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End-to-End Secure Multi-Hop Communication with
Untrusted Relays

Xiang He, Member, IEEE, and Aylin Yener, Member, IEEE

Abstract—A multi-hop line network is considered, where each
node can receive signals transmitted by its two neighbors. As
such, the model embodies both the interference and broadcast
aspects of wireless networks. The leftmost node wishes to send
messages to the rightmost node, while keeping these messages
confidential from all the intermediate relay nodes. In this setting
where any or all of the relay nodes can be eavesdroppers, it
is shown that end-to-end secure and reliable communication is
possible. Notably, it is shown that an end-to-end secrecy rate
that is independent of the number of hops, i.e., intermediate
eavesdroppers, is achievable by means of a carefully designed
transmission schedule, compute-and-forward relaying and cod-
ing strategy utilizing nested lattice codes. The achievable rate
obtained indicates that imposing secrecy constraints penalizes
the capacity by at most 1 bit per channel use. Therefore, it is
concluded that information theoretic secrecy can be guaranteed
for this model irrespective of eavesdropping relays and a fixed
modest cost for the end-to-end rate.

Index Terms—Information theoretic secrecy, nested lattice
code, line network, untrusted relays.

I. INTRODUCTION

W IRELESS networking is rapidly becoming the domi-
nant means to communicating any and all information.

It is by now clear that guaranteeing secure transfer of all
this information is as important as reliability. A prominent
concern, as we collectively become a wireless society, is to
ensure confidentiality of information communicated in this
open medium from unauthorized parties. While information
security is currently handled by upper layer protocols that are
agnostic to the underlying communication medium, the merit
of physical layer aware security solutions are beginning to be
noticed for wireless communications [1].

The theoretical foundation of information security dates
back to Shannon [2]. In this work, Shannon established
confidentiality, i.e., secrecy, to be measured by the mutual in-
formation at the unauthorized receiver1. Following this frame-
work, Wyner studied the wiretap channel [3] and showed that
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reliable communication that is secret from an eavesdropper
was possible in the setting where the eavesdropper receives
a noisy version of that received by the destination. His result
and references [4], [5], which guarantee secrecy irrespective
of the computational capabilities of the eavesdropper, are a
departure from cryptographic approaches, and have established
the foundations of information theoretic secrecy.

Recently, there has been a renewed interest in information
theoretic secrecy, notably towards identifying the fundamental
rate limits of transmitting confidential data in channel models
that are building blocks of wireless networks; see for ex-
ample [6]–[9] and references therein. By nature of network
information theoretic building blocks, these works consider
small networks of a few nodes and determine upper and lower
bounds on secrecy rates.

For networks of arbitrary size, Shannon’s notion of informa-
tion theoretic secrecy, has led to secure network coding [10],
[11] where the confidential message must be transmitted over
multiple hops. This setting is appropriate for wired networks
as each link is modeled as a rate-limited noiseless bit pipe.

A wireless network differs fundamentally from a network of
noiseless bit pipes. The broadcast nature of the medium results
in signals transmitted by a node to be overheard by all, making
it easier to eavesdrop. Further, interference results from mul-
tiple transmissions overheard by all nodes and fundamentally
alters the methods with which information theoretic secrecy
can be provided. In fact, interference was shown to be a useful
resource to protect confidential messages from being leaked
to an eavesdropper, see for example [6]. Hence, a collection
of interference free links is not the best representation of a
wireless network with secure communication requirements.
Finally, in a wireless network, it is more natural to consider the
eavesdropper eavesdrops on nodes, rather than on edges. The
preceding discussion makes it clear that secure network codes
designed for wired networks are not applicable for wireless
networks [12], [13].

In this paper, we consider confidential message transfer
for wireless networks of arbitrary size within an information
theoretic secrecy framework. In order to address this problem
with the simplest model which retains the characteristics of
a wireless communication medium, namely, broadcast and
interference, we consider a line network. The source and the
destination in this network are connected by a chain of nodes,
any or all of which, despite being a part of the network, and
willing to carry out relaying functions, are not to be trusted
with the information sent from the source to the destination.
To this end, all of these nodes need to be treated as potential
eavesdroppers.
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We show that, in this network, secure communication is
possible between the source and the destination despite the
fact that the signals transmitted by the source can reach the
destination only through the route using these untrusted nodes.
Furthermore, we show that the achievable end-to-end secrecy
rate found in this paper is independent of the number of hops.
This is tantamount to saying that the achievable secrecy rate
is constant no matter how many eavesdropping relays are
present, and the result holds for an arbitrary size of a line
network.

This network can be viewed as a somewhat idealized
version of a multi-hop wireless ad-hoc network 2 In particular,
the nodes are assumed to be sufficiently far apart that each can
only hear from its closest two neighbors. One can also envision
some applications, for which this modeling abstraction is more
precise. For instance, this can represent a vehicular network
on a highway, or a military sensor network which is deployed
with the given multi-hop structure, for example for better
power efficiency, or with respect to a chain of command. Such
multi-hop wireless networks have been studied extensively in
the absence of secrecy constraints, see [14] for example. We
expect that there is a need for multi-hop secure transmission
in the future especially when it is not energy efficient to
perform one-hop transmission. That said, we stress that the
results provided in this paper is of theoretical nature, worked
on a highly idealized system model presenting theoretical
achievability.

The line network model is a departure from the three node
relay channel that enjoys a direct link [15], [16], and is a
generalization of the two-hop model (with one intermediate
untrusted relay) considered in [17]–[19]. However, it is easy
to see that the relaying scheme utilized in these references,
in particular, compress-and-forward, does not lead to non-
vanishing secrecy rate with growing number of hops. Instead,
we shall follow a compute-and-forward type strategy [20],
[21], which, along with the use of nested lattice codes [22], ju-
dicious use of structured interference, and a carefully designed
transmission protocol, yields the scalable secrecy rate. In
computing the secrecy rate, we shall utilize and build upon the
recently established framework of equivocation computation
with nested lattice codes [23]. As the main result, in this
paper, we provide the first end-to-end secure communication
guarantee for a network that has an arbitrary number of hops
each of which has to be facilitated by a node that is also an
eavesdropper.

The remainder of the paper is organized as follows: In
section II, we describe the system model. Section III describes
some results on lattice codes that are useful for establishing
the main result of this work. Section IV states the main result.
Section V, VI and VII describe the details of the transmission
strategy. Section VIII describes the secrecy rate calculation.
Section IX concludes the paper.

