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MIMO Wiretap Channels with Unknown and
Varying Eavesdropper Channel States
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Abstract—In this work, a class of information theoretic secrecy
problems is addressed where the eavesdropper channel state
is completely unknown to the legitimate parties. In particular,
a Gaussian MIMO wiretap channel is considered where the
eavesdropper channel state can vary from one channel use to
the next, and the overall channel state sequence is known only
to the eavesdropper. When the eavesdropper has fewer antennas
than the transmitter and its intended receiver, a positive secrecy
rate in the sense of strong secrecy is proved to be achievable
and shown to match with the converse in secure degrees of
freedom. This yields the conclusion that secure communication
is possible regardless of the location or the channel states of
the eavesdropper. Additionally, it is observed that, the present
setting renders the secrecy capacity problems for some multi-
terminal wiretap-type channels more tractable as compared to
the case with full or partial knowledge of eavesdropper channel
states. To demonstrate this observation, secure degrees of freedom
regions are derived for the Gaussian MIMO multiple access
wiretap channel (MIMO MAC-WT) and the two-user Gaussian
MIMO broadcast wiretap channel (MIMO BC-WT) where the
transmitter(s) and the intended receiver(s) have the same number
of antennas.

Index Terms—Information theoretic secrecy, MIMO wiretap
channel, MIMO MAC wiretap channel, MIMO BC wiretap chan-
nel, strong secrecy, eavesdroppers with unknown and varying
channel gains.

I. INTRODUCTION

Information theoretic secrecy dates back to the seminal work
by Shannon [1], where it was shown that if the eavesdropper
had perfect knowledge of the signals sent by the transmitter
and had unbounded computational power, for perfect secrecy,
the transmitter and the receiver would have to share a key
whose rate equals that of the data.

Wyner, in [2], found that Shannon’s result was overly
pessimistic, and showed that for the wiretap channel, where the
eavesdropper had a noisy observation of the signals sent by the
transmitter, a positive rate could be supported for transmitting
confidential messages without requiring the communicating
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parties to share a key. The model was generalized by Csiszár
and Körner in [3].

The wiretap channel model in [2]–[4] has inspired consid-
erable effort toward identifying secure communication limits
of various channel models, e.g. [5]–[16]. In these works, it is
assumed that the transmitter(s) has (have) perfect knowledge
of the eavesdropper channel states, which may be difficult
to obtain in a practical system, since the eavesdropper is by
nature a passive entity. To resolve this issue, recent works
attempt to relax this condition by assuming the transmitter only
has partial knowledge about the channel states of the eaves-
dropper. Notably, this line of work includes the compound
setting, where the eavesdropper channel can only be taken
from a finite selection [17]–[20], and the fading channel, where
the transmitter only knows the distribution of the eavesdropper
channel [21]. These each call for different types of codebook
design. For example, in [17]–[19], the coding scheme depends
on the possible channel gains of the eavesdropper included
in the finite set. For the fading setting [21], the duration of
communication needs to be able to accommodate a sufficient
number of channel uses to ensure that the ergodicity assump-
tion is valid. In addition, the rate of the codebook depends on
the fading parameter of the eavesdropper, e.g., the variance
of the Rayleigh distribution, and thus needs to be acquired,
which may be difficult to do with a passive but malicious
entity. Given the absence of a robustness analysis toward
understanding how sensitive the achievable secrecy rate is to
errors in the aforementioned modeling parameters in [17]–
[19], [21], it is difficult to ascertain how close these can model
a realistic secure system design based on information theoretic
guarantees.

The case where the eavesdropper’s location is not perfectly
known was also considered in the context of network coding
[22], [23]. In [22], the eavesdropper is assumed to monitor no
more than K edges in a network, while the locations of these
edges can be arbitrary. The code designer uses the fact that
there are more than K routes connecting the sender and the
receiver of the confidential message, while the eavesdropper
cannot monitor all routes1. The simple, yet powerful insight
offered by references [22], [23] on the merit of utilizing
the advantage enjoyed by the legitimate nodes via multiple
routes, can be brought into the wireless setting by utilizing
multiple antennas. Specifically, if the intended receiver has
more antennas than the eavesdropper, then even though the
eavesdropper can be anywhere, i.e., experience any channel
state, it cannot monitor all antennas of the receiver.

1Results of similar spirit can be traced back to [24], where the eavesdropper
has access to a K transmitted bits, but the bits it has access to are not specified.
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Inspired by this observation, in this work, we study the
MIMO wiretap channel, where the eavesdropper has fewer
antennas than the transmitter and its intended receiver. The
channel state of the eavesdropper can take any value at each
channel use and vary from one channel use to the next.
We assume the sequence constituted by these channel states
are perfectly known by the eavesdropper but is completely
unknown to the legitimate parties. Conditioned on any given
channel state sequence, we assume that the eavesdropper
channel is memoryless.

The main contribution of this work is to prove the existence
of a universal coding scheme that secures the confidential
message against any sequence of eavesdropper channel states
for the MIMO wiretap setting described above. The universal
nature of the coding scheme is what sets this work apart from
the previous work that considered a time-varying eavesdropper
channel [25]. Additionally, unlike [26] and [27] which consid-
ered the discrete arbitrarily varying wiretap channel, this work
considers a Gaussian setting which does not lend itself to a
direct extension from its discrete counterpart.

The achievable rates we prove in this work satisfy strong
secrecy requirements [28], which may be better suited for
practice [28]–[30] as compared to weak secrecy that is more
frequently considered for secrecy capacity analysis in infor-
mation theory [2]–[16], [25]. It is often argued that strong
secrecy can be obtained from weak secrecy through privacy
amplification, as shown in [28]. In the setting considered in
this paper, however, how to use privacy amplification is still
an open problem. Therefore, a direct proof of strong secrecy
is provided2.

The achieved rate derived in this work is shown to be tight
in terms of secure degrees of freedom (s.d.o.f.), which is a high
signal-to-noise3 (SNR) characteristic of the secrecy capacity.
For low and moderate SNR regimes, we provide the achievable
rates, but the secrecy capacity characterization remains open.

We also extend our results to a MIMO MAC wiretap
channel (MIMO MAC-WT) and a MIMO Broadcast wiretap
channel (MIMO BC-WT), for the case with two users where
legitimate transmitter(s) and receiver(s) have the same number
of antennas, and identify their secure degrees of freedom
region.

The remainder of the paper is organized as follows. The
system models are introduced in Section II. In Section III,
we state the main results, which are proved in Section IV.
Section V presents a discussion on strong secrecy as well as a
detailed comparison to related work. Section VI concludes the
paper. Appendices A-G contain the various necessary proofs in
support of the main achievability proof. Appendix H describes
a simple upper bound on secrecy rate used for numerical
comparison with the achievable rate. Appendix I provides the
weak secrecy proof for completeness and consistency with the
previous literature.

2As the proof techniques for weak and strong secrecy differ considerably,
and for the sake of comprehensiveness and consistency with the recent
information theoretic secrecy literature, we also provide the proof for weak
secrecy in an Appendix.

3for the legitimate receiver and the eavesdropper

II. SYSTEM MODELS

A. The (NT , NR, NE) MIMO Wiretap Channel

The channel from the transmitter to the intended receiver,
i.e., the main channel, is assumed to be static. Let A(i) denote
the value of the signal A during the ith channel use. The input
and output of the main channel during the ith channel use are
related as:

YNR×1(i) = HNR×NTXNT×1(i) + ZNR×1(i) (1)

where the subscripts denote the dimension of each term. H
denotes the NR ×NT channel matrix with complex entries4.
It is assumed that H is perfectly known by the transmitter,
the intended receiver and the eavesdropper, and H has full
rank. Z is a NR × 1 vector representing the additive noise.
Z is composed of independent rotationally invariant complex
Gaussian random variables, each with zero mean and unit
variance5. X and Y are the transmitted and received signals
respectively.

The channel from the transmitter to the eavesdropper, i.e.,
the eavesdropper channel, varies from one channel use to the
next. It can be expressed as:

ỸNE×1(i) = H̃NE×NT (i)XNT×1(i) (2)

where Ỹ(i) denotes the signals received by the eavesdropper
during the ith channel use. H̃NE×NT (i) is the channel state
matrix for the eavesdropper channel during the ith channel
use. We use H̃n to denote H̃(1), ..., H̃(n). H̃n is any arbitrary
sequence. However, we stress that the channel states by the
eavesdropper are not chosen in an adversarial manner adapting
to the transmitted signals in previous channel uses. H̃n is not
known at the legitimate parties and is perfectly known by the
eavesdropper.

Note that we assume the eavesdropper’s channel is noise-
less. This is obviously a worst case assumption, and if the
eavesdropper’s signals are corrupted by additive noise, they
can always be considered as a degraded version of the signals
received by the eavesdropper considered in this work.

Let W denote the confidential message transmitted to the
intended receiver, over n channel uses using Xn. In addition,
we assume that there is a local random source F which is only
known to the transmitter. Xn is computed by the transmitter
from W , F and H using the following encoding function fn:

Xn = fn(W,F,H). (3)

Note that fn does not depend on H̃n, since the transmitter
does not know the channel state of the eavesdropper.

We represent Xn as a NT × n matrix. The transmitter is
constrained in terms of average transmission power:6

lim
n→∞

1

n
Tr(Xn(Xn)H) ≤ P̄ . (4)

The decoder is defined as

Ŵ = ψn(Y
n,H) (5)

4Since we assume that the main channel is static, H remains fixed for all
channel uses.

5The assumption on the equal noise variances is without loss of generality.
6Tr denotes the sum of the diagonal elements of a square matrix.
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Fig. 1. The MIMO Wiretap Channel.

where Ŵ denotes the decoder output of the intended receiver
from Yn. Then we require the average probability of decoding
error to vanish:

lim
n→∞Pr(W �= Ŵ ) = 0. (6)

The message W must also be kept secret from the eavesdrop-
per regardless of the channel state sequence it observes. This
is represented by the following strong secrecy constraint:

lim
n→∞ sup

h̃n

I(W ; Ỹn|H̃n = h̃n) = 0. (7)

For the MIMO wiretap channel, the secrecy rate Rs is
defined as

Rs = lim
n→∞

1

n
H(W ). (8)

The rate Rs is said to be achievable if for each n there exists
a fixed encoding function fn and decoding function ψn as
defined by (3) and (5), such that (4), (6), (7) and (8) are
satisfied. The supremum of all possible values for Rs is called
the secrecy capacity of this channel model.

The high SNR behavior of the secrecy rate is characterized
by the secure degrees of freedom defined as:

s.d.o.f. = lim sup
P̄→∞

Rs(P̄ )

log2
(
P̄
) (9)

where we write Rs as Rs(P̄ ) to emphasize its dependence on
P̄ .

We use the term the secure degrees of freedom of a channel
to represent the largest possible value of (9).

Remark 1: While (7) represents the strong secrecy con-
straint, the following weak secrecy constraint has been more
frequently used for secrecy capacity analysis, e.g., [2]–[16],
[25].

lim
n→∞ sup

h̃n

1

n
I(W ; Ỹn|H̃n = h̃n) = 0. (10)

The achievability proof in our setting for this weaker secrecy
notion is relatively simpler and is provided in Appendix I
for completeness and for reference for the case where the
eavesdropper channel does not change over time.

Remark 2: Another way to model the eavesdropper channel
is to define the distribution of H̃n for each n, see [21], [30]
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Fig. 2. The (NT , NT , NT , NE) MIMO MAC wiretap channel where
legitimate nodes have NT = 2 antennas each, and the eavesdropper has
NE = 1 antenna.

for example. The secrecy constraint in (7) implies that the
message is secure for this setting if the distribution for H̃n

is defined to be independent from the channel inputs Xn. To
show this, first note that the secrecy constraint in this case is
given by:

lim
n→∞ I(W ; Ỹn, H̃n) = 0. (11)

Since H̃n is independent from the channel inputs Xn, (11)
can be written as:

lim
n→∞ I(W ; Ỹn|H̃n) = 0 (12)

which is implied by (7).

B. The two-user MIMO MAC Wiretap Channel and MIMO
Broadcast Wiretap Channel

The single user MIMO Wiretap channel defined earlier can
be extended to the two-user MAC channel and broadcast chan-
nel. In this section, we briefly discuss these two extensions
when each legitimate transmitter and each intended receiver
has NT antennas, and the eavesdropper has NE antennas.

These two channel models are shown in Figure 2 and
Figure 3 respectively, where (NT , NT , NT , NE) represents
the antenna number configuration. During the ith channel use,
the (NT , NT , NT , NE) MAC channel is defined as:

Y(i) = H1X1(i) +H2X2(i) + Z(i), (13)

Ỹ(i) = H̃1(i)X1(i) + H̃2(i)X2(i) (14)

and the (NT , NT , NT , NE) broadcast channel is given by

Yk(i) = HkX(i) + Zk(i), k = 1, 2, (15)

Ỹ(i) = H̃(i)X(i) (16)

where Hk, k = 1, 2, H̃k(i), k = 1, 2 and H̃(i) are the
channel matrices. Z and Zk, k = 1, 2 are the additive Gaussian
noise observed by the intended receivers, which has the same
distribution as Z in (1).

