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Abstract locations polled to that point is 

n 

sn = kj (1) 
In this work, we consider the problem of minimizing aver- 
age paging cost and polling delay in a wireless system. It is 
assumed that users to be paged move according to a gen- 
era1 motion process during the paging events. We find and 
evaluate the optimal sequential paging strategies for given 
maximum delay tolerance and compare our results to the 
classical paging strategy as well as the optimal strategies 
for stationary units (users). 

i = l  

Using the number of locations searched a . ~  a surrogate for 
signaling cost we have 

N N 

(2) E[PI = qnsn  = C k n F q ( n  - 1) 
n = l  n=l 

1 Introduction 
In mobile communications systems, timely localization of 
users is an important factor in service quality. Since the 
excess signaling imposed by user mobility can be excessive 
[1,2] and radio bandwidth is scarce in wireless systems, 
paging algorithms that minimize signaling are desirable. 

Previous work [3-51 has considered optimal paging 
strategies when the mobile unit is assumed to remain es- 
sentially stationary for the duration of the paging process. 
However, if paging bandwidth is scarce, or the system 
is heavily loaded, this assumption may be inappropriate. 
Thus, we here consider optimal strategies to locate a mo- 
bile unit when the unit may change location between the 
polling events; i.e., it might be necessary to poll a given 
location multiple times rather than just once as is in the 
stationary case. 

In the following sections, we first formulate the problem 
of finding the optimal paging strategies. We then present 
the results obtained under different assumptions and the 
conclusions of our work. 

2 Basics 

and as a surrogate for polling delay we have 

N N 
(3) 

n = l  n = l  

the mean number of polling events. Note that pq(n)  is the 
complementary cumulative distribution function of qn or 
formally 

n 

F,(n) = 1 - cqi (4) 
i=l 

Similar to [3], we seek to minimize the weighted sum 
(weighting factor cr 2 0) of E[P]  and E[D],  

N N 

(5) 
n = 1 n=l  

by optimally choosing both the size of polling groups kn 
and their el'ements i E An, i = 1,2..-kn. 
We assume that the unit to be paged moves according to a 
general motion process. The joint probability distribution 
on unit location at time tn can be written in terms of 
conditional probabilities as1 

n 

PX l...x, (c1...cn) = I ' I P X . I X . - ~ . . . X ~  (~iIzi-1--*21) ( 6 )  
i=l 

For a given unit, groups of locations An are polled in se- 
quence, n = 1 , 2  ... N until the unit is found. The proba- 

'Although both time and space invariance seem to be implied bility of finding the unit on the nth polling step is defined 
as qn. The number of locations in each group is ICn. If by the notation, the results to be derived are  applicable to the 

time/sDace varvinn cases. Notational simplicity was chosen over - .  , .  " . ,  
the unit is found on the nth step then the total number of exactness. 
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Given polling groups A;, i = 1,2, ... we can write down the 
probability of finding the user in the nth step as [6]: 

Qn = .** PXl ... x,(Zl . . .zn)  (7) 
Xn€An En-IBA,-1 X l g A l  

It is easy to see that F,(n) can be written as [6]: 

i”,(4 = F,(n - 1) ~ X n ~ B n _ l . . B l ( ~ n I ~ n - l . . ~ ~ )  (8) 
XnfAn 

where Bi is the event that the unit is not found by polling 
step i. 
We then state the following theorem: 

Theorem: The polling sequence which minimizes Equa- 
tion (2), (3) or (5) polls the most probable ki+l locations 
after the ith polling failure. 

Proof: If polling groups A1 ... AN-1 are given, then F,(i) 
is specified for i = 1,2, ..., N - 1. Given kN, minimizing 
any of the cost functions (2) through (5) requires us to 
choose the elements of AN such that p q ( N )  is minimized. 
However, F,(N) is minimized by choosing the most likely 
elements of p X N ~ ~ n - l  (xNIBN-~. . .&)  for AN. 

Proceeding recursively, we see that for given polling 
group sizes k, ,  the optimal polling group A,  con- 
tains the k ,  most likely elements of the distribution 
p ~ ~ l ~ , - ~ . . . j ~  (z, IB,-1 ... &). Thus, the problem of finding 
N optimal polling groups reduces to one of finding optimal 
polling group sizes k,. 

This result greatly simplifies the problem of finding the 
optimal strategies since now only optimal polling group 
sizes IC, need be found. Unfortunately it is easily shown 
that this problem is not amenable to solution via Dynamic 
Programming (DP) [7] as it was for the semi-stationary 
unit case [3]. We therefore employ exhaustive search to 
find the best set of polling group sizes {k,}. 

3 Results 
We show the results of several experiments performed to 
find the best polling strategy in the presence of a maximum 
delay constraint, i.e. if the mobile is not found in the first 
N - 1 polling steps then all locations are polled in step 
N .  A network of 20 locations is assumed with an initially 
uniform distribution on unit location probability. 

As a check against previous work [3], we have first per- 
formed the exhaustive search for the case where the unit 
to be found remains stationary during the paging process. 
Using a = 0.5 in Equation (5), we compare previous re- 
sults with the result of our search in Figure 1 and find 
them in complete agreement. 