II. SYSTEM MODEL

The system model is shown in Figure 1. The network is
composed of K nodes on a line. The source and the destination

2The secrecy capacity of a wireless network of arbitrary topology, just like
its counterpart without secrecy constraints, is a challenging open problem.
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Fig. 1. A line network composed of K nodes. Node 0 is the source, node
K − 1 is the destination. Nodes 1, ...,K − 2 are untrusted relays who help
forward the message, but are prevented from being able to decode it.

are labeled by 0 and K − 1 respectively. The relay nodes are
labeled by 1, ...,K − 2. We assume that, while these nodes
participate in forwarding signals, any or all of them are simply
nodes of lower security clearance, and cannot be trusted with
the message. Thus, the message W that the source wishes to
send to the destination must be kept secret from all of these
relay nodes.

Each node is half-duplex, i.e., can either receive or transmit
at a time, but not both. Each node can receive signals from its
two nearest neighbors3. In addition, without loss of generality,
we normalize the channel gain from each node to its nearest
neighbors to unity. That is, we use transmission power control
and combine the effect of the channel gain into the received
power constraint. The channel gain from node i to node j is
denoted by hi,j , i �= j, 0 ≤ i, j ≤ K − 1

hi,j =

{
1, |i− j| = 1
0, otherwise.

(1)

Let Xi and Yi be the transmitted and received signal of the
ith relay node respectively, 0 ≤ i ≤ K − 1. Then, we have

Y0 = h1,0X1 + Z0 (2)

Yi = hi−1,iXi−1 + hi,i+1Xi+1 + Zi, i = 1, ...,K − 2 (3)

YK−1 = hK−2,K−1XK−2 + ZK−1 (4)

where Zis are independent, zero-mean Gaussian random vari-
ables with unit variance.

Let n be the total number of channel uses. Let Xi,k be the
signal transmitted by node i during the kth channel use. We
assume that the average power constraint of each node is P̄ :

1

n

n∑
k=1

E
[
X2

i,k

]
≤ P̄ . (5)

Let Ŵ be the estimate of W at the destination. For reliable
communication [24], we require

lim
n→∞Pr

(
W �= Ŵ

)
= 0. (6)

Let Ii denote all information available to the ith node. Since
any or all of the relay nodes are untrusted, W should not be
leaked to any of them. This means that we require

lim
n→∞

1

n
H (W |Ii) = lim

n→∞
1

n
H (W ) , i = 1, ...,K − 2. (7)

where H(X) denotes Shannon entropy of the random variable
X [24]. The performance metric we will concentrate on is
secrecy rate, i.e., the communication rate that is reliable

3The source and the destination receive only from their right and left
neighboring node respectively.
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TABLE I
SUMMARY OF NOTATIONS

Λ lattice in RN

V(Λ) the fundamental region of a lattice
xN mod Λ modulus operation (9)
(Λf ,Λc) nested lattice pair, Λc ⊂ Λf

Λf ∩ V(Λc) nested lattice codebook
tN a lattice point
tN1 ⊕ tN2 (tN1 + tN2 ) mod Λc

dN dithering vector
RL rate of the lattice codebook
PL average power of the lattice codebook
T the N log2 K bit information that can recover the

real sum from the modulus sum of K lattice points.
See Theorem 3.

and secure, denoted by Rs and is defined as

Rs = lim
n→∞

1

n
H (W ) (8)

such that both (6) and (7) hold.
Remark 1: The use of unit channel gains per Equation

(1) is for clarity of exposition. The achievable scheme in
Section VI is applicable for any hi,j when |i− j| = 1. When
the channel gains are not unity, all each node needs to do
is to properly scale its transmit power, i.e., employ transmit
power control. In particular, the achievability scheme requires
the received power from neighboring hops to be equal which
can be satisfied by scaling Xi−1 and Xi+1, for all i.

III. PRELIMINARIES

In this section, we provide the definitions and results which
will be useful in the sequel. The notation used is summarized
in Table I for the reader’s convenience.

We denote the dimensionality of the vectors with subscripts,
i.e., xN denotes the N -dimensional vector x. Let Λ denote a
lattice in RN [22], i.e., a set of points which is a group closed
with respect to real vector addition. The modulo operation
xN mod Λ is defined as

xN mod Λ = xN − arg min
yN∈Λ

d(xN , yN) (9)

where d(xN , yN) is the Euclidean distance between xN and
yN . The fundamental region of a lattice Λ is denoted by V(Λ)
and is defined as

V(Λ) = {xN : xN mod Λ = xN}. (10)

Consider two lattices: a fine lattice Λf and a coarse lattice
Λc such that Λc ⊂ Λf . The codebook of a nested lattice code,
denoted by (Λf ,Λc), is composed of all lattice points in the
set Λf ∩ V(Λc) [22]. Let tN be a lattice point in the nested
lattice codebook. Let dNi denote the dithering vector used in
error probability analysis of lattice decoders [22]. A lattice
decoder computes the point in the fine lattice that is closest
to the received signal in terms of Euclidean distance. The
transmitted signal over N channel uses, XN is related to tN

as follows:

XN = (tN + dN ) mod Λc. (11)

Let |A| be the cardinality of the set A. The rate of the nested
lattice codebook, RL, is given by

RL =
1

N
log2 |Λf ∩ V(Λc)|. (12)

Let tNi , i = 1, 2 be two independent lattice points taken
from the same lattice codebook Λf ∩V(Λc). Let dNi , i = 1, 2
be the corresponding dithering vectors. Let

XN
i = (tNi + dNi ) mod Λc. (13)

Let
∥∥XN

i

∥∥ be the Euclidean norm of vector XN
i . Let PL be

the average power of XN
i when N → ∞. We rely on the

following result from [25] to meet the reliability requirement
given by (6). Suppose that a receiver, given XN

1 +XN
2 , wishes

to decode (tN1 +tN2 ) mod Λc. Suppose further that the receiver
knows dN1 , dN2 . Let t̂N be its decoder output. Then, we have:

Theorem 1: [25] For any positive RL, such that

RL <
1

2
log2(

1

2
+ PL) (14)

and for each N , there exists a pair of nested lattice Λf ,Λc,
such that

lim
N→∞

− 1

N
log2 Pr

((
tN1 + tN2

)
mod Λc �= t̂N

)
> 0. (15)

The nested lattice code offers a natural algebraic structure,
which we will utilize to satisfy the secrecy requirement given
by (7). First, it can be verified that Λf ∩V(Λc) forms a finite
abelian group with the addition operation defined by (xN +
yN ) mod Λc for xN , yN ∈ Λf ∩ V(Λc). For a finite abelian
group, the following lemma holds:

Lemma 1: [26] Let tA, tB be two independent random
variables distributed over a compact abelian group, tB has
a uniform distribution, then tA ⊕ tB is independent from tA.
Here ⊕ is the addition over the group.
In the sequel, we shall use tN1 ⊕ tN2 to denote (tN1 + tN2 ) mod
Λc. The lemma implies that tN1 ⊕tN2 is independent from tN1 , if
tN2 is uniformly distributed over Λf∩V(Λc) and is independent
from tN1 . This was utilized in [26] for the modulus channel.
On the other hand, if the addition is not defined over the group,
the lemma no longer holds.