We assume the main channels Hk, k = 1, 2 are known
by both the legitimate parties and the eavesdropper. The
eavesdropper channel state sequence, H̃n

k , k = 1, 2 for the
MAC channel and H̃n for the broadcast channel, is unknown
to the legitimate parties but known by the eavesdropper.
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Fig. 3. The two-user (NT , NT , NT , NE) MIMO BC Wiretap Channel where
legitimate nodes have NT = 2 antennas each, and the eavesdropper has
NE = 1 antenna.

The confidential messages are denoted by Wk, k = 1, 2. For
the MAC channel, the secrecy constraint for these messages
is given by:

lim
n→∞ sup

h̃n
k ,k=1,2

I
(
W1,W2; Ỹ

n|H̃n
k = h̃n

k , k = 1, 2
)
= 0.

(17)

For the broadcast channel, the secrecy constraint is

lim
n→∞ sup

h̃n
k ,k=1,2

I
(
W1,W2; Ỹ

n|H̃n
k = h̃n

k , k = 1, 2
)
= 0.

(18)

For the MAC channel, the average power constraints of the
two transmitters are given by

lim
n→∞

1

n
Tr(Xn

k (X
n
k )

H) ≤ P̄k, k = 1, 2. (19)

For the broadcast channel, the average power constraint of the
transmitter is given by

lim
n→∞

1

n
Tr(Xn(Xn)H) ≤ P̄ . (20)

The secrecy rate for Wk, Rs,k, is defined as

Rs,k = lim
n→∞

1

n
H(Wk), k = 1, 2 (21)

such that the average power constraint and the secrecy con-
straint(s) are satisfied and the average probability of decoding
error at the intended receiver(s) → 0 when n→ ∞.

The secure degrees of freedom region for these models is
defined as7:{

(d1, d2) : dk = lim sup
P̄→∞

Rs,k

log2 P̄
, k = 1, 2

}
. (22)

7For the MAC channel, we assume P̄k = P̄ , k = 1, 2.

III. MAIN RESULTS

Let [x]+ equal to x if x ≥ 0 and 0 if x < 0. Define C(x)
as log2(1 + x). Define NT,R as

NT,R = min{NT , NR}. (23)

Let si, 1 ≤ i ≤ NT,R, be the NT,R singular values of H. For
a positive constant σ2, define P as

P = max{P̄ −NT,Rσ
2, 0}. (24)

As we shall show later, the variable NT,Rσ
2 represents the to-

tal power of the artificial noise [25] injected by the transmitter.
The variable P represents the remaining power available to the
transmitter.

Equipped with the notation defined above, the first result of
this work is given by the following proposition.

Proposition 1: Any secrecy rate Rs that satisfies

0 ≤ Rs <⎧⎪⎪⎪⎨
⎪⎪⎪⎩

supσ2>0

⎡
⎢⎣

NT,R∑
i=1

C
(

s2iP

(s2iσ
2+1)NT,R

)
−NEC

(
P

NT,Rσ2

)
⎤
⎥⎦
+

, NT,R > NE

0, NT,R ≤ NE

(25)

is achievable for the MIMO-wiretap channel described in
Section II-A.
Proposition 1 is proved in Section IV.

In Section IV-F, we show that the achievable secrecy rate
given by Proposition 1 matches the converse in terms of secure
degrees of freedom. Hence we have the following theorem.

Theorem 1: If H has rank NT,R, then the s.d.o.f. of the
MIMO-wiretap channel described in Section II-A is

max{NT,R −NE , 0}. (26)

The achievable secrecy rate given by Proposition 1 can be
easily extended to the MIMO (NT , NT , NT , NE) MAC wire-
tap channel and the MIMO (NT , NT , NT , NE) BC wiretap
channel using time sharing. Let α be the time sharing pa-
rameter, and ᾱ = 1 − α. For a positive constant σk, Define
Pk,α, k = 1, 2 as:

Pk,α =

[
P̄k

α
−NTσ

2
k

]+
, k = 1, 2. (27)

Let “co” denote the convex hull operation, and sk,i, k = 1, 2
denote the NT singular values of Hk. Then, for the MIMO
(NT , NT , NT , NE) MAC wiretap channel, the achievable se-
crecy rate region is given by:

co
⋃

α,σ2
k,k=1,2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Rs,1, Rs,2) :
0 ≤ Rs,1 <

α

[
NT∑
i=1

C
(

s21,iP1,α

(s21,iσ
2
1+1)NT

)
−NEC

(
P1,α

NTσ2
1

)]+
,

0 ≤ Rs,2 <

ᾱ

[
NT∑
i=1

C
(

s22,iP2,ᾱ

(s22,iσ
2
2+1)NT

)
−NEC

(
P2,ᾱ

NTσ2
2

)]+

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(28)
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For the MIMO (NT , NT , NT , NE) BC wiretap channel, for
P = [P̄ −NTσ

2]+, the achievable secrecy rate region is given
by:

co

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Rs,1, Rs,2) : (0, 0) ,⎛
⎜⎜⎝supσ2>0

⎡
⎢⎣

NT∑
i=1

C
(

s21,iP

(s21,iσ
2+1)NT

)
−NEC

(
P

NTσ2

)
⎤
⎥⎦
+

, 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝0, supσ2>0

⎡
⎢⎣

NT∑
i=1

C
(

s22,iP

(s22,iσ
2+1)NT

)
−NEC

(
P

NTσ2

)
⎤
⎥⎦
+
⎞
⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(29)

We shall show next that these achievable regions match their
converse in terms of secure degrees of freedom region. Hence
we have the following theorem.

Theorem 2: If Hk, k = 1, 2 has full rank, the secure degrees
of freedom region of the two-user MIMO MAC wiretap
channel in Figure 2 and the two-user MIMO BC wiretap
channel in Figure 3 are both given by

d1 + d2 ≤ max{NT −NE, 0} (30)

di ≥ 0, i = 1, 2. (31)

Proof: For the MIMO MAC-WT, the secrecy rate region
in (28) is achieved by time sharing, i.e., letting user 1 transmit
during α fraction of the channel uses alone, and user 2 for
the remaining channel uses. The region then readily follows
from Proposition 1. The achievability of the s.d.o.f. region
follows from the achievable secrecy rate region (28), by letting
P̄1 = P̄2 = P̄ → ∞. The achievable secrecy rate region
for the MIMO BC-WT is also obtained by time sharing. The
secrecy rates achieved by receivers 1 and 2 are found to be
(29) as a consequence of Proposition 1. The achieved s.d.o.f.
region then follows from the achievable secrecy rate region
(29), by letting P̄1 = P̄2 = P̄ → ∞.

For the converse, we simply combine the two transmitters
for the MIMO MAC-WT and combine the two receivers for
the MIMO broadcast channel. The channel then becomes a
single-user MIMO wiretap channel in each case. The inequal-
ity d1 + d2 ≤ max{NT − NE , 0} then follows from the
converse of Theorem 1.

Remark 3: When the eavesdropper’s channel state is fixed
and known by the transmitters, the s.d.o.f. region for the
MIMO MAC wiretap channel is still an open problem [19],
[31], [32]. When the eavesdropper’s channel state can take
more than one possible value from a finite set and the set is
known by the transmitters, the s.d.o.f. region for the MIMO
BC wiretap channel is also open. On the other hand if the
eavesdropper’s channel state sequence is arbitrary and all
legitimate nodes have the same number of antennas, the s.d.o.f.
capacity region of both problems are found in this paper.

IV. THE MIMO WIRETAP CHANNEL

In this section, we present our detailed results on the MIMO
wiretap channel with strong secrecy. We first present the

Eavesdropper Channel

Codebook Construction 

Static Eavesdropper Channel
Channel state
quantization and approximation

Artificial noise

Channel Model
Transformation

Information spectrum method

Correlation elimination argument
Varying

Fig. 4. Organization of the proof for Proposition 1.

notation. Section IV-B provides the channel transformation
and signaling scheme. Section IV-C presents the codebook
construction. Section IV-D presents the achievability proof
for the static eavesdropper channel, which is extended to the
varying eavesdropper channel in Section IV-E. A diagram
summarizing the steps leading to the achievability proof is
provided in Figure 4. Finally, in Section IV-F, we present the
converse to establish the secure degrees of freedom result in
Theorem 1.

A. Notation

We use pW (w) to denote the probability mass function
(p.m.f.) of a random variable W evaluated at w. fγ,A(a)
denotes the probability density function (p.d.f.) of a random
variable A at value a with parameter γ. fγ,A|B(a|b) denotes
the conditional p.d.f. of a random variable A conditioned on
a random variable B when A = a,B = b with parameter γ.
For a vector xn, we let ‖xn‖ denote its L2-norm. For a matrix
A, we let ‖A‖2 denote the sum of the L2-norm squared of
all the row vectors of A. EB[A] denotes the expectation of A
averaged over B. We define

An −BnCn (32)

as the row concatenation of the matrices {A(i) −
B(i)C(i), 1 ≤ i ≤ n} and

BnCn (33)

as the row concatenation of the matrices {B(i)C(i), 1 ≤ i ≤
n}.

B. Channel Model Transformation

We first observe that we only need to consider the case
where NT = NR and that it is sufficient to consider the main
channel matrix H to be diagonal without loss of generality.
For a general channel matrix H, we can always transform it
into this form by (1) performing singular value decomposition
(SVD) on it, (2) canceling the right and left unitary matrices
of its SVD decomposition and (3) discarding channel inputs
that cannot reach the receiver and channel outputs that only
contain channel noise when designing the coding scheme.
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We only consider NE < NT , since the achievable secrecy
rate in Proposition 1 is zero otherwise. For this case, H̃(i) has
the following form of SVD decomposition:

H̃(i) = [INE×NE ,0NE×(NT−NE)]U(i) (34)

where U(i) is a NT × NT unitary matrix. I is an identity
matrix. This can be achieved by canceling the left unitary
matrix of the SVD decomposition of H̃(i) and normalizing the
singular values at the eavesdropper. Note that the transmitter
does not know U(i).

Remark 4: Note that if H̃(i)(U(i))−1 has all zero rows,
we can alter appropriate entries to be 1s so that the resulting
channel matrix has the form in (34). The signals received by
the original eavesdropper is always degraded compared to the
signals received by the eavesdropper after this modification.
Hence, it is sufficient to consider the eavesdroppers with H̃(i)
in the form given by (34).

Since the eavesdropper channel is assumed to be noiseless,
we have to introduce artificial noise [25] at the transmitter to
limit the receiving capability of the eavesdropper. We express
X(i) as

X(i) = X̄(i) +N(i) (35)

where N is the NT × 1 artificial noise vector consisting of
independent rotationally invariant complex Gaussian random
variables with zero mean and variance σ2. Coding is over X̄.

Define N̄ and Ñ(i) as

N̄(i) = HN(i), (36)

Ñ(i) = H̃(i)N(i). (37)

Viewing X̄ as the input to the channel, the channel model can
be expressed as:

Y(i) = HX̄(i) + N̄(i) + Z(i), (38)

Ỹ(i) = H̃(i)X̄(i) + Ñ(i). (39)

From (34) and (37), we observe that Ñ has zero mean and
is Gaussian distributed. The covariance matrix of Ñ is

E[H̃(i)N(i)(N(i))H(H̃(i))H ]

=H̃(i)E[N(i)(N(i))H ](H̃(i))H (40)

=σ2H̃(i)(H̃(i))H (41)

=σ2INE×NE . (42)

C. Codebook Construction

The codebook ensemble is denoted by {C}. Each codebook
C in the ensemble is constructed as follows:

Recall that P was defined in (24). Let X̄G denote a
rotationally invariant zero mean complex Gaussian random
variable with covariance matrix ( P (1−ε̄)

NT
)INT×NT , where ε̄ is

a constant such that 0 < ε̄ < 1. Let QX̄G
(x) denote the

probability density function of X̄G.
Define the n-letter truncated Gaussian distributionQX̄n

T
(xn)

as follows: Let xi denote the ith component of xn. QX̄n
T
(xn)

is given by:

QX̄n
T
(xn) = μ−1

n,ε̄ϕ (xn)

n∏
i=1

QX̄G
(xi) (43)

where

ϕ (xn) =

{
1, if 1

n‖xn‖2 ≤ P
0, otherwise

(44)

μn,ε̄ =

∫
ϕ (xn)

n∏
i=1

QX̄G
(xi)dx

n. (45)

Note that 0 < μn,ε̄ < 1, and for a given ε̄, we have there
exists an α(ε̄) > 0, such that [33, (B2)]

1− μn,ε̄ ≤ e−nα(ε̄), (46)

lim
ε̄→0

α(ε̄) = 0. (47)

Let X̄n
G denote the length-n sequence sampled in an

independent and identically distributed (i.i.d.) fashion from
the input distribution QX̄G

(x). Let X̄n
T denote the length-

n sequence sampled in an i.i.d. fashion from the n-letter
truncated Gaussian input distribution QX̄n

T
.8

The codebook C contains 2nR sequences sampled from the
distribution QX̄n

T
in an i.i.d. fashion. R is chosen as

R = I(X̄G;YG)− δ′, (48)

where YG denotes the outputs observed by the intended
receiver when X̄G is used as inputs in (38). The variable δ ′

is a positive constant that can be arbitrarily small.
The codewords are then divided into NB bins, each con-

taining NC codewords. This is done by labeling each sam-
pled codeword with label (i, j), with i ∈ {1, ..., NB} and
j ∈ {1, ..., NC}, where i is the bin this codeword belongs
to, and j is the index of the codeword in the bin. Let ỸG

denote the output signal from the eavesdropper channel when
its input is X̄G. Then NB and NC are given by:

NB = 2n(R−I(X̄G;ỸG)−δ), (49)

NC = 2n(I(X̄G;ỸG)+δ) (50)

where the variable δ is a positive constant that can be made
arbitrarily small. Note that the value of the mutual information
I(X̄G; ỸG) does not depend on the value of H̃n due to the fact
that the eavesdropper channel state matrix can be transformed
to the form given by (34) thanks to the eavesdropper channel
being noiseless.

