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The Gaussian Interference Relay Channel:
Improved Achievable Rates and Sum Rate

Upperbounds Using a Potent Relay
Ye Tian, Student Member, IEEE, and Aylin Yener, Member, IEEE

Abstract—We consider the Gaussian interference channel with
an intermediate relay as a main building block for cooperative
interference networks. On the achievability side, we consider
compress-and-forward based strategies. Specifically, a generalized
compress-and-forward strategy, where the destinations jointly
decode the compression indices and the source messages, is shown
to improve upon the compress-and-forward strategy which se-
quentially decodes the compression indices and source messages,
and the recently proposed generalized hash-and-forward strategy.
We also construct a nested lattice code based compute-and-for-
ward relaying scheme, which outperforms other relaying schemes
when the direct link is weak. In this case, it is shown that, with a
relay, the interference link can be useful for decoding the source
messages. Noting the need for upperbounding the capacity for this
channel, we propose a new technique with which the sum rate
can be bounded. In particular, the sum capacity is upperbounded
by considering the channel when the relay node has abundant
power and is named potent for that reason. For the Gaussian
interference relay channel with potent relay, we study the strong
and the weak interference regimes and establish the sum capacity,
which, in turn, serve as upperbounds for the sum capacity of the
GIFRC with finite relay power. Numerical results demonstrate
that upperbounds are tighter than the cut-set bound, and coincide
with known achievable sum rates for many scenarios of interest.
Additionally, the degrees of freedom of the GIFRC are shown
to be 2 when the relay has large power, achievable using com-
press-and-forward.

Index Terms—Generalized compress-and-forward, interference
relay channel, lattice codes, potent relay outerbound, sum capacity.

I. INTRODUCTION

W IRELESS medium allows signals transmitted from one
user to be overheard by surrounding users. This fact

causes interference between different user pairs, but can also be
utilized to facilitate cooperation between the nodes. The inter-
ference relay channel (IFRC) is a fundamental model that ad-
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dresses the case when interference and cooperation co-exist in
the same network.

The IFRC consists of two senders with two corresponding re-
ceivers, and an intermediate relay. Reference [3] has proposed
an achievable scheme based on rate splitting at the sources and
letting the relay decode both the common and the private mes-
sages to help both sources. A modified model is also proposed
in [4] and [5], where the relay is cognitive to the messages
at both sources. In [4], beamforming, dirty paper coding and
time sharing are used to obtain the achievable region. In [5],
Han-Kobayashi coding and dirty paper coding are combined to
improve the rate in [4]. Another achievability technique is in-
terference forwarding developed in [6] and [7], which demon-
strates that forwarding interference can be beneficial. The ca-
pacity results up to date are for special cases of IFRC [6], and
the capacity region in general is open, as the channel seems to
inherit the challenges of both the interference channel [8], [9]
and the relay channel [10]. In this work, we make progress in
characterizing the capacity of Gaussian IFRC (GIFRC): we pro-
vide improved achievable rates, and a sum capacity upperbound
that is nontrivial, i.e., tighter than the cut set bound.

First, we focus on achievability. The limitation of DF re-
laying [3], [6], [7], [11] is that its performance is limited by
the decoding capability of the relay. As a result, when the SNR
of the received signal at the relay is low, the rates that can be
achieved are small. To overcome this, we first consider using
the compress-and-forward (CF) strategy in [10] with rate split-
ting at the sources, in order to mitigate the effect of interfer-
ence. We obtain insights regarding how to treat interference with
CF based relaying. We next note that for the IFRC, the des-
tinations may have different side information, and the perfor-
mance of the CF strategy that requires both destinations to re-
cover the unique compression index is limited by the destina-
tion with the worst side information. This is also shown in re-
cent [12]. To address this issue, we propose a generalized com-
press-and-forward (GCF) strategy for the IFRC, which general-
izes the one used for relay channel in [13]. The GCF scheme also
uses Wyner-Ziv coding, but does not need to use the side infor-
mation at the destinations to uniquely decode any compression
indices. Although this approach is shown to achieve the same
rate as the CF strategy in [10] for the relay channel (see [13]), it
achieves a larger rate region than the CF strategy in [10] for the
IFRC. We also compare the GCF strategy with two strategies
from two recent [12], [14]. We show that the GCF scheme out-
performs the generalized hash-and-forward in [12]. The GCF
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has lower coding complexity than and performs very close to
noisy network coding in [14].

We next observe that, when the direct links are weak,
Wyner-Ziv coding based CF relaying strategies have less
than desirable performance. For this case, we design a nested
lattice code based compute-and-forward relaying strategy.
Specifically, we show that the interference links are useful for
decoding the source messages. We show that this strategy can
achieve higher sum rates than both DF and CF based relaying
strategies and noisy network coding.