IV. MAIN RESULT

In this section, we state the main result of this work:
Theorem 2: Define C(γ) as C(γ) = 1

2 log2(1+γ). For any
ε > 0, a secrecy rate of at least

Rs = 0.5(C(2P̄ − 0.5) − 1) − ε (16)

bits per channel use is achievable regardless of the number of
hops.

Proof: The proof of Theorem 2 is provided in Section
VIII-B.

Remark 2: As shown by Theorem 2, the achievable secrecy
rate is not a function of the number of nodes in the line
network.

Remark 3: When there is no secrecy constraint, an achiev-
able rate is 0.5C(2P̄ − 0.5) [25]. Hence only 0.5 bit per
channel use is lost due to the presence of the eavesdropper.
This is a remarkably different conclusion than that in [10]
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t′ = t0 ⊕ t1

t0 ⊕ t1 ⊕ J3

t0 ⊕ t1 ⊕ J4

t0 ⊕ t1 ⊕ J5

t0 ⊕ J2

t0 ⊕ J4

t0 ⊕ J3

J0

t0 ⊕ J5

J1

J2

J3

J4t0 ⊕ t1 ⊕ J2

t0 ⊕ J1

t0

t0

t1

t1

t2

t2

t0 ⊕ t1 ⊕ J6

t′ = t0

Fig. 2. One block of channel uses in the proposed transmission scheme.
The labels denote the transmitted lattice points calculated according to the
inner code summarized in Table II. For clarity, the superscript N is omitted.
⊕ denotes the modulus sum operation over the lattice codebook.

TABLE II
TRANSMISSION STRATEGY OF THE INNER CODE IN A BLOCK

Node Type First Phase Other Phases
Source JN tN ⊕ JN

Relay JN t̂N ⊕ (−x′N )
Destination JN t′N ⊕ JN

Notation Meaning
t̂N the lattice point decoded

by the relay in the previous phase.
x′N the previous lattice point transmitted by the relay.
t′N the modulus sum of source-transmitted tN s

that has been recovered by the destination
up to this phase in this block.

JN a random lattice point

where the loss is proportional to the capacity of a single edge
of the network. We obtain this result by benefiting from having
interference in this network and utilizing it to provide secrecy.

Remark 4: Without the secrecy constraints, the achievable
rate offered by lattice codes is within 0.5 bits/channel use
of the channel capacity [25]. The secrecy rate derived in this
work is within 0.5 bits/channel use of the rate in [25], and thus
is at most 1 bit/channel use away from the channel capacity.

V. OVERVIEW OF THE CODING SCHEME

In this section, we describe the coding scheme. To do so,
we begin with an alternative representation of the network,
as shown in Figure 2. In this representation, each column

of nodes corresponds to a single node in the line network.
Each row corresponds to a phase. A phase is composed of N
channel uses, which will be used to transmit a lattice point,
i.e., the signal XN given by (11). A node in a row has an
outgoing edge if it transmits during this phase. The node in
that row has an incoming edge if it receives signals during the
previous phase. Since we assume all nodes are half duplex,
a node can not transmit and receive simultaneously in the
same phase. Therefore, each edge always connects nodes from
different columns in this representation. For clarity, the details
of the underlying communication channel are omitted from
the figure. For example, it is understood, though not explicitly
shown in Figure 2, that the signal received by the node is a
superposition of the signals over all incoming edges corrupted
by the additive Gaussian noise.

A number of consecutive phases are collectively called one
block. As shown in Figure 2, a block starts at different phases
for different nodes. As a rule, a block always starts one phase
later at a node compared to its left neighbor. The boundary
of a block is depicted by the dotted line in Figure 2. The
communication will span over a number of blocks.

The main idea behind the achievability scheme is simple.
We utilize the fact that the network has interference, and
purposefully, and in a structured way, create interference
for each relay node from its next hop neighbor while it
simultaneously receives the signal containing the confidential
message from its previous hop neighbor. Each relay is able
to remove the channel noise from its received signal, which
alleviates the degradation in rate due to noise accumulation
over the hops, but cannot separate the confidential message
from the structured interference.

The coding scheme is composed of two parts: an inner
code using nested lattices and an outer code which uses a
stochastic encoder. Figure 3 is an example with only one
relay node that illustrates this architecture. The encoder of
the inner code takes inputs as sequence of lattice points and
computes the lattice points to transmit in the next phase
based on the rule in Section VI-A. The relay nodes and
the destination node receives a superposition of the signals
transmitted by its neighbor and decodes the modulus sum of
the lattice points contained in the received signals. Each node
then either forwards the decoded lattice points or transmits
jamming signals according to the protocol in Section VI-B
and Section VI-C.

The outer code is also essential to provide the stated
secrecy rate. The signals received by each relay node is a
superposition, i.e., real sum -not the modulo sum- of two N-
dimensional vectors transmitted by its two neighbors. Thus,
Lemma 1 does not hold and there will still be some infor-
mation leaked to the relay node from the signals it receives.
The outer code, which is a random binning scheme [5], is
used to eliminate this leakage. This outer code, which we
shall describe in Section VII, uses a stochastic encoder which
provides sufficient randomness to confuse the eavesdropper.
In the next two sections, we describe the details of the inner
code and the outer code.
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Fig. 3. Overview of the coding scheme. Assume we have only one relay
node. (a) Outer code at node 0, which uses a stochastic encoder. Its output
is encoded with the inner code and transmitted over multiple blocks. (b) One
block of channel use. (c) Multiple blocks of channel use. The label denotes
the lattice points transmitted by each node. ti, Ji are lattice points. ⊕ denotes
the modulus sum operation over the lattice codebook.

VI. INNER CODE

In this section, we describe the inner code, which includes
physical layer network coding, structured interference, and
careful scheduling of transmissions. The coding scheme is
summarized in Table II.

A. The Source Node

In each phase, the signals transmitted by the source node
takes the form:

tN ⊕ JN ⊕ dN (17)

where dN is the dithering vector, tN and JN are lattice points
from the nested lattice codebook. tN and JN are determined
as follows:
1) In the first phase within a block during which the source
node transmits, tN = 0. JN is chosen randomly from the
nested lattice codebook according to a uniform distribution.
2) Otherwise, tN is chosen by an stochastic encoder, which
will be described in Section VII. JN is chosen to be the
output of the lattice decoder [22] whose inputs are the signals
received by the source node during the previous phase.

B. The Relay Node

Within each phase, the relay node labeled by k in Figure 1
transmits signals in the form of

tNk ⊕ dNk , k = 2, ...,K − 1 (18)

where dNk is the dithering vector. tNk is a lattice point chosen
as follows:
1) If this is the first phase the relay transmits during this block,
then tNk is drawn from a uniform distribution over the nested
lattice codebook. This tNk does not convey any information, but
is transmitted with the sole aim of jamming the neighboring
eavesdropper (relay).
2) Otherwise, tNk depends on the signal the relay receives
during the previous phase, as we will explain shortly, and is
expressed in (19).