Let xni,j denote the codeword in the codebook C that is
labeled with (i, j).

As in [34], for a given codebook C, the intended receiver
uses a maximum likelihood decoder: Upon receiving Y n =
yn, the decoder ψC(yn) is given by

ψC(yn) = arg min
i,j:xn

i,j∈C
‖yn −Hnxni,j‖. (51)

The probability of decoding error for each codeword, and the
average probability of decoding error for each codebook and
the codebook ensembles are defined as:

λC,i,j = Pr
(
ψC(Yn) �= (i, j)|X̄n = xni,j

)
, (52)

λC =
1

NBNC

∑
i,j

λC,i,j , (53)

8This input distribution was also used in [34, Section 7.3].
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λ = EC [λC ] . (54)

We next present the achievability proof for strong secrecy
rate when the eavesdropper’s channel is static, i.e., H̃(i) =
H̃, 1 ≤ i ≤ n.

D. Unknown Static Eavesdropper Channel

For a given codebook C, the encoder fn,C used by the
transmitter is described as follows: Let {i} denote the set
of possible values of the confidential message. We assume
the confidential message W is uniformly distributed over
{i}. Given W = i, fn,C selects a codeword from all the
codewords with label i in codebook C according to a uniform
distribution. With this encoder, we observe that (i, j) has a
uniform distribution.

Let Ỹn
G, Ỹ

n
T , Ỹ

n
C denote the outputs of the eavesdropper

channel when its input X̄n is X̄n
G, X̄n

T or uniformly distributed
over the codebook C respectively.

Let h̃n denote the eavesdropper channel state sequence over
n channel uses. For the static eavesdropper channel, h̃n is
composed of n copies of an NE ×NT matrix denoted by h̃.
We use dh̃n,C to denote the variational distance between two
distribution pW fh̃n,Ỹn

C
and pW fh̃n,Ỹn

C |W , which is defined as:

dh̃n,C = d
(
pW fh̃n,Ỹn

C
, pW fh̃n,Ỹn

C |W
)
=∑

w

∫ ∣∣∣pW (w) fh̃n,Ỹn
C
(yn)− pW (w) fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn
(55)

=
∑
w

pW (w)

∫ ∣∣∣fh̃n,Ỹn
C
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn.

(56)

The proof of achievability we present can be outlined in
four steps:

1) As in [30], [35], we first prove for any eavesdropper
channel state sequence h̃n, dh̃n,C averaged over an
ensemble of wiretap codebooks decreases uniformly and
exponentially fast with respect to the code length n.
As in [30], [36], the proof here uses the information
spectrum method from [37].

2) We then quantize the channel gains and construct a
finite subset of values of the eavesdropper channel state.
We show that for this subset, there must exist a good
codebook that retains the property of the codebook
ensemble that dh̃n,C is small.

3) We show that when the eavesdropper channel state is
not in the finite subset, the resulting variational distance
can be approximated by the variational distance when
eavesdropper channel state sequence is in the finite
set and hence is also small. This is the approximation
argument from [38].

4) Building on 3), we then use [35, Lemma 1] to prove
that the secrecy constraint (7) is satisfied, and hence the
codebook secures the message for all possible values of
eavesdropper channel states.

We start the proof with the following lemma.

Lemma 1: [30, Appendix II, Section D] For a fixed code-
book in the ensemble, we have:

dh̃n,C ≤

2
∑
w

pW (w)

∫ ∣∣∣fh̃n,Ỹn
T
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn.

(57)

For each integral in the sum in (57), using the triangle
inequality, we can write∫ ∣∣∣fh̃n,Ỹn

T
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

≤
∫ ∣∣∣fh̃n,Ỹn

G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn+∫ ∣∣∣fh̃n,Ỹn

G
(yn)− fh̃n,Ỹn

T
(yn)

∣∣∣ dyn. (58)

The second term in (58) can be readily upper bounded with
the following lemma.

Lemma 2: For sufficiently large n, such that 1/2 > e−nα(ε̄),
we have:∫ ∣∣∣fh̃n,Ỹn

G
(yn)− fh̃n,Ỹn

T
(yn)

∣∣∣ dyn < 4e−nα(ε̄) (59)

where α(ε̄) is the positive exponent defined in (46).
Proof: This lemma is a natural consequence of the

Data Processing Inequality for variational distance stated in
Lemma 11. A proof is given in Appendix A for completeness.

Bounding the first term in (58) takes a few more steps.
Let fh̃n,Ỹ|X̄ denote the conditional p.d.f. implied by the

channel matrix H̃n = h̃n. Define information density [37],
ih̃n,X̄n

GỸn
G

(
X̄n, Ỹn

)
, as :

ih̃n,X̄n
GỸn

G

(
X̄n, Ỹn

)
= log2

n∏
i=1

fh̃n,Ỹ|X̄
(
Ỹi|X̄i

)
fh̃n,Ỹn

G

(
Ỹn

) . (60)

Then we have the following lemma.
Lemma 3: For a given ε > 0, there exists a constant α ′(ε) >

0, such that

Pr

[
1

n
ih̃n,X̄n

GỸn
G

(
X̄n

G, Ỹ
n
G

)
> I

(
X̄G; ỸG

)
+ ε

]
≤ e−nα′(ε).

(61)

Proof: The proof utilizes the fact that the probability for
the L2 norm of a length-n sequence sampled from a Gaussian
distribution divided by n to be larger than the variance of
the Gaussian distribution is negligible [33]. The details are
provided in Appendix B.

Remark 5: Note that the subscript of ih̃n,X̄n
GỸn

G

(
X̄n, Ỹn

)
simply indicates the p.d.f.s we use to compute the information
spectrum, which are fh̃n,Ỹ|X̄ and fh̃n,Ỹn

G
in this case. The

arguments of ih̃n,X̄n
GỸn

G

(
X̄n, Ỹn

)
, X̄n and Ỹn, can have

a different p.d.f. than the one indicated by the subscript of
ih̃n,X̄n

GỸn
G

(
X̄n, Ỹn

)
.
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H̄

cubeH̄

Fig. 5. Conceptual illustration of the construction of the finite set SM : The
dashed circle indicates the set of all H̃ such that H̃H̃H = INE×NE

. Each
square represents a hyper-cube cubeH̄ for different H̄ which is one of its
vertex. The set SM is composed of all the black dots on the dashed circle.
Each square contains exactly one black dot if it intersects with the dashed
circle.

Remark 6: The random variables X̄n
G, Ỹ

n
G satisfying

Lemma 3 are called to be exponentially information stable
in [35, Section 2].
We next use Lemma 3 to bound the first term of (58), and
use Lemma 2 to bound the second term, which leads to the
following lemma.

Lemma 4: If δ in (49)-(50) is positive, then there exists a
constant c′ such that for sufficiently large n, we have:

EC

[
2
∑
w

pW (w)

∫
yn

∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

]

≤ exp(−c′n) (62)

and

EC
[
dh̃n,C

]
≤

EC

[
2
∑
w

pW (w)

∫
yn

∣∣∣fh̃n,Ỹn
T
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

]

≤ exp(−c′n). (63)

The value of c′ depends only on δ and ε̄. The minimum n for
(62) and (63) to hold depends only on ε̄.

Proof: Two proofs utilizing different techniques are pro-
vided in Appendix C and Appendix D respectively 9. The proof
in Appendix C utilizes results from [37, Proof of Theorem 4]
and the proof in Appendix D suggested by a reviewer uses
results from [39].
Note that (63) is the result mentioned in the first step in the
proof outline.

We next construct the finite set SM of quantized eavesdrop-
per channel state values as mentioned in the second step of
the proof outline. As illustrated in Figure 5, SM is defined as
follows:

9We thank the anonymous reviewer for providing the proof in Appendix D
in during the second revision cycle of the paper.

Note that from (34),

H̃H̃H = INE×NE . (64)

Hence the absolute value of the real and imaginary parts of
each element in H̃ cannot exceed 1. Define H̄ as any matrix
such that MH̄ is composed of elements with integral real
and imaginary parts taking values in the set {−M,−M +
1, ...,M−1}. For such a H̄, define a hyper-cube overNT×NE

matrices, denoted by cubeH̄, as

cubeH̄ =

{
H : 0 ≤ Re(MHi,j −MH̄i,j) ≤ 1

0 ≤ Im(MHi,j −MH̄i,j) ≤ 1

}
. (65)

The expression
⋃
H̄

cubeH̄ contains all matrices whose ele-

ments’ real and imaginary parts are within interval [−1, 1].
For each H̄, we choose any single matrix from cubeH̄ that
satisfies (64) if it exists and include it in SM . Since there are
at most (2M + 1)2NTNE hyper-cubes cubeH̄, SM is a finite
set with at most (2M + 1)2NTNE elements.10

Then from (63), we have:∑
h̃∈SM

EC
[
dh̃n,C

]
≤ (2M + 1)2NTNE exp(−c′n). (66)

Remark 7: Note that this is the same strategy used in proving
the compound channel coding theorem in [38]. Reference [38]
considered a discrete memoryless channel which is taken from
a potentially infinite set and SM is constructed by quantizing
the channel transition probability matrix. Here, since we are
considering the Gaussian channel, doing so will not lead to
a finite set. The remedy we have is that we construct SM by
quantizing the channel gains instead, which leads to a finite
set owing to the fact that the channel gains are bounded 11.

Since the codebook ensemble is constructed as in [34], for
some n0, we have [34]

λ ≤ 5 exp(−nE(R(δ′))), ∀n > n0 (67)

where λ, defined in (54), is the average probability of the
decoding error for the codebook ensemble.

Hence, as in [30, Appendix II, Section E], from Markov
inequality and (67), we know there must exist one codebook
such that

1) The probability of decoding error of the intended re-
ceiver vanishes as n→ ∞.

2) For each h̃ ∈ SM , we have

dh̃n,C ≤

2
∑
w

pW (w)

∫
yn

∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn
(68)

≤ 3× 2(2M + 1)2NTNEe−c′n. (69)

Also, we observe, by our definition of the codebook ensemble
that, for this fixed codebook, the average power of each
codeword must be less than or equal to P .

10SM is not empty since it at least contains the matrix
[INE×NE

,0NE×(NT −NE)].
11We thank the reviewer who suggested we include this insight.
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This concludes the second step in the proof outline. From
here onward, all the discussion is for this fixed codebook.

We next evaluate dh̃n,C when h̃ /∈ SM .
Let Ai denote the ith row of matrix A. We know there

must exist a h′ ∈ SM , such that for the ith row of hΔ(k) =
h̃(k)− h′(k), denoted by hΔ,i(k), we have:12

‖hΔ,i(k)‖2 < 2NT /M
2, i = 1, ..., NE, k = 1, ..., n. (70)

Let hn
Δ = h̃n − h′n. With the notation (33), we define

xnΔ = hn
Δx

n, xn ∈ C. Note that xn is an NT × n matrix and
Tr[xn(xn)H ] < nP, ∀xn ∈ C.

Let λmax(A) be the largest eigenvalue of matrix A. Then
for the ith row of xn

Δ, xnΔ,i, we have:

1

n

∥∥xnΔ,i

∥∥2
=
1

n

∥∥hn
Δ,ix

n
∥∥2 (71)

=
1

n

n∑
k=1

‖hΔ,i(k)x(k)‖2 (72)

≤ 1

n

n∑
k=1

λmax

(
x(k) (x(k))

H
)
‖hΔ,i (k)‖2 (73)

≤ 1

n

n∑
k=1

λmax

(
x(k) (x(k))

H
) 2NT

M2
(74)

≤ 1

n

n∑
k=1

Tr
(
x(k) (x(k))H

) 2NT

M2
(75)

≤Tr

(
1

n

n∑
k=1

x(k) (x(k))
H

)
2NT

M2
(76)

≤2NTP

M2
. (77)

In (74), we use (70). In (75), we use the fact that the
eigenvalues of 1

nx(k) (x(k))
H are nonnegative.

It follows then that

1

n
‖xnΔ‖

2 ≤ 2NTNEP

M2
. (78)

For ε > 0, define r′ and r as:

(r′)2 =
2NTNEP

M2σ2
, (79)

r = r′ +
√
NE(1 + ε). (80)

With X̄n and Ỹn being the inputs and outputs of the eaves-
dropper channel with states H̃n = h̃n, Ỹn − h̃nX̄n is a
zero mean rotationally invariant Gaussian distribution whose
covariance matrix is equal to σ2INE×NE . Since from (80), it
follows that r2 > NE(1 + ε) > NE , there exists a positive
α(ε), such that [33, (B2)]:

Pr

(
1

nσ2

∥∥∥Ỹn − h̃nX̄n
∥∥∥2 ≥ r2

∣∣X̄n = xn
)
< e−nα(ε).