To measure how close we are to capacity with the proposed
achievable rates, we need to upper bound the capacity as well. To
do so, we next advocate for a GIFRC model that allows us to de-
rive new sum capacity upper bounds. In particular, we consider
the case where the relay node has very large (infinite) power. We
term such a node a potent relay. In practice, the GIFRC with
potent relay can be thought of a system where the relay node
is a base station or access point that aids an ad hoc network,
and its power constraint is much larger compared to those of the
other transmitters. From the information theoretic perspective,
the (sum) capacity of GIFRC with infinite relay power is clearly
an upperbound for the one with finite relay power, and we show,
in this paper, that it is a useful one. We first observe the equiv-
alence between this model and the GIFRC with in-band recep-
tion/out-of-band noiseless transmission, with respect to the clas-
sification in [15]. To establish the sum capacity of this channel,
we consider strong and weak interference regimes. To bound
the sum rate in weak interference, we utilize a genie aided ap-
proach where the information is carefully optimized to yield a
“smart and useful genie” [16]. For strong interference, we again
use a genie argument [8]. For both cases, we show that the up-
perbounds are achievable, thus establishing the sum capacity for
GIFRC with potent relay. Both results, in turn, serve as upper-
bounds for the sum capacity of the general GIFRC. Although
our tight results are for when the relay has infinite power, we
demonstrate that with finite relay power, the sum-rate upper-
bounds are tighter than the cut-set bound and numerically co-
incides with the achievable rates for many scenarios of interest.
We also observe that the degrees of freedom of GIFRC increase
from 1 to 2 when the power of the relay and the power of the
sources satisfy , or in dB, achievable
using CF based relaying.

The remainder of the paper is organized as follows: Section II
describes the channel model. Section III describes the achiev-
able schemes based on CF. Section IV describes the com-
pute-and-forward based achievable scheme. Section V intro-
duces the notion of potent relay and shows the equivalence
between GIFRC with potent relay and GIFRC with in-band
reception/out-of-band noiseless transmission. Section VI es-
tablishes the sum capacity of GIFRC with potent relay in
weak interference. Section VII establishes the sum capacity
of GIFRC with potent relay in strong interference. Section X
compares our potent relay based upperbounds with cut-set
bound and various achievable schemes for GIFRC. Section XI
presents concluding remarks.

Fig. 1. Gaussian Interference Relay Channel (GIFRC).

II. SYSTEM MODEL

A. Discrete Memoryless Interference Relay Channel
(DM-IFRC)

First we describe the discrete memoryless interference relay
channel (DM-IFRC), since the CF based relaying scheme is de-
rived for this model and then specialized to the Gaussian case.
We have three finite input alphabets , three output
alphabets , and a probability distribution

(1)

which characterizes the channel. Each source
wishes to communicate with its paired destination

. chooses a message from a message set
, encodes this message into a length

codeword with an encoding function and trans-
mits the codeword through the channel. The relay employs an
encoding function based on the information it received from pre-
vious transmissions, i.e., . Each destination
uses a decoding function . A rate pair is
called achievable if there exists a message set, equipped with a
set of encoding and decoding functions described above such
that the error probability as

.

B. The Gaussian Interference Relay Channel (GIFRC)

The Gaussian IFRC is shown in Fig. 1. The received signals
at both destinations and the relay are

(2)

(3)

(4)

Here, are zero-mean, unit variance, inde-
pendent Gaussian random variables that model the additive
noise at each receiver. The channel gains are positive real
numbers. The power constraints for the sources and the relay
are , and ,
respectively.
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Fig. 2. Optimal rate splitting factor under different channel conditions when � � � � � � �� � � � � � � � � � � � � �� � � � �

� � �� � � � dB.

III. ACHIEVABLE STRATEGIES AND RATE REGIONS

In this section, we first present a strategy which uses CF re-
laying in [10] and rate splitting at the sources [9]. We obtain
insights from this case on how to treat interference for different
channel parameters. We then focus on the impact of different
relaying strategies on the achievable rates. We propose a gener-
alized compress-and-forward (GCF) relaying scheme which im-
proves upon the CF strategy. We also compare the rate regions
obtained from GCF relaying and the generalized hash-and-for-
ward (GHF) strategy in [12] and noisy network coding (NNC)
in [14].

A. Compress-and-Forward Relaying With Rate Splitting

The following rate region is based on the CF strategy in [10]
with rate splitting at the sources to mitigate interference.