The signals received by the relay within a block can be
categorized into the following three cases. Let zN denote the
Gaussian channel noise. Let tNA , tNB denote lattice points, and
dNA , dNB denote the dithering vectors.
1) If this is the first phase during which the relay receives
signals during this block, then the received signal takes the
form (tNA ⊕ dNA ) + zN . It only contains interference from its
left neighbor. This is because, as noted earlier, a block starts
one phase earlier at a node compared to its right.
2) Similarly, if this is the last phase the relay receives signals
during this block, then the received signal takes the form (tNB⊕
dNB )+zN . It only contains interference from its right neighbor,
since a block ends one phase earlier at a node compared to
the node to its right. In this case, the block terminates and the
relay does not transmit signals in the ensuing phases until a
new block starts.
3) Otherwise the signals received by the relay take the form
yNk = (tNA ⊕ dNA ) + (tNB ⊕ dNB ) + zN , which contains the
superposition of signals from its left and right neighbors.

We next explain how the relay computes tNk in (18) in
ensuing phases within a block.

Observe that, the signals received by the relay falls into
the category of case 3) described above. Since the rate of
the nested lattice codebook is chosen according to (14) in
Theorem 1, for case 3), the relay, with the knowledge of
dNA , dNB , will be able to decode tNA ⊕ tNB reliably using the
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lattice decoder in [25]. We use t̂N to denote the decoder
output.

Let the signal transmitted by the relay node during the
previous phase be x′N ⊕ d′Nk , where x′N is a point from the
nested lattice code book and d′Nk be the dithering vector. Then
tNk in (18) is computed as follows:

tNk = t̂N ⊕ (−x′N ). (19)

Here − is the inverse operation defined over the abelian group
V(Λc) ∩ Λf .

C. The Destination

1) Transmitter: The destination can be viewed as a relay
node without a neighbor to its right hence it must simulate
its effect when computing its transmitted signals. The signals
it transmitted still takes the form (18). Like a relay node,
the destination transmits a random lattice point during the
first phase in a block. In the ensuing phase, one by one,
the destination recovers tN in (17) as described in the next
section: Section VI-C2. Let t′N be the modulus sum of the
tN s it has recovered so far in this block. Then the lattice point
transmitted by the destination is given by:

t′N ⊕ JN (20)

where JN is a lattice point randomly chosen from the lattice
codebook according to a uniform distribution. It can be veri-
fied from Figure 2 that this is the lattice point the destination
would transmit if it had a neighbor to its right.

2) Decoder: The decoder at the destination wishes to
recover tN in (17), i.e., the lattice point transmitted by the
source node.

Since the destination node does not have a right neighbor,
the signals it receives during one phase, i.e., N channel uses,
always take the form

Y N = (tNA ⊕ dNA ) + zN (21)

where tNA ∈ Λf , dNA is the dithering vector and zN is the
channel noise. The decoder then obtains the output t̂N using
the lattice decoder in [25].

The decoder at the destination starts producing outputs at
the end of the second phase in a block, in a way similar to the
relay node: Let the signal transmitted by the destination node
during the previous phase be x′N ⊕d′Nk , where x′N is a point
from the nested lattice code book and d′Nk be the dithering
vector. Then the decoder outputs:

t̂N ⊕ (−x′N ) (22)

By this operation, the destination subtracts the interference
caused by itself to their left neighbor. Hence the only remain-
ing lattice point observable from the output of the decoder
at the destination is the one transmitted by the source node,
which, with the rate chosen, the destination is able to decode
reliably.

VII. OUTER CODE

The stochastic encoder of the outer code uses a random
binning scheme proposed in [5]: Let Q denote the number
of nested lattice points transmitted in a block. Then, the
codebook used by the encoder is composed of independent and
identically distributed (i.i.d.) sequences whose components are
sampled from a uniform distribution by a Q-fold Cartesian
product of the nested lattice codes. These sequences are then
randomly binned into bins of equal size. The size of the bin is
determined by the entropy of the secret message conditioned
on the observation of the eavesdropper, i.e., the equivocation
[5], which we shall compute in Section VIII. The encoder
determines which bin to use based on the value of the secret
message, and outputs a codeword randomly chosen from that
bin, which, in this work, corresponds to a sequence of lattice
points. These lattice points then form tN in (17), that is used to
compute the signals transmitted by the source node in different
phases.

As shown in Section VI-C2, at the destination, with high
probability, the decoder can recover this sequence of lattice
points, i.e., the codeword in the wiretap codebook transmitted
by the source node. The destination then produces the value
of the message corresponds to the bin that contains the code-
word in the wiretap codebook, which equals the confidential
message transmitted by the source node.

We next compute the equivocation, and prove the secrecy
rate claimed in Theorem 2.

VIII. SECRECY RATE

A. Supporting Results

We have seen that Lemma 1 is not sufficient to guarantee
secrecy since the signals received by the relay node is not
modulus sum of lattice points transmitted by its neighbors.

To overcome this difficulty, we use the following represen-
tation theorem from [23] and “genie bound” from [27].

Theorem 3: [23] Let uN
1 , uN

2 , ..., uN
K be K vectors taken

from V(Λc). There exists an integer T , such that 1 ≤ T ≤
KN , and

K∑
k=1

uN
k is uniquely determined by {T,

K∑
k=1

uN
k mod

Λc}.
Lemma 2: [27] For random variables A and B, and dis-

crete random variable T , we have H (A|B, T ) ≥ H (A|B) −
H (T ).
Let XN

1 , XN
2 be defined as in (13). Using Lemma 2 and

Theorem 3, when eavesdropper observes XN
1 + XN

2 and has
side information dN1 , dN2 , we can write [23]:

H
(
tN1 |XN

1 + XN
2 , dN1 , dN2

)
(23)

=H
(
tN1 |

(
XN

1 + XN
2

)
mod Λc, T, d

N
1 , dN2

)
(24)

=H
(
tN1 |

(
tN1 + tN2

)
mod Λc, T, d

N
1 , dN2

)
(25)

≥H
(
tN1 |

(
tN1 + tN2

)
mod Λc, d

N
1 , dN2

)
−H (T ) (26)

=H
(
tN1

)
−H (T ) ≥ H

(
tN1

)
−N (27)

In (25), we use Theorem 3 for K = 2. In (26), we apply
Lemma 2. In (27) we use Lemma 1. From (23)-(27), it follows
that

lim
N→∞

1

N
I
(
tN1 ;XN

1 + XN
2 , dN1 , dN2

)
≤ 1 (28)
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Fig. 4. Notations for lattice points transmitted over different edges. The
number of lattice points sent by the wiretap encoder within a block, Q = 2.