(81)

Note that this bound is uniform regardless of the value of h̃n.

12h̃ must be contained in a certain cube defined in (65) which must contain
at least one element that satisfies (64) and is included SM , which is h′.

Let Sn
M denote the n-fold Cartesian product of SM .

For ε > 0 and r, r′ given in (80) and (79), define g(r, r ′)
as

g(r, r′) = r′(2r + r′). (82)

Then we have the following lemma.
Lemma 5: If we can choose M with respect to n such that

ng(r, r′) < 1 (83)

then for any h̃n there must exist h′n ∈ Sn
M such that

dh̃n,C ≤

2
∑
w

pW (w)

∫ ∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

+ 8e−nα(ε̄) (84)

≤ 2
∑
w

pW (w)

∫ ∣∣∣fh′n,Ỹn
G
(yn)− fh′n,Ỹn

C |W (yn|w)
∣∣∣ dyn

+ 8e−nα(ε̄) + 4e−nα(ε) + 4ng(r, r′) (85)

≤ 12(2M + 1)2NTNEe−c′n + 8e−nα(ε̄)

+ 4e−nα(ε) + 4ng(r, r′). (86)

Proof: The proof is provided in Appendix G. The in-
equality (84) is proved with Lemma 1, (58) and Lemma 2. The
inequality (85) is proved by evaluating the integral for the two

cases 1
nσ2

∥∥∥yn − h̃nxn
∥∥∥2 ≥ r2 and 1

nσ2

∥∥∥yn − h̃nxn
∥∥∥2 < r2

separately. Bounding the second case requires the property that
the average energy of each codeword in the codebook does
not exceed P . This is the reason we need to sample from
distribution (43) when we construct the codebook ensemble.
The inequality (86) follows by applying (68)-(69) to (85).

Lemma 6: There exists a codebook, such that for c0 > 0,
we have

dh̃n,C < exp(−c0n), ∀h̃n. (87)

Proof: g(r, r′) decrease at the rate of 1/M . Hence there
must exist a positive constant cM > 0, such that M =
exp(ncM ) and both 2(2M+1)2NTNE exp(−c′n) and ng(r, r′)
decrease exponentially fast to 0 with respect to n. Applying
it to Lemma 5, we have Lemma 6.

Let c4 = δ′ + δ. From (48), (49) we observe the codebook
rate is given by

lim
n→∞

1

n
H (W ) ≥ I

(
X̄G;YG

)
−NEC

(
P (1 − ε̄)

NT,Rσ2

)
− c4,

(88)

where C(x) = log2(1 + x). From (47), we notice that (88)
can be made arbitrarily close to

I
(
X̄G;YG

)
−NEC

(
P

NT,Rσ2

)
. (89)

To prove that (89) is an achievable secrecy rate, we need the
following lemma from [35], which relates d h̃n,C to the mutual

information I
(
W ; Ỹn|H̃n = h̃n

)
:
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Lemma 7: [35, Lemma 1] Let |W| be the cardinality of the
message set W . Then we have:

I
(
W ; Ỹn|H̃n = h̃n

)
≤ dh̃n,C log2

|W|
dh̃n,C

. (90)

As shown by Lemma 6, the variational distance d h̃n,C de-
creases to 0 exponentially fast with respect to n. |W| equals
NB from (49). 1

n log2 |NB| is the right hand side of (88),
therefore log2 |W| increases linearly with n. Hence from

Lemma 7, I
(
W ; Ỹn|H̃n = h̃n

)
decreases to 0 exponentially

fast with respect to n, and the exponent does not depend on
h̃n.

This, along with the fact that W is received reliably by the
intended receiver and the average power constraint is satisfied
by each codeword in the codebook, shows that the rate of the
codebook given by (89) is indeed an achievable secrecy rate.

The achieved secrecy rate can then be found by evaluating
(89) based on (36) and (38), which leads to (25). This
concludes the proof for the static case.

We next extend the result we derived for the static channel
to the case where the eavesdropper channel varies from one
channel use to the next.

E. Unknown and Varying Eavesdropper Channel

When the eavesdropper channel is varying from one channel
use to the next, the second step in the proof for the static case
must be modified. This is because, even though the variational
distance decreases exponentially fast, the size of the subset
of the quantized eavesdropper channel state sequences also
increases exponentially fast. In this case, Markov inequality is
not sufficient to guarantee the existence of a good codebook
and the correlation elimination argument from [40] must be
used. The proof outline is as follows:

1) The first step is the same as the static case. We prove for
any given sequence of the eavesdropper channel states,
the variational distance averaged over an ensemble of
wiretap codebooks decreases uniformly and exponen-
tially fast with respect to the code length n.

2) Then, for a finite subset of quantized eavesdropper
channel state sequences, we use the correlation elim-
ination argument from [40] to show that there exists a
small number of codebooks in the codebook ensemble 13

such that the variational distance averaged over these
codebooks is small when the eavesdropper channel state
sequence is within the finite set. This is proved by
showing that the probability that the variational distance
averaged over these codebooks exceeds any given con-
stant is super-exponentially small with respect to n for
an eavesdropper channel state sequence within the finite
subset.

3) The third step is the same as the static case. We show
that when the eavesdropper channel state sequence is
outside the finite set, the variational distance averaged
over this small set of codebooks can be approximated by

13In our case, we use K = eε
′n codebooks, where ε′ is a positive constant

that can be made arbitrarily small.

the variational distance when the eavesdropper channel
state sequence is in the finite set and hence is also small.
As in the static case proof, a small variational distance
implies that the secrecy constraint is satisfied.

4) We then use the small set of codebooks to construct the
coding scheme using a two stage transmission scheme
introduced in [40].

We next start the proof by defining a normalized version of
the variational distance. For a given codebook C, and a given
eavesdropper channel state sequence {H̃(1), ..., H̃(n)} = h̃n,
the normalized variational distance d′

h̃n,C is defined as:

d′
h̃n,C =

1

2

∑
w

pW (w)

∫
yn

∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn.

(91)

Clearly, we have

0 ≤ d′
h̃n,C ≤ 1. (92)

Also, from (84) in Lemma 5, we have:

dh̃n,C ≤ 4d′
h̃n,C + 8e−nα(ε̄). (93)

We then use Lemma 4 to bound d′
h̃n,C . Note that Lemma 4

still holds when the eavesdropper channel is varying.
From (62) in Lemma 4, there must exist a constant c ′, which

only depends on ε and ε̄ such that

EC
[
d′
h̃n,C

]
≤ exp(−c′n). (94)

Applying (94) to (93), we complete the first step in the proof
outline.

We next use the correlation elimination argument from [40]
and consider K codebooks, each generated as described in
Section IV-C. Denote the kth randomly generated codebook
with Ck. Since for different k, Ck are i.i.d., d′

h̃n,Ck
are also

i.i.d.. These facts, along with (92), mean that the derivation in
[40, (4.1)-(4.5)] can be applied here. In particular, the j, T j ,
ε and R in [40] corresponds to k, d ′

h̃n,Ck
, c′ and K here

respectively. Consider a positive sequence {εn}. Reference
[40, (4.1)-(4.5)] shows that if (94) holds, then for α ′ > 0
and for n such that:

1 + eα
′
e−c′n ≤ eεn , (95)

we have:

Pr

(
1

K

K∑
k=1

d′
h̃n,Ck

≥ εn

)
≤ e−(α′−1)Kεn . (96)

Let α′ = 2. Then we have

Pr

(
1

K

K∑
k=1

d′
h̃n,Ck

≥ εn

)
≤ e−εnK . (97)

Recall that Sn
M is the n-fold Cartesian product of the set SM

defined in Section IV-D. Therefore Sn
M has at most (2M +

1)2NTNEn components. Let |Sn
M | denote the size of the set

Sn
M . Then we have:

Pr

(
1

K

K∑
k=1

d′
h̃n,Ck

< εn, ∀h̃n ∈ Sn
M

)
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≥1− |Sn
M |Pr

(
1

K

K∑
k=1

d′
h̃n,Ck

≥ εn

)
(98)

≥1− |Sn
M |e−εnK . (99)

Recall that r and r′ were defined in (80) and (79) respectively.
When h̃n /∈ Sn

M , from (84) being upper bounded by (85) in
Lemma 5, we have that if

ng(r, r′) < 1, (100)

then there must exist h′n ∈ Sn
M , such that

d′
h̃n,C ≤ d′h′n,C + e−nα(ε) + ng(r, r′). (101)

Therefore

1

K

K∑
k=1

d′
h̃n,Ck

≤ 1

K

K∑
k=1

d′h′n,Ck
+ e−nα(ε) + ng(r, r′).

(102)

From Markov inequality and (67), we have:

Pr
(
λCk

> 5nKe−Np(R(δ′))
)
≤ 1

nK
. (103)

Therefore:

Pr
(
∃k : λCk

> 5nKe−nE(R(δ′))
)

≤
K∑

k=1

Pr
(
λCk

> 5nKe−nE(R(δ′))
)

(104)

≤ 1

n
. (105)

Or equivalently

Pr
(
λCk

≤ 5nKe−nE(R(δ′)), k = 1, ...,K
)
≥ 1− 1

n
. (106)

We next choose εn, the number of codebooks K and the
variable M , which controls the size of the set Sn

M carefully
such that for sufficiently large n,

1) (95) is satisfied for α′ = 2.

2) 1
K

K∑
k=1

d′
h̃n,Ck

in (98) vanishes with high probability for

h̃n ∈ Sn
M .

3) 1
K

K∑
k=1

d′
h̃n,Ck

on the left hand side of (102) vanishes for

h̃n /∈ Sn
M . Note that in order to use the bound (102) to

prove this result, (100) must be satisfied and the right
hand side of (102) must vanish as well, which relies on
2).

4) λCk
, k = 1, ...,K in (106) vanishes with high probabil-

ity.

Satisfying these conditions leads to the claim that there exists
K good codebooks.

A proper choice for εn, K and M is as follows: Recall that
α(ε) was defined in (81). α(ε̄) was defined in (46) and (47).
c′ was given in (94). For a positive constant ε ′ such that

ε′ < c′ (107)

ε′ < α(ε) (108)

ε′ < α(ε̄) (109)

2ε′ < E(R(δ′)), (110)

the variables εn, K and M are chosen to be:

εn = e−nε′ (111)

K = e2ε
′n (112)

M = e2ε
′n. (113)

We first check if these choices satisfy (95). We observe that,
since εn > 0, the right hand side of (95) is lower bounded as:

eεn ≥ 1 + εn (114)

which, due to (111), equals:

1 + e−ε′n. (115)

Due to (107), we find (115) is greater than the left hand side
of (95) for sufficiently large n such that

1 + e2e−c′n < 1 + e−ε′n. (116)

Hence, (95) is satisfied.
Next we observe from (111) and (112) that

e−εnK = e−e−nε′e2nε′
= e−enε′

. (117)

We also observe that, due to (113), for sufficiently large n,

2M + 1 ≤ e4ε
′n. (118)

Hence,

|Sn
M | = (2M + 1)

2NTNEn
< e8NTNEε′n2

. (119)

Therefore, from (117) and (119), we have:

lim
n→∞ |Sn

M |e−εnK = 0. (120)

This means (99) will converge to 1 when n goes to ∞. Since
εn is shown by (111) to converge to 0 when n goes to ∞, we

observe, from (98)-(99), that 1
K

K∑
k=1

d′
h̃n,Ck

in (98) vanishes

with high probability.
We next examine (102). We observe from (79), (80) and (82)

that g(r, r′) decreases at the rate of 1/M which, according
to (113), equals e−2ε′n. Hence for sufficiently large n, we
observe that

ng(r, r′) < e−1.5ε′n < e−ε′n = εn (121)

holds and (100) is satisfied.
Also, due to (108), we have

e−nα(ε) < e−nε′ = εn. (122)

If, for the h′n in (102),

1

K

K∑
k=1

d′h′n,Ck
< εn, (123)

then, from (121), (122) and (102), we have

1

K

K∑
k=1

d′
h̃n,Ck

< 3εn. (124)
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Hence, from (98)-(99), (120) and (123)-(124), we observe
there must exist K codebooks, where K is given by (112),
such that for any k and h̃n,

λCk
≤ 5nKe−nE(R(δ′)), (125)

1

K

K∑
k=1

d′
h̃n,Ck

< 3εn. (126)

The variable εn is given by (111).
We next check if our choice of K leads to a vanishing λCk

.
By applying (112) to the right hand side of (125), we find it
equals:

5ne−n(E(R(δ′))−2ε′). (127)

Due to (110), we find that the right hand side of (125)
converges to 0 when n goes to ∞. This means:

lim
n→∞ λCk

= 0, ∀k. (128)

We next express (126) in terms of dh̃n,Ck
. Due to (109), we

have, from (93), for sufficiently large n:

12εn = 12e−nε′ > 8e−nα(ε̄). (129)

Hence (126) implies

1

K

K∑
k=1

dh̃n,Ck
< 24εn, ∀h̃n. (130)

Equation (130) concludes the second and third steps in the
proof outline.

