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Abstract—This paper investigates the degrees of freedom (DoF)
of the two-cluster multi-way relay channel. Two cases are inves-
tigated: the case when there are 2 users in each cluster with
arbitrary number of antennas and the case when there are 3 users
in each cluster in the symmetric setting, i.e., all the users have the
same number of antennas. For the 2-user case, a DoF upper bound
is derived based on cut set bound by allowing user cooperation
between clusters. Conditions when the DoF upper bound can be
achieved using signal space alignment are established based on the
relative number of antennas between the users and the relay. For
the 3-user case, a new DoF upper bound is derived using genie-
aided approach and channel enhancement. The DoF upper bound
can be achieved using signal space alignment for several scenarios
of interests. The results point out the insight that increasing the
number of users in each cluster cannot provide a further DoF gain
compared to the 2-user case, when the relay has limited number
of antennas.

I. INTRODUCTION

Relaying is a fundamental operation in wireless commu-
nications, which can provide capacity gain and robustness
against channel uncertainty. The multi-way relay channel [1]
characterizes another important role of the relay, i.e., its role
in facilitating the exchange of information between the users,
and is an important building block for wireless networks. This
channel provides a general model that captures relay-aided
multicast communication [1]. While the model is quite general,
the complex signal interactions render the capacity region of the
multi-way relay channel a challenging open problem. Capacity
bounds of the multi-way relay channel and special cases have
been studied in [1]–[5] and the references therein.

As is done often for multiuser information theoretic mod-
els, one can hope to gain insights into optimal transmission
strategies for the Gaussian multi-way relay channel by focusing
on the capacity characterization in high signal-to-noise ratio
(SNR) regime, i.e., the degrees of freedom (DoF). For example,
interference alignment has been shown to be the key technique
to achieve the optimal DoF for several class of wireless
networks [6], [7]. In turn, this concept has proved useful for
finite SNR scenarios as well and is extensively utilized to
design transmission strategies for the interference networks [8].
The DoF for a multi-way type relay channel is first studied
in [9], where the DoF of the Y channel, which is a special
case of the multi-way relay channel that consists of 3 users
in one cluster and a relay node, is established using signal

space alignment. The signal space alignment is further utilized
to design transmission strategies for the K-user Y channel in
reference [10].

In this paper, we consider the Gaussian multi-antenna multi-
way relay channel with two clusters. In previous work [11], we
have reported the DoF of the special case when each cluster has
2 users and all the users have identical number of antennas. In
this work, we consider two general cases: the case with 2 users
in each cluster with arbitrary number of antennas and the case
with 3 users in each cluster with the same number of antennas.
For the 2-user case with arbitrary number of antennas, we derive
DoF upper bounds using cut set bound and identify several
cases when the optimal DoF can be established using signal
space alignment. For the two-cluster multi-way relay channel
with 3 users in each cluster, cut set bounds can not provide
a tight upper bound. To address this issue, we utilize a novel
genie-aided approach with enhancement of the received signals
at the users to derive a new DoF upper bound. We also identify
several cases when the newly derived DoF upper bound can be
achieved using signal space alignment.

By way of this, we provide the first DoF result for the multi-
way relay channel with more than one cluster and more than
2 users in each cluster. While the DoF of the MIMO multi-
way relay channel with arbitrary number of users and clusters
is yet open, the present result provides us with the insight that
increasing the number of users at each cluster cannot provide a
DoF gain when the number of antennas at the relay is limited.

II. SYSTEM MODEL

The Gaussian MIMO multi-way relay channel with two
clusters is shown in Fig. 1. We label the users in cluster 1
as user i = 1, 2, · · · , L, and the users in cluster 2 as user
j = L + 1, L + 2, · · · , 2L. User k, k = 1, · · · , 2L is assumed
to have Mk antennas. The relay is assumed to have N antennas.

In cluster 1, user i has message Wpi, p = 1, 2, · · · , L, p ̸= i,
for each user in cluster 1. Similarly, in cluster 2, user j has a
message Wqj , q = L + 1, L + 2, · · · , 2L, q ̸= j, for each user
in cluster 2. We denote W k as the message set of user k. It
is assumed that the users can only communicate through the
relay and no direct links exist between any pairs of users. All
the nodes in the network are assumed to be full duplex. The
transmitted signal from user k in slot t is denoted as Xk(t) ∈
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Fig. 1. The multi-way relay channel with two clusters.