This means that the information leaked to the eavesdropper
regarding the value of tN1 cannot exceed 1 bit per channel use
[23], which can be eliminated using the stochastic encoder
described in Section VII.

As we shall see in Section VIII-B, since the message is
transmitted over multiple hops and the network has cycles,
the eavesdropper at a certain relay node may receive more
than one set of signals with the form XN

1 +XN
2 and the final

expression we shall use to compute the secrecy rate will be
more complicated than given in (23). However, as we shall
see shortly, the steps we use to compute the secrecy rate are
similar to (23)-(27).

B. Secrecy Rate Calculation

Given that there are Q lattice points from the wiretap en-
coder sent out during a block, we observe, from Section VI-A,
that the source transmits during Q+ 1 phases within a block.
Each relay node receives signals during Q + 2 phases within
the block. The one additional phase is caused by transmission
from its right neighbor, where a block terminates one phase
later. Then each relay node has the following side information
regarding the source input within one block:
i) the signals received during Q + 2 phases.
ii) the dithering vectors {dk,i} for the kth node and the ith
phases, k = 0, ...,K − 1, i = 1...Q + 2.
iii) the signals transmitted from the relay node during this
block. Note that only signals it transmitted during the first
phase may provide information because all subsequent trans-
mitted signals are computed from signals received in the
phases before them and the corresponding dithering vectors.

Recall that W is the secret message. Assume that the
transmission spans over M blocks. Let tNk,i and dNk,i be the
lattice point and dithering vector respectively used by the kth
node’s transmitter during the ith phase. Similarly, Let tNM

k,i

and dNM
k,i be these signals used by the kth node during the ith

phase in each block of the M blocks. The superscript shows
the dimension of each signal. Then for the kth relay node, the
equivocation can be written as:

Hk =
1

NM
H(W |tNM

k,1 ⊕ dNM
k,1 + zNM

1 , dNM
k,1 ,

tNM
k−1,i ⊕ dNM

k−1,i + tNM
k+1,i−1 ⊕ dNM

k+1,i−1 + zNM
i ,

dNM
k−1,i, d

NM
k+1,i−1, i = 2, ..., Q + 1,

tNM
k+1,Q+1 ⊕ dNM

k+1,Q+1 + zNM
Q+2, d

NM
k+1,Q+1,

tNM
k,1 , dNM

k,1 ) (29)

where on the condition term of the entropy expression, the
first line represents the signals received during the first phase
in M blocks and the corresponding dithering vector. The
second line represents these signals received during phases
2, ..., Q + 1 . The third line is for phase Q + 2. The last
line is the lattice point transmitted by the kth relay node in
the first phase and the corresponding dithering vectors. These
terms are demonstrated in Figure 4 for Q = 2 for the reader’s
convenience. The value of tNk,i depends on the outputs of the
lattice decoder and hence is subject to channel noise. tNk,i is
in error if it deviates from the correct value observed when
the same network coding scheme is used in a noiseless line
network. Then we can define the block error probability P̄e

as

Pr(∃i ∈ {2, ..., Q + 1},
s.t. tNk−1,i is in error, or tNk+1,i−1 is in error,

or tNk+1,Q+1 is in error.) (30)

The lattice decoder of the kth node is in error if its output
does not equal the ⊕-sum of the lattice points in its incoming
edges. Then we can define Pe(k, i) as the probability of
decoding error of the lattice decoder from [25] used by the
kth node during ith phase. With these definitions, P̄e is related
to Pe(i, k) as

P̄e ≤ 1−
∏
k,i

(1 − Pe(k, i)) (31)

where the subscript in the product includes the indices of all
the relay nodes and the indices of all the phases within one
block. According to [25] and stated in Theorem 1, Pe(k, i)
decreases to 0 exponentially fast with respect to N . Hence
for any given block that spans over Q + 2 phases, we have
limN→∞ P̄e = 0.

We define the error-free equivocation as

H̄k =
1

NM
H(W |tNM

k,1 ⊕ dNM
k,1 + zNM

1 , dNM
k,1 ,

t̄NM
k−1,i ⊕ dNM

k−1,i + t̄NM
k+1,i−1 ⊕ dNM

k+1,i−1 + zNM
i ,

dNM
k−1,i, d

NM
k+1,i−1, i = 2, ..., Q + 1,

t̄NM
k+1,Q+1 ⊕ dNM

k+1,Q+1 + zNM
Q+2, d

NM
k+1,Q+1,

tNM
k,1 , dNM

k,1 ) (32)

where t̄NM
k,i corresponds to the value of tNM

k,i in a noise-free
network. Then we have the following lemma:

Lemma 3: For a given Q,

H̄k + ε2 ≥ Hk ≥ H̄k − ε1 (33)
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where εi, i = 1, 2 go to 0 as N,M → ∞.
Proof: The proof is provided in Appendix A.

Remark 5: The proof of Lemma 3 uses the condition that
the error probability of all the lattice decoders decreases
exponentially fast with respect to the lattice dimension N .
If this condition holds, Lemma 3 claims that if a particular
equivocation value is achievable for the kth relay node with
all the other nodes producing the correct values as observed
in a noise-free line network, then the same equivocation value
is achievable in a Gaussian noisy line network.

Lemma 4: H̄k is the same for all relay nodes.
Proof: The proof is provided in Appendix B.

With this lemma, we can drop the subscript k and write H̄k

as H̄. After these preparations, we are now ready to compute
the secrecy rate.

Proof of Theorem 2: According to Lemma 3 and
Lemma 4, it is sufficient to compute H̄k for one relay node.
We focus on one block of channel uses as shown in Figure 4.
Let V (j) to denote the condition term in H̄k. We start by lower
bounding H(tNQ

0 |V (j)), where tNQ
0 are the lattice points

transmitted by the source node as described in Section VI-A
within this block. Then H(tNQ

0 |V (j)) can be written as:

H(tNQ
0 |V (j)) = H(tNQ

0 |(t̄Nk−1,i ⊕ dNk−1,i)+

(t̄Nk+1,i−1 ⊕ dNk+1,i−1) + zNi ,

dNk−1,i, d
N
k+1,i−1,i = 2, ..., Q + 1, tNk,1, d

N
k,1) (34)

Comparing (34) with the condition terms in (32), we see that
we have removed the signals received during the first and
the last phase within a block from the condition terms. This
is because these signals are independent from all the other
signals on the condition terms and tNQ

0 :
1) The lattice point contained in the signals received during

the last phase is given in (74). It is randomly chosen by the
left neighbor of the relay node which is ignored by the relay
node and hence never propagates to its right neighbor.

2) The lattice point contained in the signals received during
the last phase is given in (75). Note that it includes a fresh
lattice point JN

k+Q, which has never been observed by the relay
node before in its previous phases. The independence from the
other terms hence follows from Lemma 1.