Theorem 1: The following rate tuples are achievable for the
general interference relay channel with

(5)

(6)

(7)

(8)

where , subject to

(9)

for all joint probability distributions

Proof: See Appendix A.

Remark 1: The result can be extended to the Gaussian case
by setting

, which are all
independent from each other, and

, where . Here, represent
the common messages to be decoded at both receivers, whereas

represent the private messages to be decoded at the in-
tended receivers only. represents the compressed version of
the received signal at the relay, which is to be forwarded to the
receivers.

To gain further insight regarding how to treat the interfer-
ence, we plot the optimal rate splitting factor versus the interfer-
ence level in Fig. 2 in the symmetric setting. Relay-destination

gains and transmit powers are set to unity. We can
see that the way we treat interference is related to the interfer-
ence level. When the interference link gain is weak and below
a threshold, the optimal power allocation dictates to use all the
power to transmit the private messages. This threshold depends
on the power constraint of the relay. By contrast, when the in-
terference is strong and above a threshold, the optimal power
allocation dictates to use all the power to transmit the common
messages, similar to the compound MAC in the 2-user strong
interference channel [8]. We note that, for the symmetric case, a
sufficient condition for strong interference is . This can
be verified by calculating the optimum factor under the as-
sumption . This observation means that when ,
we should allocate all the power to transmit the common mes-
sages regardless of the values of the remaining channel gains.
For the asymmetric setting, the condition for strong interference
depends also on the quality of source-relay and relay-destination
links.
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B. Generalized Compress-and-Forward Relaying

The performance of the CF scheme requires the destinations
to uniquely recover the compression index. As such, its perfor-
mance is limited by the destination with the worst side infor-
mation. To address this issue, we propose a generalized com-
press-and-forward scheme, where the destinations do no need
to decode any compression indices. Specifically, after the des-
tinations decode the bin index, we can use all the sequences in
this bin to decode the source messages. In [13], this approach is
shown to achieve the same rate as the CF in [10], but as we show
later, this approach can achieve larger rate region for the IFRC,
since the destinations have different side information. We can
obtain the following achievable rate regions. Note that to focus
on the advantage of the relaying strategy and for the clarity of
exposition, we do not use rate splitting for the GCF strategy. In-
stead, we derive two achievable rate regions by either treating
interference as noise, or trying to decode the interference.

Theorem 2: The following two rate regions are achievable
using GCF.

: Destinations treat interference as noise

(10)

where ,

(11)

for all input distributions

(12)

: Destinations try to decode the interference

(13)

(14)

where ,

(15)

for all input distributions

(16)

Proof: See Appendix B.

In a concurrent work [12], the authors proposed a generalized
hash-and-forward (GHF) relaying scheme. The scheme uses
Wyner-Ziv coding as in the CF scheme, and each destination
decodes a list of compression indices. It is shown that GHF has
better performance than the CF scheme in high SNR regime, but
the CF scheme has better performance in low SNR. Reference
[12] considered the achievable strategy by treating interference

as noise. When destinations try to decode interference, we can
obtain the following rate region using GHF

(17)

(18)

where ,

(19)

under the condition that

(20)

for all input distributions

(21)

The rate region due to treating interference as noise has sim-
ilar form [12, (19)–(20)], with two differences: there is no sum
rate bound and (17) is replaced with

(22)

It can be readily verified that when destinations treat interfer-
ence as noise, the rate region of GCF scheme contains
the rate region of CF scheme, by setting in Theorem 1
as well as the GHF scheme.

From the rate region , we can see that GCF scheme
strictly outperforms GHF [12] in terms of sum rate when desti-
nations try to decode interference. In addition, the region
contains the region due to CF from Theorem 1 by setting

.
Note that in the GCF scheme, the destinations need to first

decode the bin index. Therefore, the relay needs to design
the number of the bins according to the destination with the
worst relay-destination links. This is the issue for all
schemes using Wyner-Ziv binning. In a concurrent work, [14]
proposed noisy network coding, which overcomes this issue. In
this scheme, the sources repeatedly transmit the same message
over all blocks, and the relay simply compresses the received
signal and sends the compression index to the destinations,
i.e., no Wyner-Ziv binning is used. The destinations decode
the source message jointly with the information received from
all the blocks. The achievable rate region using noisy network
coding has similar form with the achievable rate region using
GCF. The improvement is in the term in (11) and (15) (See
(10), (11) in [14]). For example, the second term in the sum
rate expression (14) is replaced with

(23)

