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Abstract—We consider the problem of minimizing average pag-
ing cost subject to delay constraints in a wireless system. Previous
work assumed the unit to be found did not move during the
paging process whereas here the unit may change location during
polling events. We show that the conditionally most probable
locations, given that the unit has not yet been found, should be
searched first. We find the optimal sequential paging strategies
for given maximum delay constraints and compute both paging
and delay costs as a function of the time between polling events.
The results show that sequential paging strategies are beneficial
in all but the extremely high-mobility cases where polling failures
provide little information about the unit location. It is observed
that optimal sequential paging strategies substantially lower the
paging cost compared to the classicalblanket polling at the
expense of a small degradation in the average delay performance.

Index Terms—Mobility management, paging strategies, sequen-
tial search.

I. INTRODUCTION

T IMELY localization of users is important for service
quality in mobile communication networks. To establish

location, users can regularly inform the network of their
locations (registration); the system can search for the user
after a call arrival (paging) or some combination of the two.
Considerable research has been done on registration strategies
and in identifying the tradeoff between registration and paging
(see, for example, [1]–[6]). Various paging strategies have been
investigated in [7] and [8]. Paging strategies that are based on
user location probabilities are constructed in [9].

The problem of minimizing the average cost of locating a
mobile unit given the probability distribution on unit location
was considered in [8]. The same problem was later modeled
in [10] and [11] using search theory [12]. The cost in [8] was
formulated in terms of delay and number of locations searched.
However, units were assumed to move slowly relative to the
total duration of the paging process, i.e., it was assumed the
unit did not change location during or between polling events.
This assumption was used also in all previous work on paging
mentioned above. In this paper, we remove this assumption
and derive optimal paging strategies for the case where the
unit may change location during the paging process.

We find that the most probable locations at each time step,
conditioned on the mobile having not yet been found, should
be searched first. We then compute the optimal paging and
delay costs and the associated paging strategies in the presence
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of a maximum delay constraint. We observe that, unlike the
stationary case where the optimal strategies may be found
easily via dynamic programming [13], the state space of the
problem grows geometrically at each paging step. Therefore,
we resort to an exhaustive search to find the best strategy on
how many locations should be searched at each paging step
and identify trends in the polling patterns as a function of user
mobility.

II. PROBLEM FORMULATION

Let be the probability distribution on unit location
at some initial polling time . We assume that unit location
evolves from a known location according to some mobility
process with known transition probability distribution, i.e.,

, where
is the unit location random variable at polling time given
previous location–time pairs .1

We definepolling group to be a group of locations
polled at time with the number of locations in .
Polling groups are polled in sequence until
the unit is found. Thus, the total number of locations searched
if the unit is found in polling step is . Finally,
we define as the probability that the unit is found on the

th polling step.
Our cost functions are then the expected number of locations

searched (a surrogate for signaling cost)

(1)

and the mean number of polling events (a surrogate for
polling delay)

(2)

We seek paging sequences which minimize the weighted
sum of and

(3)

where is defined as the delay weighting factor.
Furthermore, we note that , , and can also be

1Although the notation seems to imply both time and space invariance, the
results to be derived are applicable to the time/space-varying cases. Notational
simplicity was chosen over exactness.
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written as [14], [15]

(4)

(5)

(6)

where is the complementary CDF of

(7)

III. A NALYSIS

A. Preview

The polling problem requires that we decide which locations
to poll when. To simplify the problem, we will first show
that given sizes of the polling groups , all costs ( ,

, and ) are minimized by composing each of the
most likely locations given that the unit was not found

up to step . Once it is established that the structure of
the optimum strategy is such that the conditionally most
probable places must be searched at each polling instant, the
problem of determining the optimum strategy simplifies to
determininghow manylocations must be searched at each
polling instant. This simplification reduces the problem of
polling group construction to that of finding the which
minimize (4)–(6).

B. Conditional Distributions and

The joint distribution on unit location at times through
is

(8)
Given polling groups , we can write down the
probability of finding the user in theth step as

(9)
Now notice that (9) can be rewritten as

(10)

and therefore

(11)

Enumerating the first few , we have

(12)

(13)

(14)

We then note that

(15)

which means

(16)

C. Optimal Polling Strategies

Assume that exactly polling steps are allowed. That is,
after unsuccessful polling steps, we poll all locations
in step . We may then rewrite (4)–(6) as

(17)

(18)

(19)

Rewriting (16) yields

(20)

which by (8) is equal to

(21)

Thus, we can write

(22)
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where is the event that the unit is not found by polling step
. We then notice that since ,

we must have

(23)

by Bayes Rule. Thus

(24)
Theorem 1: The polling sequence, which minimizes

(17)–(19), polls the most probable locations after the
th polling failure.

Proof: If polling groups are given, then
is specified for . Since , the

total number of locations, all locations have to be polled. If
polling groups are given, then is specified
for . Given , minimizing any of the
cost functions (17)–(19) requires us to choose the elements
of such that is minimized. However,

is minimized by choosing the most likely elements
of for .