We next use the K codebooks to construct the coding
scheme. Let the confidential message W be uniformly dis-
tributed over the set of {1, ..., NB}. The encoder fn used by
the transmitter is described as follows:

1) In the first stage, the transmitter chooses the value for
an integer K ′ from {1, ...,K} according to a uniform
distribution. Given W = i, fn outputs the label (i, j)
computed by fn,CK′ .

2) In the second stage, K ′ is transmitted to the intended
receiver using a good channel codebook for the main
channel.

The decoder of the intended receiver first decodes K ′, then
decodes the confidential message using ψn,CK′ .

Let K̂ ′ be the result decoded by the intended receiver for
K ′. Then

Pr
(
W �= Ŵ

)
≤Pr

(
K ′ �= K̂ ′

)
+ Pr

(
W �= Ŵ |K ′ = K̂ ′

)
(131)

=Pr
(
K ′ �= K̂ ′

)
+

1

K

K∑
k=1

λCk
. (132)

Since

lim
n→∞Pr

(
K ′ �= K̂ ′

)
= 0 (133)

and (128) holds, we have limn→∞ Pr
(
W �= Ŵ

)
= 0.

The variational distance for this coding scheme, d h̃n , is
given by

dh̃n = d

(
pW pK′fh̃n,Ỹ n

C
K′
, pW pK′fh̃n,Ỹ n

C
K′ |W

)
(134)

=
∑
k,w

(
pW (w) pK′ (k)×∫ ∣∣∣fh̃n,Ỹ n

Ck

(yn)− fh̃n,Ỹ n
Ck

|W (yn|w)
∣∣∣ dyn

)

(135)

=
1

K

K∑
k=1

dh̃n,Ck
. (136)

From (130) and (111), we observe that (136) decreases at the
speed of e−ε′n. Then from Lemma 7, we have:

lim
n→∞ sup

h̃n

I
(
W ;K ′, Ỹn

h̃n

)
= 0. (137)

The limit in (137) converges exponentially fast with respect to
n. Let n′ denote the total number of channel uses. Then the
second stage takes n2 channel uses with n2 given by:

n2 =
1

R0
log2K =

2ε′ log2 e
R0

n, (138)

where R0 > 0 is the rate of the conventional channel codebook
C0. The first stage takes n channel uses. Therefore

n′ = n+ n2 =

(
2ε′ log2 e
R0

+ 1

)
n. (139)

Define c(ε′) as

c(ε′) =
(
2ε′ log2 e
R0

+ 1

)−1

(140)

which can be made arbitrarily close to 1 by making ε ′ small.
Let Ỹn2

h̃n
denote the signals received by the eavesdropper

during the second stage. Then

lim
n′→∞

sup
h̃n′

I
(
W ; Ỹn′

h̃n

)
= lim

n′→∞
sup
h̃n′

I
(
W ; Ỹn

h̃n , Ỹ
n2

h̃n

)
(141)

≤ lim
n′→∞

sup
h̃n

I
(
W ;K ′, Ỹn

h̃n

)
(142)

= lim
n→∞ sup

h̃n

I
(
W ;K ′, Ỹn

h̃n

)
= 0. (143)

Let c4 = δ′ + max{2ε, ε + α(ε̄)
2 log2 e}. The secrecy rate is

then given by:

lim
n′→∞

1

n′H (W )

≥
{
I
(
X̄G;YG

)
−NEC

(
P (1− ε̄)

NT,Rσ2

)
− c4

}
c(ε′). (144)

From (47), we notice (144) can be made arbitrarily close to

I
(
X̄G;YG

)
−NEC

(
P

NT,Rσ2

)
. (145)

Therefore, the same secrecy rate as given in (25) is achievable
even when the eavesdropper channel varies from one channel
use to the next.
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Remark 8: In order to use the correlation elimination
argument from [40], we made three modifications to its proof:

1) Instead of using average error probability as in [40], we
use the normalized variational distance defined in (91).

2) In [40], only K = n2 codebooks are used. Here, in order
to use Lemma 7 to bound the mutual information with
the variational distance, we use K = eε

′n codebooks.
3) In [40], the index of the codebook used at the transmitter,

i.e., K ′, needs to be reliably communicated to the
receiver over an arbitrarily varying channel. In this work,
K ′ is transmitted using a good channel codebook for
the main channel which is static. On the other hand, K ′

may or may not be reliably received over the varying
eavesdropper channel. We simply assume K ′ is revealed
to the eavesdropper in order to compute the lower bound
on the achievable secrecy rate which is our goal.

Remark 9: Recall that the eavesdropper channel state se-
quence does not adopt in an adversarial manner in accordance
with transmitted signals. This means the eavesdropper channel
state sequence is chosen without the knowledge of K ′.

Remark 10: The actual distribution of the message pW (w)
is not needed to prove the secrecy constraint in (7). The
assumption that W is uniformly distributed is required only
when calculating the achievable transmission rate.

F. Converse for Theorem 1

In this section, we establish the result in Theorem 1, by
providing the converse for the high SNR characterization of
the secrecy rate found in (145).

Since H̃ can be arbitrary, when NE ≥ NT , we can choose
H̃ as [INT×NT ,0NT×(NE−NT )]

T . The eavesdropper in this
case has perfect knowledge of the transmitted signal. Clearly,
the secrecy capacity is 0.

We next consider the case when NE < NT . We use Xj
i

to denote the ith to the jth component in a vector X. The
secrecy rate is upper bounded by [4]:

Rs ≤ I
(
X;Y|Ỹ

)
. (146)

When NT ≥ NR, we assume H = [DNR×NR ,0NR×(NT−NR)]

for a diagonal matrix DNR×NR
14. Since H̃ is arbitrary, we

choose H̃ as [INE×NE ,0NE×(NT−NE)]. Then (146) equals:

I
(
X;DNR×NRX

NR
1 + Z|XNE

1

)
=I

(
XNR

1 , XNT

NR+1;DNR×NRX
NR

1 + Z|XNE

1

)
(147)

=I
(
XNR

1 ;DNR×NRX
NR
1 + Z|XNE

1

)
+ I

(
XNT

NR+1;DNR×NRX
NR
1 + Z|XNE

1 , XNR
1

)
(148)

=I
(
XNR

1 ;DNR×NRX
NR
1 + Z|XNE

1

)
. (149)

When NT < NR, we assume H =
[DNT×NT ,0NT×(NR−NT )]

T for a diagonal matrix DNT×NT .

14Else, we can perform SVD on H and transform it into this form.

We use the same H̃ as we did in the previous case. Then
(146) equals:

I
(
X;DNT×NTX

NT
1 + ZNT

1 , ZNR

NT+1|X
NE
1

)
=I

(
X;DNT×NTX

NT
1 + ZNT

1 |XNE
1

)
+

I
(
X;ZNR

NT+1|DNT×NTX
NT

1 + ZNT

1 , XNE

1

)
(150)

=I
(
X;DNT×NTX

NT
1 + ZNT

1 |XNE
1

)
. (151)

Define Nm = min{NT , NR}. Then, in both cases, (146) can
be written as:

I
(
XNm

1 ;DNm×NmX
Nm
1 + ZNm

1 |XNE
1

)
=I

(
XNm

1 ;Y Nm
1 |XNE

1

)
(152)

which equals:

I(XNm

NE+1;Y
Nm
1 |XNE

1 )

=h(Y Nm

NE+1|X
NE
1 ) + h(Y NE

1 |XNE
1 , Y Nm

NE+1)− h(Y Nm
1 |XNm

1 )
(153)

≤h(Y Nm

NE+1) + h(Y NE
1 |XNE

1 , Y Nm

NE+1)− h(Y Nm
1 |XNm

1 )
(154)

≤h(Y Nm

NE+1) + h(Y NE
1 |XNE

1 )− h(Y Nm
1 |XNm

1 ) (155)

=h(Y Nm

NE+1) + h(ZNE
1 |XNE

1 )− h(ZNm
1 |XNm

1 ) (156)

=h(Y Nm

NE+1) + h(ZNE
1 )− h(ZNm

1 ) (157)

=h(Y Nm

NE+1)− h(ZNm

NE+1
) (158)

=h(Y Nm

NE+1)− h(Y Nm

NE+1
|XNm

NE+1
) (159)

=I(XNm

NE+1;Y
Nm

NE+1). (160)

Since we assume H of the original MIMO wiretap channel has
a full rank, DNm×Nm also has full rank. Hence the elements
on the diagonal line of D are all positive. This means equation
(160) increases at a rate of O((min{NT , NR} −NE)C(P̄ )).
Hence we have proved the converse of Theorem 1.

V. DISCUSSION

A. Interpretation of the Model and the Results

In our model, we assume that the eavesdropper channel
state can take any arbitrary value in each channel use, but
is not chosen adapting to the signals sent by the transmitter.
It is important to note that the secrecy proof relies on this
assumption.

In our achievability scheme, at the beginning of each code
block, the encoder randomly chooses a codebook from a set
of codebooks. It is possible that there exists a small number of
eavesdropper channel state sequences for which this codebook
does not secure this message. The key observation is that
the fact that the codebook choice by the encoder varies in
each block leads to the set of these detrimental eavesdropper
channel state sequences to vary from block to block. On the
other hand, since the eavesdropper channel state sequence
is not chosen with the knowledge of signals sent by the
transmitter, it is not changing adaptively to remain in this set.
This leads us to prove strong secrecy in this set up.
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Fig. 6. Secrecy Rate for different total transmission power P̄ . NT = NR =
2, NE = 1.

B. Numerical Results

In Figure 6, we plot the achievable secrecy rate given by
(25) for different values of P̄ . The secrecy rate is computed
when NT = NR = 2, NE = 1. In Figure 6(a), the singular
values of the main channel state matrix are s1 = 1, s2 =
1. In Figure 6(b), the singular values of the main channel
state matrix are s1 = 1, s2 = 10. As shown in Appendix H,
the secrecy rate for this antenna configuration can be upper
bounded by

min
{
log2(1 + |s1|2P1), log2(1 + |s2|2P2)

}
(161)

subject to

P1 + P2 ≤ P̄ , P1 ≥ 0, P2 ≥ 0. (162)

In Figure 6, we evaluate this bound and compare it with the
achievable rate. The gap is between 1 to 2 bit per channel use.

C. Methods of Proving Strong Secrecy

As mentioned in Section I, in this work we prove strong
secrecy directly, as opposed to the indirect approach in
[28] which proves strong secrecy using an intermediate step
involving weak secrecy. There is other existing work that
prove strong secrecy directly, see for example [35], [41]. An
indirect proof in [28] has its advantage in that the proof
technique, i.e., privacy amplification [28], works with any
weak secrecy scheme irrespective of the channel model. Hence
it is beneficial to discuss the reason why this indirect approach
is not used in this work.

Given a weak secrecy coding scheme that spans over n
channel uses, reference [28] considers an equivalent channel
for which every n inputs to the weak secrecy scheme is viewed
as a single input to the equivalent channel. It then designs
a strong secrecy scheme for this equivalent channel. If this
approach were followed here, then the unknown and varying
channel would be encapsulated inside a universal weak secrecy
coding scheme to form the equivalent channel. However, this

does not change the fact that the equivalent channel still has
a varying joint distribution for its inputs and outputs. It can
be shown that the resulting coding scheme does satisfy the
strong secrecy constraint in (7) for all possible eavesdropper
channel state sequences. However, the convergence speed of
the limit in (7) is not uniform over these sequences. Due to
this subtlety, the approach of [28] is not used prove strong
secrecy in this work.

Comparing with existing contributions that prove strong
secrecy directly [26], [27], [30], our proof method is different
in the following ways:

• Reference [30]: Both [30] and this work utilize the in-
formation spectrum method [37] to prove secrecy results.
The proof in this work differs from [30] in the following
aspects:

1) To prove the results in [30], it is sufficient to prove
that the left hand side of (61) converges to zero as
n goes to ∞. Here, we prove it converges expo-
nentially fast to zero with respect to n to leverage
Lemma 7 to bound I

(
W ; Ỹn|H̃n = h̃n

)
.

2) In order to use the approximation argument from
[38], we need a uniform upper bound on the average
power of each codeword in the codebook. This was
used in obtaining (77) from (76). To obtain such a
bound, we have to sample from a truncated n-letter
Gaussian distribution, as shown in (43) and (45),
which complicates the analysis of the information
density. In contrast, in the setting of [30], it is
sufficient to sample from a single letter Gaussian
distribution.

The model considered by [30] is also different from
the model considered in this work in the sense that the
sequences of eavesdropper channel states in [30] must
have a known n letter distribution.

• References [26], [27]: Recently, [26] considered a general
varying discrete memoryless wiretap channel and proved
the existence of a universal coding scheme for this
channel for weak secrecy. Our work differs from [26] in
that we consider a Gaussian MIMO channel model. We
find it is possible to prove strong secrecy for this settings
despite the inputs and outputs being continuous. We stress
that for the unknown and varying channel setting, the
analysis for continuous alphabets do not follow from its
discrete counterpart with finite alphabets [26, Lemma 3,
Lemma 4]. Thus, care must be exercised in establishing
the results from scratch as evidenced by Section IV.