We then consider simple linear diffusion on an annulus 
(a “racetrack” model) and show how the paging strategy 
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Figure 1: Optimum paging and delay costs correspond- 
ing to the optimum strategy with a = 0.5 vs maximum 
delay for a stationary unit, 20 locations, uniform ini- 
tial location distribution. DP=Dynamic Programming, 
ES=Exhaustive Search. 

varies as a function mobility index, maximum delay toler- 
ance and delay weighting factor. 

isotropic diffusion process, with probability transition ma- 
trix S = { s i j }  = { S X , I X ~ - ~ ( Z ,  = = j)}, on a 
circular track with L locations. Specifically, 

In this model, a unit moves according to a 

if i = modL(j - 1) or modL(j + 1) 
s i j =  1-27  i f j = i  { a else 

where 7 is chosen to be 0.05. That is, the unit may move to 
the right or left with probability 0.05, or remain stationary 
with probability 0.9 a t  each discrete time instant. The 
number of motion process steps between polling events is 
defined as k (k 2 1). The conditional probabilities2 then 
become: 

As such, k (the mobility index) is a surrogate for unit mo- 
bility [8,9] with increased k implying higher mobility. For 
k sufficiently large, the probability distribution on location 
is uniform just prior to a polling event. 

2p is the L-vector that contains the conditional probabilities. 
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It is observed that as the mobility index increases, the 
number of locations polled in each step tends to grow. The 
average paging cost and the average delay corresponding 
to the best strategies found for various mobility indices 
are given in Figure 2. The corresponding strategies for 
these and larger mobility indices with maximum delay tol- 
erance of 6, are given in Table l. Notice that the opti- 
mum strategy approaches the classical “blanket polling” 
strategy where all locations are polled simultaneously in 
the first step for very large mobility indices i.e., there is 
nothing to be gained by polling smaller groups since the 
location probability distribution is uniform at each polling 
step. For smaller interpolling intervals, we observe a char- 
acteristic decrease then increase in the number of locations 
polled at  each step. This is as expected since small inter- 
polling intervals imply that a polling failure in group Ai 
greatly reduces the immediately subsequent probability of 
finding the unit at  any location covered by Ai. However, 
as the number of polling failures increases, more locations 
are searched to avoid the penalty of searching all locations 
in the final step. 
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Figure 2: Paging and delay costs corresponding to the opti- 
mum total cost with a = 0.5 versus interpolling interval, 20 
locations, uniform initial location distribution, race track 
location model. 

The variation of paging cost and delay with maximum 
delay tolerance N is also examined. What we find is a 
tradeoff similar to that seen in [3] where paging cost falls 
of€ sharply as delay requirements are relaxed (Figure 3).  

Finally, we have studied the effect of delay factor a on 
the cost and the optimal strategies. The values of E[P] and 
E [ D ]  are given in Figure 4. The values show that the pag- 

Table 1: Best polling strategies for maximum delay=& 
The table shows how many locations should be polled at 
each time step for various interpolling interval values. I1 
= Interpolling Interval 
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Figure 3: Optimum paging cost and the corresponding av- 
erage delay versus maximum delay, (Y = 0.5, IC = 20, 20 
locations, uniform initial location distribution, race track 
location model. 
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Figure 4: Optimum costs versus delay factor CY for delay 
tolerance 5, 20 locations, uniform initial location distribu- 
tion, race track location model. 

ing cost is lowered substantially with very little increase in 
the average delay compared to the classical polling strat- 
egy. The optimal strategies found show that for increasing 
CY, a premium is placed on finding the unit early during the 
paging process. Thus, the size of the first group increases 
monotonically with Q until all locations are searched on 
the first step. This strategy achieves an absolute minimum 
delay of one polling step. 

4 Conclusion 
We have investigated optimum paging strategies for a mo- 
bile communications network where units are allowed to 
move during the paging process, First, we have reduced 
the problem of finding the best strategies to finding how 
many conditionally most likely locations must be included 
in each polling group. The problem of finding the optimal 
polling group sizes is, unfortunately, not amenable to stan- 
dard methods such as Dynamic Programming. Thus, we 
have used exhaustive search to determine the best strategy 
and derive heuristic/approximate principles from experi- 
ment. 

We observed that as the unit mobility (time interval be- 
tween polling events) increases, the number of locations 
searched early-on in the paging process must increase un- 
til it becomes optimal to poll all locations during the 
first step; the classical “blanket polling” strategy for mo- 
bile communications systems. However, this effect occurs 
only at relatively extreme levels of mobility where a failed 

polling event provides little information about unit loca- 
tion just prior to the next scheduled polling event. Thus, 
there should usually be some benefit to sequential planned 
polling of location groups in all but the most extreme cases. 

The effect of increasing the importance of delay reduc- 
tion had the expected effect of lowering delay at the ex- 
pense of increased paging cost. However, the optimal 
strategies lowered the paging cost substantially as com- 
pared to the classical strategy but with little increase in 
the average delay. Thus, it may often be more efficient to 
sacrifice a small amount of delay performance and thereby 
gain a substantial reduction in paging cost. 
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