Noisy network coding in general outperforms the CF, GCF
in this work and GHF in [12], at the cost of large processing
delay and decoding complexity, since the same message needs
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to be transmitted over all blocks and joint decoding needs to be
performed. Note that for the encoder, noisy network coding and
GCF have similar complexity. For noisy network coding, the
relay node compresses the received signal by finding a sequence
from a set of i.i.d. generated sequences such that it is jointly
typical with the received sequence, and then sends the index of
the compression sequence to the destinations. For GCF, where
Wyner-Ziv coding is utilized, the relay also needs to find the
compression sequence in the same fashion. The only difference
is that the relay needs to further partition the set of i.i.d. gener-
ated sequences into a number of bins and then find the bin that
contains the compression sequence. The bin index is then sent
to the destinations. This partition operation can be done off-line,
and the relay only needs to map the compression sequence to the
bin index, which does not increase the encoding complexity. As
we show later in numerical examples, the performance of GCF
is very close to that of the noisy network coding, despite having
much less decoding complexity.

IV. NESTED LATTICE CODES AND GIFRC

In this section, we investigate a case where the interference
link is useful in decoding the source message. We assume that
the direct link is weak and the interference link is strong, and
the relay uses nested lattice codes based compute-and-forward
relaying. We show that this scheme can achieve higher rates than
all DF and CF based relaying schemes.

Structured codes have been shown to outperform random
codes in several cases [17]. Specifically, relay nodes can decode
the modulo-sum of transmitted messages and forward the sum
to the destinations, thus reducing the effect of the multiple
access interference of the signal received at the relay. The
linear structure of the codes can be exploited by both the relay
and the destinations to achieve higher rates. Note that [18]
considered multicasts in a simplified GIFRC, where there is no
interference link in the channel. In [18], the relay forwards the
modulo-sum of the transmitted messages to the destinations.
The destinations first decode the message transmitted from the
direct link, and then recover the message transmitted from the
other source with the help of the modulo-sum of the messages.
For our model, since the direct links are weak, we utilize the
strong interference links to let the destinations decode the inter-
ference message first, and then use the signal transmitted from
the relay to recover the source messages. For clarity of exposi-
tion, we consider the symmetric case, where

.

Theorem 3: For the symmetric GIFRC, the following sym-
metric rate is achievable using nested lattice codes

(24)

(25)

(26)

(27)

Proof: Since our scheme is similar to the one used in [18],
here we only provide a brief summary of the encoding/decoding
strategy. For preliminaries for lattice codes, see [19]. We choose
a pair of nested lattice codes with nesting ratio ,
such that the coarse lattice is Rogers-good and Poltyrev-good
[20], and the fine lattice is Poltyrev-good. We choose the
coarse lattice such that . The codewords are the fine
lattice points that are within the fundamental Voronoi region of
the coarse lattice. We use block Markov coding to transmit
messages in blocks. Source maps its message

in block into a lattice point ,
and transmits , where

is the dither. It can be shown that
satisfies the power constraint and is independent of

[19]. At the end of each block, the relay first decodes
. To guarantee successful

decoding, we need the constraint (27), The relay then encodes
the index of this modulo-sum message into using
Gaussian signalling with power , and transmits
to the destinations in the next block. At the destination, each de-
coder treats the signal from direct link, which is for receiver

, as noise. It then treats the signals transmitted from
the relay and the interference link as a MAC. By successive
decoding between the signal and and time sharing, we
can show that the MAC region can be achieved, which gives us
the rate constraints (24)–(26).

Remark 2: When direct link is weak but the interference link
is strong, the information contained in the direct link is lim-
ited. Thus, treating it as noise does not incur much rate loss.
Instead, we can use the interference link and compute-and-for-
ward relaying scheme to recover the message transmitted in the
direct link. For the compute-and-forward relaying, we utilize the
structure of the lattice codes to align the signals from different
sources at the relay to mitigate the multi-access interference and
thus removing the sum rate constraint in the MAC region. This
scheme can achieve higher rates than DF based and CF based
relaying schemes when the direct link is weak.

Remark 3: In general, when channel gains are not symmetric,
the above strategy needs to be reexamined. This is because in
asymmetric settings, the lattice points from two sources will not
align together at the relay due to different source-relay channel
gains. One possible technique to overcome this is to use channel
inversion at the sources to align two lattice points together at
the relay, and use the rest source power to superimpose another
Gaussian signal. The performance of this scheme would suffer
from the multi-access interference at the relay. A better alter-
native is to create a chain of nested lattice codes as described
in [21], i.e., where and

, to match the different source-relay channel
gains and source power. Using a chain of nested lattice codes,
in this case, allows us to directly apply the strategy for the sym-
metric case to the asymmetric channel settings.