We then assume that there is a genie which reveals the
channel noise zN to the eavesdropper residing at the relay
node. This means that (34) can be lower bounded by:

H(tNQ
0 |(t̄Nk−1,i ⊕ dNk−1,i)+

(t̄Nk+1,i−1 ⊕ dNk+1,i−1), d
N
k−1,i, d

N
k+1,i−1,

i = 2, ..., Q + 1, tNk,1, d
N
k,1) (35)

Next, we reuse the steps described earlier in (23)-(27). We
first use Theorem 3 and lower bound (35) as:

H(tNQ
0 |t̄Nk−1,i ⊕ dNk−1,i ⊕ t̄Nk+1,i−1 ⊕ dNk+1,i−1, Ti,

dNk−1,i, d
N
k+1,i−1, i = 2, ..., Q + 1, tNk,1, d

N
k,1) (36)

where Ti is the integer in Theorem 3 and can be represented
with N bits. We then apply the genie lower bound in Lemma
2 to (36) and find that it is lower bounded by:

H(tNQ
0 |t̄Nk−1,i ⊕ dNk−1,i ⊕ t̄Nk+1,i−1 ⊕ dNk+1,i−1,

dNk−1,i, d
N
k+1,i−1, i = 2, ..., Q + 1, tNk,1, d

N
k,1)

−H(Ti, i = 2, ..., Q + 1) (37)

=H(tNQ
0 |t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., Q + 1, tNk,1)

−H(Ti, i = 2, ..., Q + 1) (38)

For the first term in (38), we have

H(tNQ
0 |t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., Q + 1, tNk,1) = H(tNQ

0 )
(39)

This is because, as shown in (74)-(75), t̄Nk+1,i−1 contains
JN
k+i−1, which is a new lattice point not contained in previous

t̄Nk−1,j or t̄Nk+1,j−1, 2 ≤ j < i. Hence t̄Nk−1,i⊕ t̄Nk+1,i−1 can be
expressed as UN

i ⊕ JN
k+i−1, where UN

i = t̄Nk−1,i ⊕ t̄Nk+1,i−1 ⊕
(−JN

k+i−1) is independent from JN
k+i−1. Then, we have

I
(
tNQ
0 ; t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., Q + 1, tNk,1

)
(40)

=

Q+1∑
j=2

{
I(tNQ

0 ; t̄Nk−1,j ⊕ t̄Nk+1,j−1|
t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., j − 1, tNk,1)

}
(41)

≤
Q+1∑
j=2

{
I(tNQ

0 , UN
j ; t̄Nk−1,j ⊕ t̄Nk+1,j−1|

t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., j − 1, tNk,1)

}
(42)

=

Q+1∑
j=2

⎧⎪⎪⎨
⎪⎪⎩

I(tNQ
0 ; t̄Nk−1,j ⊕ t̄Nk+1,j−1|
UN
j , t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., j − 1, tNk,1)

+I(UN
j ; t̄Nk−1,j ⊕ t̄Nk+1,j−1|

t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., j − 1, tNk,1)

⎫⎪⎪⎬
⎪⎪⎭

(43)

=

Q+1∑
j=2

⎧⎪⎪⎨
⎪⎪⎩

I(tNQ
0 ; JN

k+j−1|
UN
j , t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., j − 1, tNk,1)

+I(UN
j ; t̄Nk−1,j ⊕ t̄Nk+1,j−1|

t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., j − 1, tNk,1)

⎫⎪⎪⎬
⎪⎪⎭

(44)

=

Q+1∑
j=2

{
I(UN

j ; t̄Nk−1,j ⊕ t̄Nk+1,j−1|
t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., j − 1, tNk,1)

}

=

Q+1∑
j=2

{
I(UN

j ;UN
j ⊕ JN

k+j−1|
t̄Nk−1,i ⊕ t̄Nk+1,i−1, i = 2, ..., j − 1, tNk,1)

}

≤
Q+1∑
j=2

I
(
UN
j ;UN

j ⊕ JN
k+j−1

)
= 0 (45)

The first term in (44) is 0 because JN
k+j−1 is independent from

everything else in that term. (45) follows from Lemma 1.
Applying (39) to (38), we find that (38) equals H(tNQ

0 ) −
H(Ti, i = 2, ..., Q + 1). Hence we have proved

I(tNQ
0 ;V (j)) ≤ H(Ti, i = 2, ..., Q + 1) (46)

By Theorem 3, Ti can take at most 2N values. Hence
H(Ti, i = 2, ..., Q + 1) < NQ. Define

c =
1

NQ
I(tNQ

0 ;V (j)) (47)

Then from (46), we have 0 ≤ c ≤ 1.
We next describe the wiretap encoder, which will perform

coding across M blocks. The codebook is constructed as
follows: The codebook contains 2�MNQRL� codewords. Each
codeword is a length MQ sequence. Each component of the
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sequence is an N -dimensional lattice point sampled in an
i.i.d. fashion from the uniform distribution over the nested
lattice codebook with rate RL. The codebook is then randomly
binned into several bins, each of which contains 2�MNQc�

codewords, with c given by (47).
Each block has 2(Q+ 1) phases, which equals 2(Q+ 1)N

channel uses. We also use an additional phase to separate dif-
ferent blocks. Hence transmitting a codeword from a wiretap
codebook takes (2Q+3)NM channel uses. Therefore the rate
of the codebook is given by:

lim
M→∞

1

MNQ
H (W ) =

Q

2Q + 3
(RL − c) (48)

The transmitted codeword is chosen as described in Sec-
tion VII. Let this codeword be uMNQ. Let V = {V (j), j =
1...M}. Then, we have:

H̄ =H (W |V ) (49)

=H
(
W |uMNQ, V

)
+ H

(
uMNQ|V

)
−H

(
uMNQ|W,V

)
(50)

≥H
(
uMNQ|V

)
−MNQε (51)

=H
(
uMNQ

)
− I

(
uMNQ;V

)
−MNQε (52)

≥H
(
uMNQ

)
−

M∑
j=1

I
(
uMNQ(j);V (j)

)
−MNQε (53)

=H
(
uMNQ

)
−MNQc−MNQε (54)

In (51), we use the fact that H
(
uMNQ|W,V

)
≤ MNQε,

where ε > 0 and limM→∞ ε = 0. This is because the size
of the bin in the codebook is chosen according to the rate
of information leaked to the eavesdropper. Hence given W ,
the bin index and V , with high probability the eavesdropper
can determine the codeword that was transmitted. (51) fol-
lows from Fano’s inequality. (53) is because, as explained in
Section VII, if a block is viewed as one big channel use, the
channel is memoryless.