VI. CONCLUSION

In this work, we have considered secure communication
in the presence of eavesdroppers whose channel state varies
from one channel use to the next is completely unknown
to the legitimate parties. We have shown that when the
eavesdropper has fewer antennas than the transmitter and its
intended receiver, there exists a universal coding scheme that
can guarantee positive secrecy rates irrespective of the channel
state sequence of the eavesdropper. The proof utilizes artificial
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noise, the information spectrum method and the correlation
elimination argument.

We have derived achievable secrecy rates for the MIMO
wiretap channel, and achievable secrecy rate regions for the
two-user MIMO MAC wiretap channel and the two-user
MIMO broadcast wiretap channel where the transmitter(s) and
the intended receiver(s) have the same number of antennas. We
have also derived the secure degrees of freedom, and the secure
degrees of freedom regions for these channels by matching the
converse to the achievable rates in high SNR. These results are
derived in the sense of strong secrecy.

As future work, it is of interest to consider MIMO MAC
and MIMO BC wiretap channels with asymmetric number of
antennas, for which a time sharing scheme is unlikely to be
optimal and the effort in this paper could provide a foundation.
In this work, we considered the case where conditioned on
a given sequence of channel states, the eavesdropper chan-
nel is memoryless. The corresponding channel model with
memory deserves further investigation. Finally, we note that
in this work the eavesdropper channel sequence is ‘arbitrary’
but is not chosen adaptively, in an adversarial manner by
the eavesdropper based on the previous signals received by
the eavesdropper. The multiple antenna channel where the
eavesdropper can adaptively choose its channel state in an
adversarial manner is future work.
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APPENDIX A
PROOF OF LEMMA 2

Through data processing inequality on variational distance
(see Lemma 11), we have:∫ ∣∣∣fh̃n,Ỹn

G
(yn)− fh̃n,Ỹn

T
(yn)

∣∣∣ dyn
≤
∫ ∣∣∣fX̄n

G
(xn)− fXn

T
(xn)

∣∣∣ dxn (163)

whose right hand side can be upper bounded as:∫ ∣∣∣fX̄n
G
(xn)− fXn

T
(xn)

∣∣∣ dxn (164)

=

∫
1
n ‖xn‖2>P

∣∣∣fX̄n
G
(xn)− fXn

T
(xn)

∣∣∣ dxn+∫
1
n ‖xn‖2<P

∣∣∣fX̄n
G
(xn)− fXn

T
(xn)

∣∣∣ dxn (165)

≤
∫

1
n ‖xn‖2>P

fX̄n
G
(xn) dxn +

∫
1
n ‖xn‖2>P

fXn
T
(xn) dxn

+

∫
1
n‖xn‖2<P

∣∣∣fX̄n
G
(xn)− fXn

T
(xn)

∣∣∣ dxn (166)

≤(1 − μn,ε̄)+∫
1
n ‖x‖2<P

∣∣∣fX̄n
G
(xn)− μ−1

n,ε̄fX̄n
G
(xn)

∣∣∣ dxn (167)

≤(1 − μn,ε̄) + μ−1
n,ε̄ − 1 (168)

=μ−1
n,ε̄ − μn,ε̄. (169)

From (46), we can choose sufficiently large n, such that μn,ε̄ >
1/2. For such n, we have

μ−1
n,ε̄ − μn,ε̄

=μ−1
n,ε̄

(
1− μ2

n,ε̄

)
(170)

≤2
(
1− μ2

n,ε̄

)
(171)

=2 (1− μn,ε̄) (1 + μn,ε̄) (172)

≤4 (1− μn,ε̄) ≤ 4e−nα(εP ). (173)

Therefore (163) is upper bounded by 4e−nα(εP ). This con-
cludes the proof of the lemma.

APPENDIX B
PROOF OF LEMMA 3

Recall that P was defined in (24). Define P ′ and P ′′ as

P ′ =
P (1− ε̄)

NT
(174)

P ′′ = P ′ + σ2. (175)

We prove Lemma 3 when H̃n is a sequence such that H̃(i) is
given by (34). The case where H̃(i) is invariant with respect
to i is a special case, and does not require a separate proof.

We begin with:
n∏

i=1

fh̃n,Ỹ|X̄
(
Ỹi|X̄i

)

=
1

(πσ2)nNE
exp

⎛
⎜⎝−

∥∥∥Ỹn − h̃nX̄n
∥∥∥2

σ2

⎞
⎟⎠ (176)

where h̃nX̄n is written using the notation defined in (32).
If we choose X̄n Δ

= X̄n
G and the channel matrix sequence

H̃n = h̃n given by (34), Ỹn
G is a rotationally invariant com-

plex Gaussian random vector with zero mean and covariance
matrix P ′′I:

fh̃n,Ỹn
G

(
Ỹn

)
=

1

(πP ′′)nNE
exp

⎛
⎜⎝−

∥∥∥Ỹn
∥∥∥2

P ′′

⎞
⎟⎠ . (177)

Therefore
1

n
ih̃n,X̄n

GỸn
G

(
X̄n

G, Ỹ
n
G

)
=NE log2

(
P ′′

σ2

)

+

⎧⎪⎨
⎪⎩

1

n

⎛
⎜⎝
∥∥∥Ỹn

G

∥∥∥2
P ′′

⎞
⎟⎠− 1

n

⎛
⎜⎝
∥∥∥Ỹn

G − h̃nX̄n
G

∥∥∥2
σ2

⎞
⎟⎠
⎫⎪⎬
⎪⎭ log2 e.

(178)

Define Ñn as

Ñn = Ỹn
G − h̃nX̄n

G. (179)

Then we have:

Pr

(
1

n
ih̃n,X̄n

GỸn
G
(X̄n

G, Ỹ
n
G) > I(X̄G; ỸG) + ε

)
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=Pr

⎛
⎜⎜⎜⎝

NE log2

(
P ′′
σ2

)
+

{
1
n

‖Ỹn
G‖2

P ′′ − 1
n

‖Ñn‖2

σ2

}
log2 e

> I(X̄G; ỸG) + ε

⎞
⎟⎟⎟⎠ (180)

=Pr

⎛
⎝ NE log2

(
P ′′
σ2

)
+ log2 e

n

‖Ỹn
G‖2

P ′′ >

I(X̄G; ỸG) +
log2 e

n

‖Ñn‖2

σ2 + ε

⎞
⎠ . (181)

Note that

I(X̄G; ỸG)−NE log2

(
P ′′

σ2

)

= NE log2

(
1 +

P (1− ε̄)

NTσ2

)
−NE log2

(
1 +

P (1− ε̄)

NTσ2

)
= 0. (182)

Define ε′ = ε/ log2 e and N′ = Ñ/σ. Then (181) can be
written as:

Pr

⎛
⎜⎝ 1

n

∥∥∥Ỹn
G

∥∥∥2
P ′′ >

1

n

∥∥N′n∥∥2 + ε′

⎞
⎟⎠

≤Pr

⎛
⎜⎝ 1

n

∥∥∥h̃nX̄n
G

∥∥∥2 + ∥∥∥Ñn
∥∥∥2

P ′′ >
1

n

∥∥N′n∥∥2 + ε′

⎞
⎟⎠ (183)

=Pr

⎛
⎜⎝ 1

n

∥∥∥h̃nX̄n
G

∥∥∥2
P ′′ >

P ′

nP ′′
∥∥N′n∥∥2 + ε′

⎞
⎟⎠ (184)

=Pr

⎛
⎜⎝ 1

n

∥∥∥h̃nX̄n
G

∥∥∥2
P ′ >

1

n

∥∥N′n∥∥2 + P ′′

P ′ ε
′

⎞
⎟⎠ . (185)

Define ε′′ = P ′′
P ′ ε

′. Then for a fixed positive constant ε2, (185)
can be upper bounded by:

Pr

(
1

n

∥∥N′n∥∥2 < NE(1− ε2)

)

+ Pr

(
1

n

∥∥N′n∥∥2 ≥ NE(1 − ε2)

)
×

Pr

⎛
⎝ 1

n

‖h̃nX̄n
G‖2

P ′ > 1
n

∥∥N′n∥∥2 + ε′′∣∣∣ 1n ∥∥N′n∥∥2 ≥ NE(1− ε2)

⎞
⎠ . (186)

The first term in (186) is negligible. This is shown by noting
N′n is a zero mean Gaussian random vector whose covariance
matrix is I. Hence, from [33, (B1)], there exists α(ε2), such
that

Pr

(
1

nNE

∥∥N′n∥∥2 < 1− ε2

)
< e−nα(ε2). (187)

The second term in (186) is upper bounded by:

Pr

⎛
⎝ 1

n

‖h̃nX̄n
G‖2

P ′ > 1
n

∥∥N′n∥∥2 + ε′′∣∣∣ 1n ∥∥N′n∥∥2 ≥ NE(1− ε2)

⎞
⎠

≤Pr

⎛
⎝ 1

n

‖h̃nX̄n
G‖2

P ′ > NE(1 − ε2) + ε′′∣∣∣ 1n ∥∥N′n∥∥2 ≥ NE(1− ε2)

⎞
⎠ (188)

=Pr

⎛
⎜⎝ 1

n

∥∥∥h̃nX̄n
G

∥∥∥2
P ′ > NE(1− ε2) + ε′′

⎞
⎟⎠ (189)

=Pr

⎛
⎝ 1

nNE

∥∥∥∥∥ h̃
nX̄n

G√
P ′

∥∥∥∥∥
2

> (1− ε2) +
ε′′

NE

⎞
⎠ . (190)

Since h̃n takes the special form given by (34), each compo-
nent of h̃nX̄n

G√
P ′ is a rotationally invariant zero mean complex

Gaussian random variable with unit variance, regardless of the
value of h̃n and these components are independent.

Therefore, for ε3 > 0, we have: if 1 − ε2 +
ε′′
NE

≥ 1 + ε3,
i.e., ε′′ ≥ NE(ε3 + ε2), there must exist α(ε3), such that [33,
(B2)]:

Pr

⎛
⎝ 1

nNE

∥∥∥∥∥ h̃
nX̄n

G√
P ′

∥∥∥∥∥
2

> (1− ε2) +
ε′′

NE

⎞
⎠ < e−nα(ε3).

(191)

We have obtained an exponential bound on both terms of
(186). Finally, we let ε′′ = NE(ε3 + ε2) and ε2 = ε3, which
implies ε = 2NEε2 log2 e

P ′
P ′′ and

Pr

(
1
n ih̃n,X̄n

GỸn
G
(X̄n

G, Ỹ
n
G) >

I(X̄G; ỸG) + 2NE log2 e
P ′
P ′′ ε2

)
≤ 2e−nα(ε2).

(192)

Hence we obtain Lemma 3.

APPENDIX C
PROOF OF LEMMA 4

A. Supporting Results

As in [30, Appendix II, Section D], we can use the sym-
metry property of the random codebook ensemble and write:

EC

[∑
w

pW (w)

∫ ∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

]

=EC

[∫ ∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|1)
∣∣∣ dyn] . (193)

For the sake of completeness, we provide Appendix E for steps
to obtain (193).

For (193), we have the following lemma.
Lemma 8: [37, Lemma 5] [30, Lemma 6] For any positive

sequence {μn > 0} and a fixed codebook in the ensemble, we
have:15∫ ∣∣∣fh̃n,Ỹn

G
(yn)− fh̃n,Ỹn

C |W (yn|1)
∣∣∣ dyn

≤ 2

log2 e
μn + 2Pr

⎡
⎣log2 fh̃n,Ỹn

C |W
(
Ỹn

C,W=1|1
)

fh̃n,Ỹn
G

(
Ỹn

C,W=1

) > μn

⎤
⎦

(194)

where Ỹn
C,W=1 denotes the random variable whose p.d.f. is

fh̃n,Ỹn
C |W (yn|1).

15The dependence of μn on n is useful when proving Lemma 3. See (213).
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The second term on the right hand side of (194) can be bound
with the following lemma.

Lemma 9: For any positive μn, let τn be

τn =
eμn ln 2 − μ−1

n,ε̄

2
. (195)

If τn > 0, then we have:

EC

⎡
⎣Pr

⎡
⎣log2 fh̃n,Ỹn

C |W
(
Ỹn

C,W=1|1
)

fh̃n,Ỹn
G

(
Ỹn

C,W=1

) > μn

⎤
⎦
⎤
⎦

≤ μ−1
n,ε̄{A+ B + C} (196)

where

A
Δ
= Pr

⎡
⎣ 1

n ih̃n,X̄n
GỸn

G

(
X̄n

G, Ỹ
n
G

)
> I

(
X̄G; ỸG

)
+ δ + 1

n log2 τn

⎤
⎦ (197)

B
Δ
= Pr

[
1

n
ih̃n,X̄n

GỸn
G

(
X̄n

G, Ỹ
n
G

)
> I

(
X̄G; ỸG

)
+ δ

]
(198)

C
Δ
=

1

τ2n

⎛
⎝Pr

⎡
⎣ 1

n ih̃n,X̄n
GỸn

G

(
X̄n

G, Ỹ
n
G

)
>

I
(
X̄G; ỸG

)
+ δ

2

⎤
⎦+ 2−nδ/2

⎞
⎠ .