V. GAUSSIAN INTERFERENCE CHANNEL WITH

A POTENT RELAY

Thus far, we have focused on achievable schemes for the
GIFRC. In the sequel, we shall concentrate on deriving good
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Fig. 3. GIFRC with in-band reception/out-of-band noiseless transmission.

outerbounds, more specifically, good sum rate upperbounds, for
the GIFRC. To accomplish this task, we study the channel when
the relay has infinite amount of power, and term it the GIFRC
with a potent relay. Any capacity result for this potent relay
channel serves as an outerbound for the GIFRC with finite relay
power. We shall first observe the equivalence of the potent relay
channel to a special case of the GIFRC, namely one with in-band
reception/out-of-band noiseless transmission, which is easier to
work with.

A. GIFRC With In-Band Reception/Out-of-Band Noiseless
Transmission

Several variations of GIFRC have been studied in [3]–[7],
[15]. One such variation is the channel as shown in Fig. 3. Fol-
lowing the notation in [15], this is the GIFRC with in-band
reception/out-of-band noiseless transmission. The channel out-
puts are characterized by

(28)

(29)

(30)

where denotes the additive Gaussian
noise at each receiver, and the channel gains are positive real
numbers. Note that each destination is equipped with the signal
from the relay .

B. Equivalence Between GIFRC With Potent Relay and
In-Band Reception/Out-of-Band Noiseless Transmission

Proposition 1: The capacity region of GIFRC with
in-band reception/out-of-band noiseless transmission is asymp-
totically equivalent to the capacity region of GIFRC as the
power of the relay .

Proof: : This can be shown by constructing a two
stage TDMA scheme in the GIFRC, and utilizing the fact that
relay has infinite power. The fraction of time allocated to the
stage when relay transmit to the destination can be arbitrarily
small.

: This can be shown by adding the signal back
to the signals received at the IC with arbitrarily large gain to
recover the signals with the same statistics as the one received
in the IFRC with potent relay.

We have now established that the capacity region of GIFRC
with in-band reception/out-of-band noiseless transmission is
equivalent to that of the GIFRC with the potent relay. In the
sequel, we will work with the former to establish the sum
capacity results for the latter.

VI. SUM CAPACITY OF GIFRC WITH POTENT RELAY

IN WEAK INTERFERENCE

In this section, we establish the sum capacity of GIFRC with
potent relay in weak interference. We proceed to work with the
GIFRC with in-band reception/out-of-band noiseless transmis-
sion. In [16], the authors established the sum capacity of the
2-user interference channel using a “smart and useful” genie ap-
proach. Though, the application of this approach gets tedious in
the general GIFRC because of the possible correlation between
the codewords from the relay and those from the sources, when
using a potent relay, this hardship disappears. In the following,
we will upper bound our channel by SIMO interference channel
with an antenna which is common to both receivers, and pro-
vide an appropriate genie information to show the optimality of
Gaussian inputs. Finally, we will establish the sum capacity by
achieving this upperbound by the CF based scheme. Note that
for simplicity, we assume in this section.

Theorem 4: For each combination of channel gains
, when there exists

such that the following conditions hold:

(31)

(32)

then the sum capacity of GIFRC with potent relay, maximum of
is given by

(33)

Proof: Converse: Let

, where
.

These are the genie information we shall utilize. We have that

(34)

(35)

(36)

(37)
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(38)

here, (36) is due to the Markov chain .
In inequality (37), we give the genie information to both the
receivers. Then (38) can be written as

(39)

To guarantee that i.i.d. Gaussian inputs maximize (39), we need
the following terms to be maximized by Gaussian inputs, which
is stated in Lemma 1.

(40)

(41)

Lemma 1: When there exist and
such that the following condition holds

(42)

(43)

Then i.i.d. Gaussian inputs with variance and maximize
(40) and (41).

For the proof of Lemma 1, see Appendix C.
It then follows that the expression (37) is equivalent to

(44)

where . Here, represents the
i.i.d. Gaussian inputs. Next, we show how to make the genie
that supplies “smart”.

Lemma 2: Under the conditions

(45)

the genie is also smart in the sense that

(46)

For the proof of Lemma 2, see Appendix D.

Then, using Lemma 2 and Lemma 1, the sum rate can be
bounded by

(47)

which gives us the expression (33).
Achievability: When we evaluate the rate region in

Section III by Gaussian inputs with
,

we can show that the sum rate expression reduces to (33) when
.

Remark 4: When the conditions in Lemma 1 do not hold, it
is also possible to bound the sum rate using this set of genie
information. However, the bound is loose. The reason is that we
are maximizing the terms in (39) separately. In this case, the
power that maximizes (40) and (41) is 0, while the power that
maximizes other terms in (39) is for , and for .
By contrast, when conditions in Lemma 1 hold, the power that
maximizes the terms in (39) is the same.