CMk , where
Xk(t) = fk(W k,Y

t−1
k ), (1)

where Yt−1
k = [Yk(1), · · · ,Yk(t− 1)].

The received signal at the relay in slot t is denoted as
YR(t) ∈ CN , where

YR(t) =

2L∑
k=1

HRkXk(t) + ZR(t). (2)

At slot t, the transmitted signal XR(t) ∈ CN from the relay
is a function of its received signals from slot 1 to slot t − 1,
i.e.,

XR(t) = f(Yt−1
R ). (3)

The received signal at user k in slot t is denoted as Yk(t) ∈
CMk , where

Yk(t) = HkRXR(t) + Zk(t). (4)

In the above expressions, HkR ∈ CMk×N and HRk ∈
CN×Mk are the channel matrices from the relay to user k and
the channel matrices from user k to the relay, respectively.
It is also assumed that each entry of the channel matrices
is drawn independently from a continuous distribution, which
guarantees that the channel matrices are full rank almost surely.
Zk(t) ∈ CMk ,ZR(t) ∈ CN are additive white Gaussian noise
vectors with zero mean and identity covariance matrices. The
transmitted signals from the users and the relay satisfy the
following power constraints:

E
[
tr
(
Xk(t)Xk(t)

†)] ≤ P, (5)

E
[
tr
(
XR(t)XR(t)

†)] ≤ P. (6)

We assume the rate of message Wpi and Wqj is Rpi(P )
and Rqj(P ) under power constraint P . We define C(P ) as the
set of all achievable rate tuples {Rpi(P ), Rqj(P )} for power
constraint P . The degrees of freedom is defined as

DoF = lim
P→∞

R∑(P )

log(P )
, (7)

where

R∑(P ) = sup
{Rpi(P ),Rqj(P )}∈C(P )

L∑
i=1

L∑
p=1
p ̸=i

Rpi(P )

+
2L∑

j=L+1

2L∑
q=L+1
p ̸=j

Rqj(P ) (8)

is the sum capacity under power constraint P .
In this paper, we focus on two cases of the two-cluster multi-

way relay channel, as described in the following sections.

III. TWO-USER CASE WITH ARBITRARY NUMBER OF
ANTENNAS

In this section, we focus on the two-cluster multi-way relay
channel with 2 users in each cluster, and the users have arbitrary
number of antennas. From the channel model described in the
previous section, there are four users in the channel, where
cluster 1 contains user 1 and user 2, and cluster 2 contains
user 3 and user 4. Without loss of generality we assume that
M1 ≥ M2 and M3 ≥ M4.

A. Upper Bound for DoF

Proposition 1: For the two-cluster multi-way relay channel
with 2 users in each cluster shown in Fig. 1, the DoF is upper
bounded by

DoF ≤ 2min {M2 +M4, N} . (9)

Proof: The DoF upper bound can be obtained by allowing
users to cooperate across clusters and applying the cut set
bound. The details are omitted due to space constraints.

B. Achieving the DoF Upper Bound

In this section, we design transmission strategies and calcu-
late the achievable DoF. We further identify several cases when
the DoF upper bound in equation (9) is achievable.

Theorem 1: For the two-cluster multi-way relay channel
with 2 users in each cluster, the optimal DoF can be char-
acterized as follows:

1) N ≤ M2 + M4: DoF = 2N if one of the following
conditions is satisfied

• Case 1: N ≤ max {M2,M4};
• Case 2: N > max {M2,M4}

– N ≤ M1 and N ≤ M3;
– M1 ≤ N ≤ M3 and M1 +M2 +M4 ≥ 2N ;
– M3 ≤ N ≤ M1 and M3 +M4 +M1 ≥ 2N ;
– N ≥ M1, N ≥ M3 and M1+M2+M3+M4 ≥ 3N ;

2) N > M2 + M4: DoF = 2(M2 + M4) if one of the
following conditions is satisfied

• Case 1: N ≥ 2 (M2 +M4);
• Case 2: N < 2 (M2 +M4), N ≤ M1 and N ≤ M3.
To prove this theorem, we briefly describe the transmission

strategies that can achieve the DoF upper bounds corresponding
to the above scenarios.
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1) N ≤ M2 + M4: Under this condition, the DoF upper
bound in equation (9) reduces to

DoF ≤ 2N. (10)

We further consider the following cases:
Case 1: N ≤ max {M2,M4}.
For this case, the relay always has less antennas than both

users in at least one of the two clusters. The DoF 2N can
be achieved by only allowing the users in the cluster with
more antennas than the relay to transmit, which gives us a two-
way relay channel. The functional-decode-and-forward (FDF)
strategy can thus achieve the DoF 2N .