(199)

The variable δ is the codebook parameter used in (49)-(50).
Remark 11: The proof of Lemma 9 is adapted from [37,

Proof of Theorem 4] 16. The difference is that, [37, Proof of
Theorem 4] would require the expectation to be taken over an
ensemble whose codewords are sampled in an i.i.d. fashion
from a Gaussian distribution, since (196) is evaluated for this
distribution. In Lemma 9, the expectation is over the ensemble
whose codewords are sampled from QX̄n

T
, which is close to

but not equal to a Gaussian distribution. This difference leads
to the term μ−1

n,ε̄ in front of the upper bound given by (196).

Proof: The proof is provided in Appendix F. Combining
(234) and (256) yields (195).

B. Proof

Since μn > 0, we find that (195) is lower bounded by:

μn ln 2 + 1− μ−1
n,ε̄

2
. (200)

From (46), we can choose a sufficiently large n such that
μn,ε̄ > 1/2. This means μ−1

n,ε̄ < 2. Since from (46), 1−μn,ε̄ ≤
e−nα(ε̄), we have

μ−1
n,ε̄ − 1 < 2e−nα(ε̄). (201)

Applying (201) to (200), we have

τn ≥ μn ln 2− 2e−nα(ε̄)

2
. (202)

The remainder of the proof entails finding an upper bound
for (196), which will lead to an upper bound on (62) via
Lemma 8. (196) can be bounded using Lemma 3 if its
conditions are satisfied. This means that, for a given ε > 0,

16See also [30, Lemma 7].

we require the following three conditions to be satisfied for
all n.

δ

2
≥ ε, (203)

δ +
1

n
log2 τn ≥ ε, (204)

τn > 0. (205)

Suppose all three conditions are fulfilled, then the three terms
in (196) can be bounded as follows. The third term, as shown
in Lemma 3 and using (195)-(200), can be bounded as

1

τ2n

(
Pr

[
1
n ih̃n,X̄n

GỸn
G

(
X̄n

G, Ỹ
n
G

)
> I

(
X̄G; ỸG

)
+ δ

2

]
+2−nδ/2

)

≤ 4

(μn ln 2 + 1− μ−1
n,ε̄)

2
(e−nα′(ε) + 2−nδ/2). (206)

On the other hand, if (203)-(205) hold, the first two terms
in Lemma 9 are all bounded by e−nα′(ε). Therefore, from
Lemma 9, we find

EC

⎡
⎣Pr

⎡
⎣log2 fh̃n,Ỹn

C |W
(
Ỹn

C |1
)

fh̃n,Ỹn
G

(
Ỹn

C
) > μn

⎤
⎦
⎤
⎦ ≤

μ−1
n,ε̄

{
2e−nα′(ε) +

4

(μn ln 2 + 1− μ−1
n,ε̄)

2
(e−nα′(ε) + 2−nδ/2)

}
.

(207)

Then, from Lemma 8, we have

EC

[∫
yn

|fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|1) |dyn
]

≤ 2

log2 e
μn+

2μ−1
n,ε̄

(
2e−nα′(ε)+

4
(μn ln 2+1−μ−1

n,ε̄)
2
(e−nα′(ε) + 2−nδ/2)

)
. (208)

From Lemma 2, we have∫
|fh̃n,Ỹn

G
(yn)− fh̃n,Ỹn

T
(yn) |dyn < 4e−nα(ε̄). (209)

Finally, from Lemma 1, we have

EC [dh̃n,C] ≤

EC

[
2
∑
w

pW (w)

∫
yn

∣∣∣fh̃n,Ỹn
T
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

]

(210)

≤EC

[
2
∑
w

pW (w)

∫
yn

∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

]

+ 2

∫ ∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

T
(yn)

∣∣∣ dyn (211)

≤ 4

log2 e
μn+

4μ−1
n,ε̄

(
2e−nα′(ε)+

4
(μn ln 2+1−μ−1

n,ε̄)
2
(e−nα′(ε) + e−nδ ln 2/2)

)

+ 8e−nα(ε̄). (212)
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We then shown that if δ > 2ε, then (203)-(205) can be
satisfied. In order for the bound given by (212) to be small,
we choose μn such that it decreases exponentially fast with
respect to n. In order for the second term in (212) to decrease
exponentially fast with respect to n, we can choose

μn = e
−nmin

{
α′(ε)

4 , δ ln 2
8

}
+ e−nα(ε̄)

2 . (213)

The term e−nα(ε̄)
2 ensures by (202) that τn stays positive,

which is required by (205). As shown by (202), this means
for sufficiently large n, whose lower bound only depends on
ε̄, we have:

τn ≥ 1

4
e
−nmin

{
α′(ε)

4 , δ ln 2
8

}
≥ 1

4
e−n δ ln 2

8 (214)

or equivalently for sufficiently large n:

− 1

n
log2 τn ≤ δ ln 2

8
log2 e =

δ

8
. (215)

Hence, we can choose δ such that δ ≥ max{2ε, ε+ δ
8}, then

(203) and (204) hold. Note that δ ≥ 2ε implies δ ≥ ε+ δ
8 .

Finally, for the above choices of μn and δ, we note that
both (212) and (208) decrease exponentially fast with respect
to n. Hence, we have the two inequalities stated in Lemma 4.

APPENDIX D
ALTERNATIVE PROOF OF LEMMA 4

A. Supporting Results

Define the total variance between two probability distribu-
tions f and g as

‖f − g‖TV =
1

2

∫
x

|f(x)− g(x)|dx (216)

= sup
A

∫
x∈A

(f(x) − g(x))dx. (217)

Note that the two definitions, (216) and (217), are equivalent
[42, Section 4.1]. Define ih̃n,X̄n

T Ỹn
T

as in (60) except that G
is replaced by T therein.

We will need the following three lemmas.
1) Lemma 10: Corollary VII.2 from [39]:

EC
∥∥∥fh̃n,Ỹn

T
(yn)− fh̃n,Ỹn

C |W (yn|w)
∥∥∥
TV

≤ Pr
(
ih̃n,X̄n

T Ỹn
T
(X̄n

T , Ỹ
n
T ) > τ

)
+

1

2

√
2τ

NC
(218)

where

τ = n

(
I(X̄G; ỸG) +

δ

2

)
. (219)

2) Lemma 11: Data Processing Inequality for variational
distance [43, Lemma 2] [44, Lemma 1] [45, Lemma 8]
[42, Problem 4.3] Let D, D ′ be two distributions over a
domain Ω . Fix any randomized function F on Ω, and let
F (D) be the distribution such that a draw from F (D)
is obtained by drawing independently x from D and f
from F and then outputting f(x) (likewise for F (D ′)).
Then we have

‖F (D)− F (D′)‖TV ≤ ‖D −D′‖ . (220)

3) Lemma 12: [46, Lemma 3.2.1] Let {Un} and {Vn} be
arbitrary sequences of random variables taking value in
a source alphabets {Zn}. Let γ > 0 be an arbitrary
constant. Then, for all n = 1, 2, ... it holds that

Pr

{
1

n
log

PrUn(Un)

PrVn(Un)
≤ −γ

}
≤ e−nγ . (221)

B. Proof

Our goal is to show that for any message value w,

EC
[∥∥∥fh̃n,Ỹn

T
(yn)− fh̃n,Ỹn

C |W (yn|w)
∥∥∥
TV

]
≤ e−c′n (222)

for some c′ > 0 which does not depend on w. This yields
(63). (62) follows by applying Lemma 2 to (63).

To prove (222), first, we note that∥∥∥fh̃n,X̄n
GỸn

G
− fh̃n,X̄n

T Ỹn
T

∥∥∥
TV

(a)
=

∥∥∥fh̃n,X̄n
G
− fh̃n,X̄n

T

∥∥∥
TV

(b)

≤ 2e−nα(ε̄) (223)

where (a) follows because fh̃n,Ỹn
G|X̄n

G
= fh̃n,Ỹn

T |X̄n
T

and
(b) follows from (164)-(173). By Lemma 11 where F is
chosen to be a deterministic function 1

n ih̃n,X̄n
GỸn

G
(·), this

implies the total variance between the distributions of random
variable 1

n ih̃n,X̄n
GỸn

G
(X̄n

T , Ỹ
n
T ) and 1

n ih̃n,X̄n
GỸn

G
(X̄n

G, Ỹ
n
G) is

upper bounded by 4e−nα(ε̄). Due to the equivalent definition
of total variance given by (217), we have for any α∣∣∣∣∣∣

Pr
(

1
n ih̃n,X̄n

GỸn
G
(X̄n

T , Ỹ
n
T ) > α

)
−Pr

(
1
n ih̃n,X̄n

GỸn
G
(X̄n

G, Ỹ
n
G) > α

)
∣∣∣∣∣∣ ≤ 2e−nα(ε̄). (224)

Note that for any α, γ > 0, we have

Pr

(
1

n
ih̃n,X̄n

T Ỹn
T
(X̄n

T , Ỹ
n
T ) > α

)

= Pr

(
1

n
ih̃n,X̄n

GỸn
G
(X̄n

T , Ỹ
n
T )−

1

n
log

fh̃n,Ỹn
T
(Ỹn

T )

fh̃n,Ỹn
G
(Ỹn

T )
> α

)

≤ Pr

⎛
⎜⎜⎝

1
n ih̃n,X̄n

GỸn
G
(X̄n

T , Ỹ
n
T )− 1

n log
fh̃n,Ỹn

T
(Ỹn

T )

fh̃n,Ỹn
G
(Ỹn

T )
> α

and 1
n log

fh̃n,Ỹn
T
(Ỹn

T )

fh̃n,Ỹn
G
(Ỹn

T )
> −γ

⎞
⎟⎟⎠

+ Pr

(
log

fh̃n,Ỹn
T
(Ỹn

T )

fh̃n,Ỹn
G
(Ỹn

T )
≤ −γ

)

≤ Pr

(
1

n
ih̃n,X̄n

GỸn
G
(X̄n

T , Ỹ
n
T ) > α− γ

)
+ e−nγ

≤ Pr

(
1

n
ih̃n,X̄n

GỸn
G
(X̄n

G, Ỹ
n
G) > α− γ

)
+ e−nγ + 2e−nα(ε̄)

(225)

where the second inequality follows from Lemma 12 and
the last inequality follows from Equation (224). In particular,
Choosing α = I(X̄G; ỸG) +

δ
2 and γ = δ

4 in Equation (225),
and using Lemma 3, we see that the first term on the right
hand side of Equation (218) vanishes exponentially fast. The
second term of Equation (218) vanishes exponentially fast by
definition of NC .
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Remark 12: Define [46]

Ī(X̄n
T ; Ỹ

n
T ) =

inf{α| lim
n→∞Pr

(
1

n
ih̃n,X̄n

T Ỹn
T
(X̄n

T , Ỹ
n
T ) > α

)
= 0}. (226)

Then (225) implies that Ī(X̄n
T ; Ỹ

n
T ) ≤ I(X̄G; ỸG).

APPENDIX E
PROOF OF (193)

Let X̄n
C denote the random variable that is uniformly dis-

tributed over the codebook C. Recall that EB[A] denotes the
expectation of A averaged over B. Recall that xn

i,j denotes
the codeword in the codebook that is labeled with (i, j). NC ,
defined in (50), is the number of codewords mapped to the
same message value. Since j is uniformly distributed, we have:

EC

[∑
w

pW (w)

∫ ∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

]

=EC

⎡
⎢⎣∑

w

pW (w)

∫ ∣∣∣∣∣∣∣
fh̃n,Ỹn

G
(yn)−

1
NC

NC∑
j=1

fh̃n,Ỹn
C |X̄n

C

(
yn|xnw,j

)
∣∣∣∣∣∣∣ dy

n

⎤
⎥⎦

(227)

=
∑
w

pW (w)

∫ NC∏
j=1

fX̄n
T

(
xnw,j

)
∫ ∣∣∣∣∣∣∣

fh̃n,Ỹn
G
(yn)−

1
NC

NC∑
j=1

fh̃n,Ỹn
C |X̄n

C

(
yn|xnw,j

)
∣∣∣∣∣∣∣ dy

ndxnw,j,j=1...NC

(228)

=
∑
w

pW (w)

∫ NC∏
j=1

fX̄n
T

(
xn1,j

)
∫ ∣∣∣∣∣∣∣

fh̃n,Ỹn
G
(yn)−

1
NC

NC∑
j=1

fh̃n,Ỹn
C |X̄n

C

(
yn|xn1,j

)
∣∣∣∣∣∣∣ dy

ndxn1,j,j=1...NC

(229)

=

∫ NC∏
j=1

fX̄n
T

(
xn1,j

)
∫ ∣∣∣∣∣∣∣

fh̃n,Ỹn
G
(yn)−

1
NC

NC∑
j=1

fh̃n,Ỹn
C |X̄n

C

(
yn|xn1,j

)
∣∣∣∣∣∣∣ dy

ndxn1,j,j=1...NC

(230)

=EC

⎡
⎢⎣∫

∣∣∣∣∣∣∣
fh̃n,Ỹn

G
(yn)−

1
NC

NC∑
j=1

fh̃n,Ỹn
C |X̄n

C

(
yn|xn1,j

)
∣∣∣∣∣∣∣ dy

n

⎤
⎥⎦ (231)

=EC

[∫ ∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|1)
∣∣∣ dyn] (232)

which is (193).