Proposition 2: For the symmetric case, when
, the conditions (31) and (32) are equivalent to

(48)

Proof: For the symmetric case, (31) and (32) are the same.
The expression (31) can be written as

(49)

We can find such that the above condition is sat-
isfied if and only if the maximum of the left hand side of the
inequality is greater than or equal to 0. Observe that

(50)

is a concave function of and

(51)

is also concave in . Thus, it is easy to see that
and are the maximizer. Then (9) reduces

to

(52)

Remark 5: The examination of the symmetric case gives us
insight of what range of channel gains conditions (31) and (32)
imply. First, the interference links should be weak. This can be
seen from . Also, the links should
not be strong, i.e., .

VII. SUM CAPACITY OF GIFRC WITH POTENT RELAY IN

STRONG INTERFERENCE

In this section, we shall establish the strong interference con-
dition following the method in [8], [22], [23], under which the
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channel capacity of GIFRC with potent relay can be found. Sim-
ilar to the weak interference case in Section VI, we proceed to
work with the GIFRC with in-band reception/out-of-band noise-
less transmission.

Theorem 5: When and , the capacity
region of GIFRC with potent relay is

(53)

Proof: From Proposition 1, we focus on the channel with
in-band reception/out-of-band noiseless transmission. Based on
the techniques bounding the strong interference channel in [8],
with and , we first assume decoder 1
and decoder 2 can decode their own messages. For decoder 1,
with and , by constructing

, where , it

can also decode . Similar result can be obtained for decoder 2
in the same way. It follows that any code for the GIFRC channel
with potent relay is also a code for the compound SIMO MAC
channel with an antenna common to both receivers.

From (36), we can outer bound the capacity using techniques
for the MAC channel. For the achievability, When we eval-
uate the rate region in Section III by Gaussian inputs
with

, we can show that the rate region
reduces to the rate region in Theorem 5 when .

VIII. DEGREES OF FREEDOM OF THE GIFRC

In this section, we characterize the degrees of freedom (DoF)
of the GIFRC. The DoF is defined as

(54)

where is the sum capacity of the channel,
is the source power, and we assume the noise power is unity.

We observe that the DoF depends on how fast the relay power
grows in relation to the power of the sources.

Proposition 3: The DoF of the GIFRC is 1 when
, while the DoF of the GIFRC is 2 when

, as .
Proof: For the case when , we can combine the

relay with one source, and the channel becomes the MIMO in-
terference channel with cooperation between the sources, where
one transmitter has two antennas and the other transmitter and
receivers have one antenna. From Corollary 11 in [24], this ap-
proach indicates that the upperbound for the DoF for the GIFRC

is 1. Random coding argument, e.g., the one in [11], achieves
this DoF.

For the case when , we first consider the
case when the relay is potent. For the SIMO interference channel
where transmitters have one antenna and receivers have two an-
tennas, the DoF is 2 [25]. This provides an upperbound for the
DoF for the GIFRC with potent relay. By evaluating the rate
expressions in with

, we can see
that CF scheme achieves this upperbound as , under the
condition that the relay is potent in the first place. Thus, the DoF
for the GIFRC with potent relay is 2. By further evaluation of
the rates achieved by the CF scheme, i.e., (5)–(8), we can see
that, in fact, this DoF can be achieved by the general GIFRC
when the power of the relay satisfies , as

.

Remark 6: Reference [26] showed that for the interference
channel, using a MIMO relay with power proportional to

, the DoF of 2 is achievable. Our result indicates that the
relay does not need to have multiple antennas to achieve the
DoF of this channel.

IX. CUT-SET BOUND

In this section, we provide the cut-set bound for the GIFRC
and compare it with our potent relay outerbound.

Proposition 4: The following rate region is an outerbound for
the IFRC

where is the set of rate pairs satisfying

(55)

(56)

(57)

for one specific distribution .
For the Gaussian channel when satisfy the equa-

tions (2) to (4), it is obvious that Gaussian inputs satisfying
the power constraint maximize all the three terms in the cut-set
bound. Now, we focus on the sum rate bound (57). This bound
still needs to be maximized over the correlation coefficients

between and . We claim that our potent
relay outerbound is at least tighter than the first term in the sum
rate bound (57). To see this, first we notice that for the Gaussian
inputs

(58)

where satisfy (28) to (30).
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Fig. 4. Comparison of the cut-set bound and our bound under weak interference when � � � dB, � � �� � �
�
���� � �

�
���� � � �.

For the case of strong interference, our potent relay sum rate
upperbound is

(59)

We have

(60)

(61)

(62)

Similarly, the sum rate cut-set bound is greater than or equal to
.