Case 2: N > max {M2,M4}. To establish DoF results for
this case, let us first consider the following Lemma:

Lemma 1: For matrices H1 ∈ Cp×q1 and H2 ∈ Cp×q2 ,
which have full rank almost surely, the following conditions can
be established. Without loss of generality we assume q1 ≥ q2.

Condition 1: If p ≥ q1 ≥ q2 and q1 + q2 > p, then there
exist q1 + q2 − p non-zero linearly independent vectors vi

almost surely such that we can find another two sets of linearly
independent vectors ui and wi, i = 1, · · · , q1 + q2 − p such
that

vi = H1ui = H2wi. (11)

Condition 2: If q1 ≥ p ≥ q2, then there exist q2 non-zero
linearly independent vectors vi almost surely such that we can
find another two sets of linearly independent vectors ui and
wi, i = 1, · · · , q2 such that

vi = H1ui = H2wi (12)

Proof: The proof of this lemma is given in Appendix A.

With this lemma at hand, we consider the following cases:
N ≤ M1 and N ≤ M3: From Condition 2 in Lemma 1, if

we set H1 = HR1 and H2 = HR2, we can see that for user
1 and user 2 in cluster 1, they can find M2 non-zero linearly
independent vectors v1i,u1i and u2i such that

HR1u1i = HR2u2i = v1i. (13)

This means that user 1 and user 2 can share M2-dimensional
space at the relay. Following the same argument, we can see that
user 3 and user 4 in cluster 2 also share M4-dimensional space
at the relay, i.e., they can find M4 non-zero linearly independent
vectors v2i,u3i and u4i such that

HR3u3i = HR4u4i = v2i. (14)

Since we have M2 + M4 ≥ N , the users in cluster 1 can
choose M ′

2 vectors out of the vectors v1i, and the users in
cluster 2 can choose M ′

4 vectors out of the vectors v2i, such
that M ′

2+M ′
4 = N , as their target signal directions at the relay.

Based on the above analysis, we can construct the trans-
mission scheme as follows: User 1 and user 2 send M ′

2

independent data streams d1i and d2i along the directions u1i

and u2i, respectively. User 3 and user 4 send M ′
4 independent

data streams d3i and d4i along the directions u3i and u4i,

respectively. We have

Xk =

M ′
2∑

i=1

ukidki, k = 1, 2, (15)

Xk =

M ′
4∑

i=1

ukidki, k = 3, 4. (16)

The received signal at the relay is

YR =
4∑

k=1

HRkXk (17)

=

M ′
2∑

i=1

v1i(d1i + d2i) +

M ′
4∑

i=1

v2i(d3i + d4i) (18)

The relay can then decode d1i + d2i and d3i + d4i.
Next the relay needs to transmit d1i+ d2i to user 1 and user

2 and in the meantime transmit d3i + d4i to user 3 and user 4.
We let the users apply a receiver-side filter wki, k = 1, 2, 3, 4
such that

(w1i)
TH1R = (w2i)

TH2R = gT
1i,

(w3i)
TH3R = (w4i)

TH4R = gT
2i,

which makes the users in one cluster appear to be the same
user to the relay.

We can see that finding the vectors wki for the receiver-side
filter is the dual problem of finding the vectors uki for the
transmitter-side beamforming. Following the same argument,
the users in cluster 1 (2) can find M ′

2 (M ′
4) such vectors. The

relay can then use zero-forcing to broadcast d1i + d2i to user
1 and user 2 along target directions g1i and in the meantime
broadcast d3i + d4i to user 3 and user 4 along target directions
g2i.

The users can now subtract their own contribution to decode
the intended data streams. Therefore we can achieve the DoF
2N .

For the cases M1 ≤ N ≤ M3, M3 ≤ N ≤ M1 and N ≥
M1, N ≥ M3, the DoF 2N can be achieved in a similar fashion
and the details are omitted.

2) N > M2+M4: Under this setting, the DoF upper bound
in equation (9) reduces to

DoF ≤ 2(M2 +M4). (19)

Case 1: N ≥ 2(M2 +M4).
The DoF upper bound can be easily achieved for this case.

Since we have M1 ≥ M2, M3 ≥ M4, we can let user 1 use
only M2 of its antennas and let user 3 use only M4 of its
antennas to transmit. The relay can decode all the messages
and broadcast the messages to the intended users since it has
sufficient spatial dimensions.