Dividing (49) and (54) by MNQ and letting M → ∞, we
have

lim
M→∞

1

MNQ
H̄ = lim

M→∞
1

MNQ
H(W ) =

Q

2Q + 3
(RL − c)

(55)

Therefore a secrecy rate of RL − c bits per channel use is
achieved. Then, according to Lemma 3, we can replace H̄
with H and write:

lim
N,M→∞

1

MNQ
H = lim

N,M→∞
1

MNQ
H(W )

=
Q

2Q + 3
(RL − c) (56)

Next we use Theorem 1, which states RL can be made
arbitrarily close to C(P − 0.5) as N → ∞, where P is the
average power per channel use to transmit a lattice point. For
a given node, during 2Q+3 phases, it only transmits in Q+1
phases. Hence we can choose RL to be arbitrarily close to

Q
2Q+3 (C(2Q+3

Q+1 P̄ − 0.5)). Taking the limit Q → ∞, we find
that a secrecy rate of max{ 1

2 (C(2P̄ − 0.5) − c), 0} bits per
channel use is achievable.

Finally, we can always set part of the bin index to be random
bits. This is equivalent to increasing the size of the bin in the

wiretap codebook. Since we know that minimum size of the
bin is 2�MNQc� codewords, where 0 ≤ c ≤ 1, we can use a
bin size of 2�MNQ�. The achievable secrecy rate then becomes
max{ 1

2 (C(2P̄ − 0.5) − 1), 0}, which is the result claimed in
Theorem 2.

IX. CONCLUSION

In this work, we have considered a source destination pair
which can communicate only over a chain of untrusted relay
nodes, and showed that, information theoretically secure end-
to-end communication is possible via a careful joint use of
wiretap codes, lattice codes, and a network coding scheme. We
have proved that this achievable secrecy rate is independent
of the number of hops, and incurs only a modest penalty as
compared to the case where no secrecy constraint is present.
We conclude by noting that construction of channel codes for
secure communication is needed for bringing these theoretical
findings into practical communication networks.

APPENDIX A
PROOF OF LEMMA 3

Let cj , ĉj denote the part of signals received by the kth
relay node within the jth block excluding the first and the last
phase. More specifically, this means:

ĉj = {tNk−1,i(j) ⊕ dNk−1,i(j)+

tNk+1,i−1(j) ⊕ dNk+1,i−1(j) + zNi (j), i = 2, ..., Q + 1}
(57)

cj = {t̄Nk−1,i(j) ⊕ dNk−1,i(j)+

t̄Nk+1,i−1(j) ⊕ dNk+1,i−1(j) + zNi (j), i = 2, ..., Q + 1}
(58)

The signals received during the first phase of a block do not
undergo any decoding operation and hence have the same
expression in Hk and H̄k. The signals received during the
last block can be written as:

f̂ j = (tNk+1,Q+1(j) ⊕ dNk+1,Q+1(j)) + zNQ+2(j) (59)

f j = (t̄Nk+1,Q+1(j) ⊕ dNk+1,Q+1(j)) + zNQ+2(j) (60)

The block index (j) will be omitted in the following discussion
for clarity.

We first prove that cj− ĉj is a discrete random variable with
a finite support. According to (58), cj− ĉj has Q components.
Each component can be expressed as(

t̄Nk−1,i ⊕ dNk−1,i

)
−
(
tNk−1,i ⊕ dNk−1,i

)
+ (t̄Nk+1,i−1 ⊕ dNk+1,i−1) − (tNk+1,i−1 ⊕ dNk+1,i−1) (61)

For the two terms of (61) we have(
t̄Nk−1,i ⊕ dNk−1,i

)
−
(
tNk−1,i ⊕ dNk−1,i

)
(62)

=t̄Nk−1,i + dNk−1,i + xN
1 −

(
tNk−1,i + dNk−1,i + xN

2

)
(63)

=t̄Nk−1,i − tNk−1,i + xN
1 − xN

2 (64)

where xN
1 , xN

2 ∈ Λc. From Theorem 3, we notice that xN
1

and xN
2 each has at most 2N possible solutions. t̄Nk−1,i and

tNk−1,i each take ‖V(Λc) ∩ Λf‖ possible values. Recall that
RL, as defined in (12), is the rate of the nested lattice
codebook. Then (62) takes at most 22N(RL+1) possible values.
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Similarly, we can prove that the last two terms in (61)
has at most 22N(RL+1) possible values as well. Therefore
cj − ĉj takes at most 24NQ(RL+1) possible values. Therefore
H

(
cj − ĉj

)
≤ 4NQ(RL + 1). Similarly, it can be shown that

f j − f̂ j takes at most 22N(RL+1) values.
Define Ej as a binary random variable such that Ej = 1

if cj �= ĉj or f j �= f̂ j . Otherwise Ej = 0. Then Pr(Ej = 1)
is the block error probability P̄e defined in (30). Also, since
cj − ĉj , f j − f̂ j takes at most (4Q + 2)N(RL + 1) different
values, we have:

H(cj − ĉj , f j − f̂ j|Ej = 1) ≤ (4Q + 2)N(RL + 1) ∀j
(65)

Let c = {cj}, ĉ = {ĉj}, f = {f j} and f̂ = {f̂ j},
j = 1, ...,M . Let b denote the other conditioning terms that
appears both in Hk and H̄k. Then we have

MNHk =H(W |b, ĉ, f̂) ≥ H(W |b, c, ĉ, f, f̂) (66)

=H(W |b, c, f, c− ĉ, f − f̂) (67)

=H(W |b, c, f) + H(c− ĉ, f − f̂ |W, b, c, f)

−H(c− ĉ, f − f̂ |b, c, f) (68)

≥H(W |b, c, f) −H(c− ĉ, f − f̂) (69)

≥H(W |b, c, f) −
M∑
j=1

H(cj − ĉj , f j − f̂ j) (70)

=H(W |b, c, f)−
M∑
j=1

H(cj − ĉj , f j − f̂ j, Ej)

(71)

=H(W |b, c, f)−
M∑
j=1

H(Ej)

−
M∑
j=1

Pr(Ej = 1)H(cj − ĉj , f j − f̂ j |Ej = 1)

(72)

≥H(W |b, c, f) −M −MP̄e(4Q + 2)N(RL + 1)
(73)

By dividing NM on both sides and letting N,M → ∞, and
ε1 = 1/N + P̄e(4Q + 2)(RL + 1), we get Hk ≥ H̄k − ε1.
Similarly we can prove H̄k ≥ Hk − ε2.

APPENDIX B
PROOF OF LEMMA 4

The lemma follows because relay nodes receive statistically
equivalent signals if there are no decoding errors. As we show
in Section VI, the lattice point transmitted by the kth node
during the first phase in a block, here denoted by JNM

k ,
is randomly selected and independent from any previously
received signals. Hence, JNM

k = tNM
k,1 . Let t̄NM

j denote lattice
points generated by the wiretap encoder at the source node.