For the case of weak interference, potent relay sum rate up-
perbound is . We have

(63)

(64)

(65)

(66)

Figs. 4 and 5 show the comparison between the potent relay
outerbounds and the cut set bounds as a function of the power of
the relay for weak and strong interference. We can see that the
potent relay outerbound is tighter than the cut set bound even
when the power of the relay is moderate.

Remark 7: In a recent paper [27], the authors proposed an-
other outerbound for GIFRC, which is at least tighter than the
second term in the sum rate cut-set bound. The bound in [27]
thus can be thought of one that complements our bound. Our

bound is tighter when the relay has moderate and large power,
whereas the bound in [27] is tighter when the relay has small
power.

X. NUMERICAL RESULTS

In this section, by numerical results, we compare the achiev-
able sum rates with the potent relay upperbounds we derived in
previous sections.

Fig. 6 compares the potent relay outerbound (33) and the
achievable sum rates due to compress-and-forward (CF), gen-
eralized hash-and-forward (GHF) [12], generalized compress-
and-forward (GCF) and noisy network coding (NNC) [14] for
weak interference. We also plot the performance of two DF
based scheme from [3], [11]. We term the achievable scheme
from [3] the Sahin-Erkip scheme, and the one from [11] the
Maric-Dabora-Goldsmith scheme. The channel parameters are
shown on the figure. Specifically, the achievable sum rates are
obtained from in Section III and from Theorem 1 by
treating interference as noise. Note that the constraints (31) and
(32) require both the interference links and source-relay links to
be weak, and thus, the DF based relaying scheme does not per-
form well. CF, GCF, and NNC have similar performance and
outperform GHF. We can see that when the power of the relay
is 10 dB, the achievable sum rates are very close to the potent
relay outerbound, with a gap less than 0.05 bits per channel use.

Fig. 7 shows the potent relay outerbound from Theorem 5 and
the achievable sum rates for strong interference. The channel
parameters are shown on the figure. We can see that the potent
relay outerbound is tighter than the cutset bound. The rates for
CF and GCF are based on Theorem 1 by decoding interference
and , respectively. When the power of the relay is of the
same order as that of the sources, i.e., , the outer-
bound and the achievable sum rates coincide numerically for
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Fig. 5. Comparison of the cut-set bound and our bound under strong interference when � � � dB, � � �� � � �� � � �� � � �.

Fig. 6. Comparison of the potent relay outerbounds and achievable sum rates under weak interference.

low to moderate power values. When the power of the relay
is of the order of of the sources, or in dB,
the achievable sum rates and the potent relay outerbound coin-
cide numerically for all power values. This shows that the potent

relay outerbound is tight when the relay has large power com-
pared with the power of the received signal, but the relay power
does not need to be infinite. In addition, we can see that GHF,
GCF and NNC have similar performance, while both improving
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Fig. 7. Comparison of the potent relay outerbounds and achievable sum rates under strong interference with � � � � � .

Fig. 8. Comparison of the potent relay outerbounds and achievable sum rates under strong interference and strong source-relay links and asymmetry in the relay-
destination links with � � � � � .

the rates achieved by CF relaying. Fig. 8 shows the comparison
of the outerbounds and achievable rates for strong source-relay
links and asymmetric relay-destination links. The potent relay
outerbound is once again tighter than the cutset bound for this

range of channel parameters and is close to the achievable rates
with a small constant gap when . When

, DF type of relaying strategies perform better than CF
type of relaying strategies. However, when , the
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Fig. 9. Comparison of the potent relay outerbounds and achievable sum rates under strong interference and weak direct link with � � � � � .

performance of DF type of relaying strategies is limited by the
source power, and has the same performance as the case when

. Therefore, the CF type of strategies have better
performance for the case . In addition, we can
see that when the relay-destination links are asymmetric, the
improvement of NNC upon GCF scheme is very limited, while
both improving the rates achieved by the CF scheme.

Fig. 9 shows the potent relay outerbound from Theorem 5 and
the achievable sum rates for strong interference and weak direct
link. The channel parameters are shown on the figure. Since the
direct link is weak, CF, GHF and GCF do not perform as well
as NNC since they rely on Wyner-Ziv binning, and the side in-
formation contains little information about the mes-
sages transmitted through the direct links. We thus only com-
pare NNC and the lattice code based compute-and-forward re-
laying in Section IV. We can see that when , lattice
code based compute-and-forward relaying outperforms NNC.
Both schemes coincide with the potent relay outerbound when

, or in dB.
Figs. 7, 8 and 9 also illustrate the DoF of the IFRC. When

the relay has large power compared with the sources, the DoF
of the channel increases from 1 to 2, which is illustrated by the
slope of the curves. CF based relaying (CF, GCF and NNC) and
lattice code based compute-and-forward relaying achieves the
DoF, while DF based relaying strategies can only achieve DoF
of 1 even when the relay has large power, due to the constraints
of the decoding capability at the relay.