Case 2: N ≤ M1, N ≤ M3.
From Lemma 1, this condition implies that the users in cluster

1 share M2-dimensional signal space at the relay, and the
users in cluster 2 share M4-dimensional signal space at the
relay. It can be verified that the M2 dimensional signal space
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shared by the users in cluster 1 has no intersection with the
M4 dimensional signal space shared by the users in cluster
2. Following the transmission scheme we used for previous
cases, we let the users in cluster 1 to transmit M2 independent
data streams, and let the users in cluster 2 to transmit M4

independent data streams, both along their shared dimensions
of the signal space at the relay. The relay can decode the sum
of the messages and forward to the users using zero-forcing
with proper receiver-side filtering at the users. The users can
then decode the intended data streams by subtracting their
own contribution from the received signals to achieve the DoF
2(M2 +M4).

Remark 1: For the other cases, the DoF upper bound cannot
be achieved using the signal space alignment schemes. The
optimal DoF remains unknown.

IV. THREE-USER SYMMETRIC CASE

In this section, we consider the two-cluster multi-way relay
channel with 3 users in each cluster in the symmetric setting,
i.e., the users are all assumed to have M antennas. From the
definition in Section II, we have L = 3 for this case.

A. Outerbound on DoF

The cut set bound we used to derive the DoF upper bound
for the 2-user case yields a DoF upper bound 3min{2M,N}
for the 3-user case, which is not tight. To address this issue,
we utilize the technique in [12] to enhance the received signal
of one of the users, such that it can decode the messages
intended for the other users when provided with proper genie
information, to improve the upper bound.

Proposition 2: For the two-cluster multi-way relay channel
with 3 users in each cluster, the DoF upper bound for the
symmetric setting when all users have M antennas and the
relay has N antennas is

DoF ≤ 2min{3M,N}. (20)

Proof: We first consider the case when M ≥ N and focus
on user 1 and user 2. Since we are considering outerbounds,
we can assume that

• user 1 can decode W12,W13 based on Y n
1 and the side

information W21,W31;
• user 2 can decode W21,W23 based on Y n

2 and the side
information W12,W32.

Since user 1 can decode W12, if we provide it with the
message W32 as genie information, it has the same side
information as user 2. Note that the received signals at user
1 and user 2 are

Y1 = H1RXR + Z1; (21)

Y2 = H2RXR + Z2. (22)

Using the same technique as deriving outerbound for the
MIMO interference channel in [12], we perform singular value
decomposition to obtain H2R = UΣ2RV

†, and we have

U†Y2 = Σ2RV
†XR +U†Z2 (23)

With some change of notation, we have

Y′
2 = Σ2RX

′
R + Z′

2, (24)

where Z′
2 has the same distribution as Z2, and Y′

2 = U†Y2,
X′

R = V†XR, Z′
2 = U†Z2. Note that the above operation is

invertible and does not change the capacity region. We further
consider an enhanced version of the received signal at user 1:

Yenhance
1 = H1RXR +N1 (25)

where N1 ∼ CN (0,K)

K = IM −H1R

(
H†

1RH1R

)−1

H†
1R +

1

α
H1RH

†
1R (26)

and α is the maximum among the singular values of matrix
H1R and H2R. Note that using the enhanced version of Y1

will not reduce the capacity region. Since we have M ≥ N ,
we let user 1 to perform zero-forcing to obtain

Y′
1 = X′

R +N′
1 (27)

where
N′

1 = V†
(
H†

1RH1R

)−1

H†
1RN1. (28)

It is easy to see that N′
1 ∼ N (0, 1

αIM ). Therefore Y′
1 is

less noisy than Y′
2. With the genie information W32, we

can decode W12,W13,W23 using Y′
1 and side information

W21,W31. Similarly, we can apply the same argument for user
4 and user 5, and we can decode W45,W46,W56 using Y′

4,
which is an enhanced version of Y4, with side information
W54,W64 and genie information W65. Now we have

nR12 + nR13 + nR23 + nR45 + nR46 + nR56 (29)
= H(W12W13W23W45W46W56|W32W21W31W65W54W64)

≤ I(W12W13W23W45W46W56;Y
′n
1 Y′n

4

|W32W21W31W65W54W64) + nϵn (30)
≤ h(Y′n

1 Y′n
4 )− h(Y′n

1 Y′n
4 |Xn

R) (31)
= I(Xn

R;Y
′n
1 Y′n

4 ) (32)

where equation (31) is because Y′n
1 ,Y′n

4 are conditionally
independent of the messages given Xn

R. From equation (32),
we can obtain the DoF upper bound min{2M,N} = N for
the 6 messages. We can apply the same method for the other
6 messages to obtain the DoF upper bound 2N for the sum
capacity.