Then, for the kth relay node, the lattice points on the
condition term of H̄k in (32) are related to t̄NM

j as follows:

tNM
k−1,1 = JNM

k−1 , t̄NM
k−1,t = (

t−2∑
j=0

t̄NM
j ) ⊕ JNM

k+t−2,

t = 2, ..., Q + 1 (74)

t̄NM
k+1,1 = JNM

k+1 , t̄NM
k+1,t = (

t−2∑
j=0

t̄NM
j ) ⊕ JNM

k+t ,

t = 2, ..., Q + 1 (75)

An example is provided in Figure 2 where we label each edge
with the lattice point transmitted on this edge. The case for
arbitrary k can be easily proved by induction.

From (74)-(75), given the lattice points from the wiretap
encoder at the source, i.e., t̄NM

j , the joint distribution of the
condition terms on Hk is the same for any k. Hence we have
the lemma.

REFERENCES

[1] R. Liu and W. Trappe, Securing Wireless Communications at the
Physical Layer. Springer, 2009.

[2] C. E. Shannon, “Communication theory of secrecy systems,” Bell System
Technical J., vol. 28, no. 4, pp. 656–715, Sep. 1949.

[3] A. D. Wyner, “The wire-tap channel,” Bell System Technical J., vol. 54,
no. 8, pp. 1355–1387, 1975.

[4] S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap chan-
nel,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, July 1978.

[5] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, May 1978.

[6] E. Tekin and A. Yener, “The general Gaussian multiple access and two-
way wire-tap channels: achievable rates and cooperative jamming,” IEEE
Trans. Inf. Theory, vol. 54, no. 6, pp. 2735–2751, June 2008.

[7] R. Liu, I. Maric, P. Spasojevic, and R. D. Yates, “Discrete memoryless
interference and broadcast channels with confidential messages: secrecy
rate regions,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2493–2507,
June 2008.

[8] L. Lai and H. El Gamal, “Cooperation for secrecy: the relay-
eavesdropper channel,” IEEE Trans. Inf. Theory, vol. 54, no. 9, pp.
4005–4019, Sep. 2008.

[9] E. Ekrem and S. Ulukus, “The secrecy capacity region of the Gaussian
MIMO multi-receiver wiretap channel,” IEEE Trans. Inf. Theory, vol. 57,
no. 4, pp. 2083–2114, Apr. 2011.

[10] N. Cai and R. W. Yeung, “Secure network coding,” in 2002 IEEE
International Symposium on Information Theory.

[11] D. Silva and F. R. Kschischang, “Universal secure network coding via
rank-metric codes,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 1124–
1135, 2011.

[12] L. Lima, M. Medard, and J. Barros, “Random linear network coding:
a free cipher?” in 2007 IEEE International Symposium on Information
Theory.

[13] A. Mills, B. Smith, T. Clancy, E. Soljanin, and S. Vishwanath, “On
secure communication over wireless erasure networks,” in 2008 IEEE
International Symposium on Information Theory.

[14] M. Sikora, J. N. Laneman, M. Haenggi, D. J. Costello, and T. E. Fuja,
“Bandwidth-and power-efficient routing in linear wireless networks,”
IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2624–2633, 2006.

[15] Y. Oohama, “Coding for relay channels with confidential messages,” in
2001 Information Theory Workshop.

[16] X. He and A. Yener, “Cooperation with an untrusted relay: a secrecy
perspective,” IEEE Trans. Inf. Theory, vol. 56, no. 8, pp. 3801–3827,
Aug. 2010.

[17] ——, “Two-hop secure communication using an untrusted relay,”
Eurasip J. Wireless Commun. and Networking, vol. vol. 2009, Article
ID 305146, 13 pages, 2009, doi:10.1155/2009/305146.

[18] ——, “The role of feedback in two-way secure communication,”
submitted to IEEE Trans. Inf. Theory, Nov., 2009. Available:
http://arxiv.org/abs/0911.4432, revised May, 2012.

[19] ——, “Strong secrecy and reliable Byzantine detection in the presence
of an untrusted relay,” to appear in IEEE Trans. Inf. Theory, submitted
in March, 2010. Available: http://arxiv.org/abs/1004.1423.

[20] B. Nazer and M. Gastpar, “The case for structured random codes in
network capacity theorems,” European Trans. Telecommun., vol. 19,
no. 4, pp. 455–474, June 2008.

[21] B. Nazer and M. Gastpar, “Compute-and-forward: harnessing interfer-
ence through structured codes,” IEEE Trans. Inf. Theory, vol. 57, no. 1,
pp. 6463–6486, Oct. 2011.



HE et al.: END-TO-END SECURE MULTI-HOP COMMUNICATION WITH UNTRUSTED RELAYS 11

[22] U. Erez and R. Zamir, “Achieving 1/2 log (1+ SNR) on the AWGN
channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, no. 10, pp. 2293–2314, Oct. 2004.

[23] X. He and A. Yener, “Providing secrecy with structured codes:
tools and applications to Gaussian two-user channels,” submitted to
IEEE Trans. Information Theory, July, 2009, in revision. Available:
http://arxiv.org/abs/0907.5388.

[24] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, 2006.

[25] M. P. Wilson, K. Narayanan, H. Pfister, and A. Sprintson, “Joint physical
layer coding and network coding for bi-directional relaying,” IEEE
Trans. Inf. Theory, vol. 56, no. 11, pp. 5641–5654, Nov. 2010.

[26] L. Lai, H. El Gamal, and H. V. Poor, “The wiretap channel with
feedback: encryption over the channel,” IEEE Trans. Inf. Theory, vol. 54,
no. 11, pp. 5059–5067, Nov. 2008.

[27] S. A. Jafar, “Capacity with causal and non-causal side information: a
unified view,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5468–5475,
Dec. 2006.

Xiang He (S’08, M’10) received B.S. and M.S.
degrees in Electrical Engineering from Shanghai
Jiao Tong University, Shanghai, China in 2003 and
2006 respectively. His master study is about high
speed FPGA implementation of channel encoder,
decoder and MIMO detectors. He received his Ph.D.
degree in 2010 from the Department of Electrical
Engineering at the Pennsylvania State University
and joined Microsoft in the that year. In 2010, he
received Melvin P. Bloom Memorial Outstanding
Doctoral Research Award from the Department of

Electrical Engineering at the Pennsylvania State University and the best paper
award from the Communication Theory Symposium in IEEE International
Conference on Communications (ICC). In 2011, he was named as one
of the exemplary reviewers by IEEE Communication Letters. His research
interests include information theoretic secrecy, coding theory, queuing theory,
optimization techniques, distributed detection and estimation.

Aylin Yener (S’91, M’00) received two B.Sc. de-
grees, with honors, in Electrical and Electronics En-
gineering, and in Physics, from Boğaziçi University,
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