XI. CONCLUSION

In this paper, we have studied the Gaussian interference
channel with an intermediate relay. We have proposed a com-

press-and-forward (CF) relaying scheme, which requires the
destinations to uniquely decode the compression index. We
have also proposed a GCF relaying scheme, where the destina-
tions do not need to decode and compression indices. We have
shown that the GCF scheme outperforms the CF scheme, and
the recently proposed generalized hash-and-forward strategy.
We have also designed a nested lattice code based com-
pute-and-forward relaying strategy, which outperforms all the
existing strategies, including noisy network coding, when direct
link is weak and interference link is strong. In fact, this scheme
shows that the interference link can be useful in decoding the
source messages with the help of a relay. We have also devised
a new and useful sum capacity upper bound for this channel.
We have accomplished this by examining the channel when
the relay has very large power, i.e., the GIFRC with a potent
relay. We have found the sum capacity of this channel under
weak and strong interference conditions. Both results serve,
in turn, as sum rate upperbounds for GIFRC with finite relay
power constraint. We observe that the bound is useful in the
sense that it is close to the known achievable schemes under
channel conditions in most scenarios of interest. We conclude
by noting that although the capacity region of the IFRC in
general remains elusive, attempts towards useful upperbounds
and achievable strategies provide us with helpful insights for
designing interference networks.

APPENDIX A
PROOF OF THEOREM 1

Proof: We use block Markov encoding [10].
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Codebook for the sources: Choose a joint distribution

Split message into where
, and .

For each , generate the codeword according to
. For each , generate

codewords for each message according to
.

Codebook for the relay: Choose codewords
for according to

. Then, for each , choose
codewords for each according to

. Randomly partition
the set into cells .

Encoding: In block , let
and be the messages to be sent from the sources
and the relay, respectively. For the sources, choose the cor-
responding codewords

to be sent in this block. For
the relay, assume that

(67)

where stands for the jointly -typical set, and
, then is transmitted in block .

Decoding: At the end of block , two receivers decode
to obtain an estimate independently. To successfully de-
code , we need

(68)

Then both receivers try to find such that

(69)

and . To successfully decode this, we need

(70)

After the relay correctly decodes the quantized version of the
signal it received in block , decoder 1 tries to find

such that

Decoder 2 uses the same method to decode
, and . The rate region can be obtained to guarantee

vanishing error probability.

APPENDIX B
PROOF OF THEOREM 2

Proof: We only show the proof of the rate region ,
i.e., the destinations try to decode the interference. fol-
lows from similar steps.

Codebook generation: Fix a distribution

(71)

For each message , generate code-
word according to .
For each generate according to

. For each , generate for each

according to . Parti-

tion the set into bins.
Encoding: We use block Markov encoding for blocks. For

block , source 1 encodes into and sources 2 en-
codes into . The relay receives , and it looks for

such that
. If no such exists, the relay declares an error. If there is

more than one such , the relay chooses the smallest one. Note
that . The relay sends in block . Note
that we fix and this infor-
mation is revealed to all nodes.

Decoding: Destination 1 receives at the end of block .
We assume the decoding is correct in previous blocks. The de-
coder first tries to find an index such that

(72)

It then searches for such that

(73)

for some and . Destination 2 follows
similar decoding steps.

Error Analysis: Assume
. Define the following error

events:



2878 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 5, MAY 2011

are defined in similar fashion by switching indices
1 and 2. The error probability is

(74)

(75)

According to covering lemma [13], as as
long as

(76)

According to Law of Large Numbers (LLN), and
as . According to packing lemma [13],

and as as long as

(77)

According to conditional typicality lemma [13],
and as . Following the derivation in [13],
we can show that

as as long as

(78)

(79)

(80)

(81)

The analysis for events follows similar steps.
Combining these constraints with (76) and (77), we obtain the
rate constraints in .

APPENDIX C
PROOF OF LEMMA 1

Proof: We first rewrite (40) and (41) as

where . are
independent of respectively

(82)

(83)

(84)

where

(85)

From the worst case noise lemma in [28], we have

if

where , which gives us the condition (42).
Using similar method we can obtain the condition (43).
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APPENDIX D
PROOF OF LEMMA 2

Proof:
(86)

(87)

(88)

(89)

(90)
As long as (90) is 0, the genie is smart. We can perform
similar operation for the other term , and
conditions (45) can be obtained.
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