When M < N , we can add antennas at the users such that
all the users and the relay have N antennas, which yields the
same DoF upper bound 2N .

Using the cut set bound, we can obtain a DoF upper bound
3min{2M,N}. Together with the DoF upper bound 2N , we
conclude that

DoF ≤ 2min{3M,N}. (33)

Remark 2: This DoF upper bound implies that increasing
the number of users in each cluster cannot provide a DoF gain
beyond 2N . This means that sharing the signal space of the
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relay between 2 users is indeed the optimal approach.

B. Achieving the DoF Upper Bound

Theorem 2: The optimal DoF for the two-cluster multi-way
relay channel with 3 users in each cluster is

1) DoF = 2N , if N ≤ 12
7 M ;

2) DoF = 6M , if N ≥ 6M .
Proof: Due to limited space, we only provide a outline for

the proof.
Case 1: N ≤ M . For this case, it is sufficient for the users to

use only N antennas to transmit. For each transmission, we can
only allow two of the users in the same cluster to be active,
which reduces the channel to a two-way relay channel. The
functional-decode-and-forward scheme can achieve DoF 2N .

Case 2: M < N ≤ 12
7 M . From the results for the 2-user

case, any pair of users in one cluster can share a (2M −N)-
dimensional space at the relay. Since there are 6 pair of
messages that can share the signal space at the relay, the total
number of dimensions of the signal space that can be shared
by users is 6(2M−N). To achieve DoF 2N , we require all the
signal space at the relay is shared by the users, and this yields
6(2M −N) ≥ N , which is equivalent as N ≤ 12

7 M .
Case 3: N ≥ 6M . For this case, the DoF 6M can simply be

achieved by allowing the relay to decode all the messages and
then broadcast the messages to the intended users, since it has
sufficient spatial dimensions.

V. CONCLUSION

In this work, we have studied the degrees of freedom (DoF)
of the two-cluster multi-way relay channel. For the case with 2
users in each cluster with arbitrary number of antennas. We
have derived a DoF upper bound based on cut set bound,
and have shown that it is tight for several nontrivial cases.
Conditions when the DoF upper bound can be achieved are
established based on the relative number of antennas between
the users and the relay. For the case with 3 users in each cluster
in the symmetric setting, i.e., when all the users have the same
number of antennas. We have derived a new DoF upper bound
using a genie-aided approach and channel enhancement, and
have shown that the bound is tight using signal space alignment
for several scenarios of interests. This result for the 3 user
case shows that there is no further DoF gain by increasing the
number of users in each cluster when the number of antennas
at the relay is limited.

APPENDIX A
PROOF OF LEMMA 1

Proof: We first consider the case when p ≥ q1 ≥ q2 and
q1 + q2 > p. Note that equation (11) is equivalent as[

I H1 0
I 0 H2

] vi

ui

wi

 = 0. (34)

The null space of the matrix[
I H1 0
I 0 H2

]
(35)

has dimension q1 + q2 − p. It is easy to see that if q1 + q2 > p,
then we can find q1 + q2 − p non-zero linearly independent
vectors of the form [

vi ui wi

]T
(36)

from the null space of the matrix shown in equation (35). It
remains to see whether all these vectors satisfy vi ̸= 0. Since
p ≥ q1 ≥ q2, we can see that the null space of matrices H1

and H2 has dimension 0. Therefore for all the non-zero vectors
satisfying equation (34), we must have vi ̸= 0.

Similarly, when q1 ≥ p ≥ q2, we can find q1 + q2 − p
non-zero linearly independent vectors of the form shown in
equation (36) to satisfy equation (34). However, for this case, if
we consider the equation vi = H2wi, we can see that there are
at most q2 non-zero linearly independent vectors vi satisfying
this equation. In fact, since q1 ≥ p, the null space of matrix
H1 has dimension q1 − p. When we set wi and vi to 0, we
can find q1 − p non-zero linearly independent vectors ui to
satisfy equation (34). Therefore we can conclude that among
all vectors of the form in equation (36) satisfying equation (34),
we can only find q2 non-zero linearly independent vectors vi.
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