Proceeding recursively, we see that for given
polling group sizes , the optimal polling group
contains the most likely elements of the distribution

.
Thus, as explained in Section III-A, the problem of finding
optimal polling groups reduces to one of finding optimal

polling group sizes . In the following section, we will adopt
a system model and a mobility model for the unit to be
found, present the optimum polling strategies by calculating
the polling group sizes, and investigate the effect of delay
constraints and user mobility on these strategies.

IV. RESULTS

We consider the polling problem with a maximum delay
constraint. That is, if the mobile is not found in the first
paging steps, then we poll the entire set of locations in step.

Unfortunately, unlike the case where the unit is assumed to
be stationary [8], [10], [11], finding the polling sizes at each
polling step is not easily solvable via dynamic programming.
This complication is due to the fact that because the optimum
locations to be polled are obtained via the probability distri-
butions conditioned on all previous failures, the state space
of the problem grows geometrically with number of polling
steps. Thus, we resort to determining the optimum polling
sizes via an exhaustive search. For the rest of this section, the
various cost values we plot are the costs that correspond to
the optimum polling sizes calculated.

A network of 20 locations is assumed with an initially
uniform distribution on unit location probability. As a check
against previous work [8], the algorithm is first applied to the
case where the unit to be found remains stationary during the
paging process. Using in (19), we compare previous
results with the results of exhaustive search in Fig. 1 and find
they agree.

Fig. 1. Optimum paging and delay costs corresponding to the optimum strat-
egy with� = 0:5 versus maximum delay for a stationary unit, 20 locations,
and uniform initial location distribution. DP= dynamic programming, and
ES = exhaustive search.

Fig. 2. Probability distribution “bloom” from a known location as a function
of motion process steps (interpolling interval)k.

We then allow the unit to move between the paging events.
As a simple example, we consider a “race track” model
where a unit moves according to a one-dimensional (1-D)
discrete isotropic diffusion process, with probability transition
matrix , on a circular track with locations [16].
Specifically

if or
if
else
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where is chosen to be 0.05. That is, the unit may move to
the right or left neighboring location with probability 0.05 or
remain stationary with probability 0.9 at each discrete time
instant. The number of motion process steps between polling
events is defined as theinterpolling interval, ( ).
Given polling failures up to the th polling step, the location
distribution at the st polling step becomes2

(25)

As such, is a surrogate for unit mobility with increased
implying higher mobility. For sufficiently large, the

probability distribution on location is essentially uniform just
prior to a polling event.

Representative plots of the location distribution after dif-
ferent numbers of steps are provided in Fig. 2 for
assuming the unit starts at location 10. These plots provide
some indication of location probability “bloom” into previ-
ously searched locations as a function of interpolling interval
duration .

The effect of mobility on paging cost and delay was
investigated for different delay weights (). The variation of
the optimum average paging cost ( ) and average delay
( ) are shown in Figs. 3 and 4 for and for
a number of maximum delay constraints. Paging cost increases
with increased interpolling interval (increased mobility) and
decreases with increased maximum delay tolerance. These
results are intuitively pleasing, since when the interpolling
time increases, the user location before each polling event is
less certain and one would expect paging cost to increase.
Likewise, if greater maximum delay may be tolerated, the
paging cost can be significantly reduced since more latitude
is available to employ sequential search methods [8], [9]. By
comparing the delay performances of Figs. 3 and 4, we see
that the average delay performance is improved for
(Fig. 4). This is due to the fact that for Fig. 3, the cost function
consists only of the average paging cost, and, thus, the strategy
has no control over the average delay performance whereas
for Fig. 4, the average delay is incorporated into the cost
by the delay weight factor . Note also that because
the solution space of the optimization problem is discrete, the
optimal polling sizes found that to minimize the paging cost
may not yield monotonic delay performance (Fig. 3).

In Fig. 5, we plot the optimum versus where
each point is parameterized in the maximum delay, i.e.,

with . The interpolling interval
is . Note that large decreases in paging cost are
achievable with only modest increases in average delay.

Experiments were performed using a maximum delay toler-
ance of six for a large range of interpolling intervals (2–801)
to investigate the limiting behavior of the strategies and cost
function values. The cost function values are shown in Fig. 6.
The corresponding optimum strategies, i.e., how many most
likely locations should be polled at each polling instant for a
given interpolling interval , are tabulated in
Table I. Notice that as the interpolling interval becomes very

2
p is theL vector that contains the conditional probabilities.

Fig. 3. Optimum paging cost and the corresponding average delay versus
interpolling interval, 20 locations,� = 0, uniform initial location distribution,
and race track location model.

