorithm to converge to, to
the absolutely worst signature sequences. For instance, the all-equal
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Fig. 1: Total MSE,N = 6, K = 10, equal powers,pi = 1 for all i.

signature sequences, i.e.,si = s, which may be considered to be the
worst signature sequences as a set, satisfy (18). Note also that the
best signature sequences that maximizeCsum and minimize MSE
and TWSC, satisfy (18) too.

Next, we note that the fixed points of the algorithm proposed here
are the same as the fixed points of the TSC minimization algorithm
given in [9] (for equal powers). It was noted in [9] that when the algo-
rithm was started from a set of randomly generated initial signature
sequences, italways converged to an optimum signature sequence
set. This claim is supported by the recent paper [16] which proves
that suboptimum fixed points of the MMSE algorithm of [9] are un-
stable, in that the iterations never converge to any one of them unless
they are started exactly with one of them. In fact, [16] considers
the more general unequal (arbitrary) received powers for the users,
hence its results apply to the algorithm proposed here without any
need for further generalization. Therefore, we conclude that the algo-
rithm proposed here converges to an optimum signature sequence set
and corresponding receivers with probability one with random start-
ing points.

IV. N UMERICAL RESULTS

In this section, we present numerical examples to support our anal-
ysis. We consider example CDMA systems with processing gain
N = 6 and investigate different scenarios. In all experiments, the
initial signature sequences are created randomly. All users update
their receivers in parallel once followed by their update of the signa-
ture sequences in parallel once, thus a total of2K updates are done
between iterationsn and(n+ 1) of the algorithm.

Our first example is a system withK = 10 users each with equal
received powers which we set to unity. Figure 1 shows the total MSE
which monotonically decreases and converges to its minimum possi-
ble value. Figure 2 shows the minimum and maximum eigenvalues
of SS� which converge toK/N = 1.67, verifying that the resulting
signature sequence set satisfiesSS� = K/NIN , i.e., it is a WBE
set [5].

Next, we consider the same system where two of the users’ re-
ceived powers are replaced withp1 = 10 and p2 = 5. The re-
maining eight users have unity received powers. Using the algorithm
given in [6] to identify the oversized users, it is easy to see that, in
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Fig. 2: Minimum/maximum eigenvalues ofSS� for the system in Fig. 1.

this system, the two users with higher powers are oversized. Thus,
the optimum signature sequence set dedicates each of the oversized
users their own signal dimensions, and the rest of the users are as-
signed generalized WBE sequences in the remaining4 dimensions.
The eigenvalues ofSPS� with the optimum signature sequence set
areλ1 = 10, λ2 = 5, andλk = 2 for k = 3, · · · , 6. Figure 4 shows
the evolution of the eigenvalues ofSPS� and their convergence to
the optimum values as we run the iterative transmitter receiver op-
timization algorithm with the corresponding MSE values plotted in
Figure 3.
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Fig. 3: Total MSE,N = 6, K = 10, two oversized users.

The last example we consider is one withK = 6 users and thus
is not an over-saturated system in contrast with the previous two ex-
amples. The optimum signature sequence set is one where all six
signature sequences are orthogonal to each other irrespective of the
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Fig. 4: Eigenvalues ofSPS� for the system in Figure 3.

received powers. For this example, we have used the received pow-
ers ofpi = i for i = 1, · · · , 6. Figure 5 shows the MSE values as
we run the iterative algorithm converging to the sum of6 single-user
MSE values as the signature sequences converge to an orthonormal
set. Figure 6 shows the evolution of the eigenvalues ofSPS� con-
verging to the optimal values, i.e., the received powers of the users.

V. CONCLUSION

The algorithm proposed in this paper is one where users iteratively
update their transmitters (signature sequences) and receivers. The re-
ceiver updates depend on the signature sequences of all users while
the transmitter updates depend on the receivers of all users. Thus,
users do not need to be scheduled for transmitter updates as is re-
quired for the convergence proof of the TSC minimization based
MMSE or eigen update algorithms [7–10]. Furthermore, the algo-
rithm can be implemented online and receivers can be constructed in
an adaptive or blind adaptive fashion at each iteration of the algo-
rithm [4, 17]. The algorithm is shown to converge to the joint op-
timum transmitters and receivers with probability one with random
initial points. We have presented numerical results that support the
analysis under different system scenarios.

It is worth noting that, the MMSE algorithm of [9] can be viewed
as a sequential (one user at a time) transmitter–receiver update algo-
rithm where the receivers are instantaneously set to matched filters.
To that end, a related problem is the convergence of the parallel ver-
sion of the MMSE update of [9].
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