Fig. 4. Paging and delay costs corresponding to the optimum total cost with
� = 0:5 versus interpolling interval, 20 locations, uniform initial location
distribution, and race track location model.

large, the optimum strategy approaches the classical “blanket
polling” strategy where all locations are polled simultaneously
in the first step. This result stems from the observation that
when the interpolling interval is very large, the unit location
probability distribution is uniform just prior to a polling event.
To show how the paging cost can be expressed in this case, let
us define to be the probability that the unit is found in step

given that it was not found in the first steps. can
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Fig. 5. Optimum paging cost and the corresponding average delay versus
maximum delay,� = 0:5, k = 20, 20 locations, uniform initial location
distribution, and race track location model.

be easily expressed in terms of the unconditional probability
of Section II as

(26)

Now, observe that when the unit location distribution prior to
a polling event is uniform, finding the unit at any location is
equally probable. Thus

(27)

where is the number of places searched at stepand
is the total number of locations. Combining (26) and (27), we
see that

(28)

Inserting (28) into (17), we see that (19) becomes

(29)

(30)

(31)

Fig. 6. Optimum paging and delay costs with� = 0:5 versus interpolling
interval (2–801), 20 locations, uniform initial location distribution, and race
track location model.

TABLE I
BEST POLLING STRATEGIES FORMAXIMUM DELAY = 6. THE TABLE

SHOWS HOW MANY LOCATIONS SHOULD BE POLLED AT EACH

TIME STEP FOR VARIOUS INTERPOLLING INTERVAL VALUES (IPI)

The paging cost is, therefore, independent of the polling
pattern and always equal to the total number of locations.3

. Thus, minimizing corresponds to minimizing the average
delay and the delay is minimized when all locations are polled
on the first step: the classical paging strategy.

For smaller interpolling intervals, we observe a characteris-
tic decrease and then an increase in the number of locations
polled. This is as expected since small interpolling intervals

3The above analysis implicitly assumes that the number of places the unit
can reside is finite.
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Fig. 7. Optimum costs versus delay factor� for delay tolerance 5, 20
locations, interpolling interval= 2, uniform initial location distribution, and
race track location model.

TABLE II
BEST POLLING STRATEGIES FORMAXIMUM DELAY = 5. THE TABLE

SHOWS HOW MANY LOCATIONS SHOULD BE POLLED AT EACH TIME

STEP AS THE DELAY FACTOR (�) IN THE COST FUNCTION INCREASES

imply that a polling failure in group greatly reduces the
immediately subsequent probability of finding the unit at any
location covered by . However, as the number of polling
failures increases, more locations are searched to avoid the
penalty of searching all locations in the final step.

Finally, we have studied the effect of delay factoron
the cost and the optimal strategies. The values of and

are given in Fig. 7. The values show that the paging
cost is lowered substantially with very little increase in the
average delay compared to the classical polling strategy. The
best polling strategies for various are provided in Table II.
For increasing , a premium is placed on finding the unit
early during the paging process. Thus, the size of the first
group increases monotonically with until all locations are
searched on the first step. This strategy achieves an absolute
minimum delay of one polling step.

V. SUMMARY AND CONCLUSION

We have investigated optimum paging strategies for a
mobile communications network where units are allowed to
move during the paging process. It is shown that the strategy
which minimizes the average number of paging events, the
average paging delay or a linear combination of the two, must
search the conditionally most likely locations after each polling
failure. Therefore, the problem of finding the best strategies
is reduced to finding how many locations to include in each
polling group.

The problem of finding the optimal polling group sizes is,
unfortunately, not amenable to standard methods such as dy-
namic programming. Thus, we have used an exhaustive search
to determine the best strategy and derive heuristic/approximate
principles from experiment.

We observed that as the unit mobility (time interval between
polling events) increases, the number of locations searched
early on in the paging process must increase until it becomes
optimal to poll all locations during the first step: the classical
“blanket polling” strategy for mobile communications systems.
However, this effect occurs only at relatively extreme levels
of mobility where a failed polling event provides little infor-
mation about unit location just prior to the next scheduled
polling event. Thus, there should usually be some benefit to
sequential planned polling of location groups in all but the
most extreme cases.

The effect of increasing the importance of delay reduction
had the expected effect of lowering delay at the expense of
increased paging cost. However, the optimal strategies lowered
the paging cost substantially as compared to the classical
strategy but with little increase in the average delay. Thus,
it may often be more efficient to sacrifice a small amount of
delay performance and thereby gain a substantial reduction in
paging cost.

Finally, we note that our observations came from the
application of our theory to a 1-D network where the unit
to be found moved according to a discrete diffusion process.
The extension of the model to two dimensions is straight-
forward, and we believe that the general observations given
in this paper would not change drastically by this extension.
Qualitatively, one can argue that as the interpolling interval
( ) gets larger, the effective user mobility will be higher
than that of the 1-D case since diffusion would be in two
dimensions. Thus, the convergence to the limiting case, i.e.,
theblanket pollingstrategy, would be faster than that in a 1-D
mobility model. However, for a reasonable range of mobility
indices sequential paging should still be useful in minimizing
signaling cost.
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