APPENDIX F
PROOF OF LEMMA 9

Recall that NC was defined in (50). As in [37, Proof of
Theorem 4], we begin by defining random variables X̄n,
X̄n

1 , ..., X̄
n
NC

and Ỹn such that

1) The distribution of X̄n is given by QX̄n
T

.

2) The distribution of Ỹn conditioned on X̄n is determined
by the eavesdropper channel.

3) X̄n
1 , ..., X̄

n
NC

are i.i.d. and the distribution of X̄n
j , j =

1, ..., NC is given by QX̄n
T

. X̄n
1 , ..., X̄

n
NC

are indepen-

dent from Ỹn.

Then, we have [37, Proof of Theorem 4, (4.2) (4.3)]:

EC

⎡
⎣Pr

⎡
⎣log fh̃n,Ỹn

C |W
(
Ỹn

C,W=1|1
)

fh̃n,Ỹn
G

(
Ỹn

C,W=1

) > μn

⎤
⎦
⎤
⎦

≤Pr

[
1

NC
2
ih̃n,X̄n

G
Ỹn

G
(X̄n,Ỹn)

> τn

]
+

Pr

⎡
⎣ 1

NC

NC∑
j=1

2
ih̃n,X̄n

G
Ỹn

G
(X̄n

j ,Ỹ
n)
> c2,n + τn

⎤
⎦ (233)

where c2,n and τn > 0 satisfy

2τn + c2,n = 2μn . (234)

The values of c2,n and τn will be specified later.
Let 1{a > b} denote the indicator function that equals 1 if

a > b, and 0 otherwise. For the first term in (233), we can
write:

Pr

[
1

NC
2
ih̃n,X̄n

G
Ỹn

G
(X̄n,Ỹn)

> τn

]

=

∫ fX̄n (xn) fh̃n,Ỹn|X̄n (yn|xn)
1
{

1
NC

2
ih̃n,X̄n

G
Ỹn

G
(xn,yn)

> τn

}
dxndyn

(235)

≤μ−1
n,ε̄

∫ fX̄n
G
(xn) fh̃n,Ỹn

G|X̄n
G
(yn|xn)

1
{

1
NC

2
ih̃n,X̄n

G
Ỹn

G
(xn,yn)

> τn

}
dxndyn

(236)

≤μ−1
n,ε̄ Pr

[
1

NC
2
ih̃n,X̄n

G
Ỹn

G
(X̄n

G,Ỹn
G) > τn

]
(237)

=μ−1
n,ε̄ Pr

⎡
⎣ 1

n ih̃n,X̄n
GỸn

G

(
X̄n

G, Ỹ
n
G

)
>

I
(
X̄G; ỸG

)
+ δ + 1

n log2 τn

⎤
⎦ (238)

where (238) follows from (237) by applying the expression of
NC in (50).

For the second term in (233), we follow [37, (4.4),(4.5)] and
define the following random variables conditioned on Ỹn =
yn:

Vn,j (y
n) = 2

ih̃n,X̄n
G

Ỹn
G
(X̄n

j ,y
n) (239)

Zn,j (y
n) = Vn,j (y

n) 1 {Vn,j (yn) ≤ NC} (240)

UNC (yn) =
1

NC

NC∑
j=1

Vn,j (y
n) (241)

TNC (yn) =
1

NC

NC∑
j=1

Zn,j (y
n). (242)
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With these notations, as in [37, (4.6)], we can write:

Pr

⎡
⎣ 1

NC

NC∑
j=1

2
ih̃n,X̄n

G
Ỹn

G
(X̄n

j ,Ỹ
n)
> c2,n + τn

∣∣∣Ỹn = yn

⎤
⎦

=Pr
[
UNC

(
Ỹn

)
> c2,n + τn

∣∣∣Ỹn = yn
]

(243)

≤Pr
(
TNC

(
Ỹn

)
�= UNC

(
Ỹn

) ∣∣∣Ỹn = yn
)

+ Pr
(
TNC

(
Ỹn

)
> c2,n + τn

∣∣∣Ỹn = yn
)
. (244)

For the first term in (244), we can write [37]:

Pr
(
TNC

(
Ỹn

)
�= UNC

(
Ỹn

) ∣∣∣Ỹn = yn
)

≤
NC∑
j=1

Pr
[
Zn,j

(
Ỹn

)
�= Vn,j

(
Ỹn

) ∣∣∣Ỹn = yn
]

(245)

=NC Pr
[
Vn,1

(
Ỹn

)
> NC

∣∣∣Ỹn = yn
]
. (246)

Equation (245)-(246) implies

Pr
(
TNC

(
Ỹn

)
�= UNC

(
Ỹn

))
≤

NC Pr
[
Vn,1

(
Ỹn

)
> NC

]
. (247)

On the other hand, we have:

NC

[
Pr

[
Vn,1

(
Ỹn

)
> NC

]]
=NC

[
Pr

[
2
ih̃n,X̄n

G
Ỹn

G
(X̄n,Ỹn)

> NC

]]
(248)

=NC

∫ {
fX̄n (xn) fh̃n,Ỹn|X̄n (yn|xn)
1
{
2
ih̃n,X̄n

G
Ỹn

G
(xn,yn)

> NC

} }
dxndyn (249)

≤μ−1
n,ε̄NC

∫ {
fX̄n

G
(xn) fh̃n,Ỹn

G|X̄n
G
(yn|xn)

1
{
2
ih̃n,X̄n

G
Ỹn

G
(xn,yn)

> NC

} }
dxndyn.

(250)

As shown in [37, Proof of Theorem 4], (250) is upper bounded
by:

μ−1
n,ε̄ Pr

[
1

n
ih̃n,X̄n

GỸn
G

(
X̄n

G, Ỹ
n
G

)
> I

(
X̄G; ỸG

)
+ δ

]
.

(251)

This, along with (247), means

Pr
(
TNC

(
Ỹn

)
�= UNC

(
Ỹn

))
≤μ−1

n,ε̄ Pr

[
1

n
ih̃n,X̄n

GỸn
G

(
X̄n

G, Ỹ
n
G

)
> I

(
X̄G; ỸG

)
+ δ

]
.

(252)

For the second term in (244), we can write [37, (4.7)]:

E [TNC (yn)] = E [Zn,1 (y
n)] =∫

fX̄n (xn) 2
ih̃n,X̄n

G
Ỹn

G
(xn,yn)

1
{
2
ih̃n,X̄n

G
Ỹn

G
(xn,yn) ≤ NC

}
dxn

(253)

≤ μ−1
n,ε̄

∫ ⎧⎨
⎩ fX̄n

G
(xn) 2

ih̃n,X̄n
G

Ỹn
G
(xn,yn)

1
{
2
ih̃n,X̄n

G
Ỹn

G
(xn,yn) ≤ NC

}
⎫⎬
⎭ dxn (254)

≤ μ−1
n,ε̄. (255)

We choose c2,n as

c2,n = μ−1
n,ε̄. (256)

Then, following [37, (4.8)], we have

Pr
(
TNC

(
Ỹn

)
> c2,n + τn

∣∣∣Ỹn = yn
)

=Pr (TNC (yn) > c2,n + τn) (257)

≤Pr (TNC (yn)− E [TNC (yn)] > τn) (258)

≤ 1

τ2n
var (TNC (yn)) (259)

≤ 1

τ2n
E

[
1

NC
Z2
n,1 (y

n)

]
. (260)

The expectation in (260) can be upper bounded by:

E

[
1

NC
Z2
n,1 (y

n)

]
=

1

NC

∫
fX̄n (xn) fh̃n,Ỹn|X̄n (yn|xn)Z2

n,1 (y
n) dxndyn

(261)

=
1

NC

∫ {
fX̄n (xn) fh̃n,Ỹn|X̄n (yn|xn)
(Vn,1 (y

n) 1 {Vn,1 (yn) ≤ NC})2
}
dxndyn

(262)

=
1

NC

∫ ⎧⎪⎪⎨
⎪⎪⎩

fX̄n (xn) fh̃n,Ỹn|X̄n (yn|xn)(
2
ih̃n,X̄n

G
Ỹn

G
(xn,yn)

1
{
2
ih̃n,X̄n

G
Ỹn

G
(xn,yn)≤NC

} )2

⎫⎪⎪⎬
⎪⎪⎭ dxndyn

(263)

≤μ−1
n,ε̄

1

NC

∫ ⎧⎪⎪⎨
⎪⎪⎩

fX̄n
G
(xn) fh̃n,Ỹn

G|X̄n
G
(yn|xn)(

2
ih̃n,X̄n

G
Ỹn

G
(xn,yn)

1
{
2
ih̃n,X̄n

G
Ỹn

G
(xn,yn)≤NC

} )2

⎫⎪⎪⎬
⎪⎪⎭ dxndyn.

(264)

As illustrated in [37, Proof of Theorem 4], equation (264) is
upper bounded by:

μ−1
n,ε̄

⎧⎨
⎩2−n δ

2 + Pr

⎡
⎣ 1

n ih̃n,X̄n
GỸn

G

(
X̄n

G, Ỹ
n
G

)
>

I
(
X̄G; ỸG

)
+ δ

2

⎤
⎦
⎫⎬
⎭ . (265)

This means

Pr
(
TNC

(
Ỹn

)
> c2,n + τn

)

≤
μ−1
n,ε̄

τ2n

⎧⎨
⎩2−n δ

2 + Pr

⎡
⎣ 1

n ih̃n,X̄n
GỸn

G

(
X̄n

G, Ỹ
n
G

)
>

I
(
X̄G; ỸG

)
+ δ

2

⎤
⎦
⎫⎬
⎭ .

(266)

Substituting (252) and (266) to (243)-(244), we observe:

Pr

⎡
⎣ 1

NC

NC∑
j=1

2
ih̃n,X̄n

G
Ỹn

G
(X̄n,Ỹn)

> c2,n + τn

⎤
⎦

≤μ−1
n,ε̄ Pr

[
1

n
ih̃n,X̄n

GỸn
G

(
X̄n

G, Ỹ
n
G

)
> I

(
X̄G; ỸG

)
+ δ

]
+

μ−1
n,ε̄

τ2n

⎧⎨
⎩2−n δ

2 + Pr

⎡
⎣ 1

n ih̃n,X̄n
GỸn

G

(
X̄n

G, Ỹ
n
G

)
>

I
(
X̄G; ỸG

)
+ δ

2

⎤
⎦
⎫⎬
⎭ .

(267)
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Applying this result along with (235)-(238) to (233), we obtain
Lemma 9.

APPENDIX G
PROOF OF LEMMA 5

As we had for Lemma 3, we prove Lemma 5 when H̃n is a
sequence such that H̃(i) is given by (34) and the eavesdropper
channel is given by (39).

Let fh̃n be the conditional p.d.f. of the eavesdropper channel
implied by (39) when the channel matrix sequence is H̃n =
h̃n. Let h′n be its quantized sequence in SM . Consider the
case when Ỹn = yn, X̄n = xn and H̃n = h̃n such that
1

nσ2

∥∥∥yn − h̃nxn
∥∥∥2 < r2. Then we have:∣∣log fh̃n (yn|xn)− log fh′n (yn|xn)

∣∣
=

1

σ2

∣∣∣∣
∥∥∥yn − h̃nxn

∥∥∥2 − ∥∥yn − h′nxn
∥∥2∣∣∣∣ . (268)

Recall that hn
Δ = h̃n − h′n and Ai denotes the ith row of

matrix A. For a matrix A that has N rows, let [A1, ...,AN ]
denote a row vector formed by concatenating all rows of A.
Let 〈x, y〉 denote the inner product operation for the complex
vector space. Note that yn is a NE × n matrix here. Hence

the term

∣∣∣∣∥∥∥yn − h̃nxn
∥∥∥2 − ∥∥yn − h′nxn

∥∥2∣∣∣∣ in (268) can be

upper bounded by:

2

∣∣∣∣∣Re
NE∑
i=1

〈
yni − h̃n

i x
n,hn

Δ,ix
n
〉∣∣∣∣∣+

NE∑
i=1

∥∥hn
Δ,ix

n
∥∥2 (269)

≤2

∣∣∣∣∣
NE∑
i=1

〈
yni − h̃n

i x
n,hn

Δ,ix
n
〉∣∣∣∣∣+

NE∑
i=1

∥∥hn
Δ,ix

n
∥∥2 (270)

=2

∣∣∣∣∣∣∣
〈⎡⎢⎣

(yn1 − h̃n
1x

n)
...
(ynNE

− h̃n
NE
xn)

⎤
⎥⎦ ,

⎡
⎢⎣

hn
Δ,1x

n

...
hn
Δ,NE

xn

⎤
⎥⎦
〉∣∣∣∣∣∣∣

+

NE∑
i=1

∥∥hn
Δ,ix

n
∥∥2 (271)

≤2

√∥∥∥yn − h̃nxn
∥∥∥2 ‖xnΔ‖2 + ‖xnΔ‖

2 (272)

where in (272) we use the Cauchy-Schwartz inequality. By
applying (78) to (272), we observe that (268) is upper bounded
by:

ng(r, r′) = nr′(2r + r′). (273)

From Lemma 1, (58) and Lemma 2, we have:

dh̃n,C

≤ 2
∑
w

pW (w)

∫ ∣∣∣fh̃n,Ỹn
T
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

(274)

≤ 2
∑
w

pW (w)

∫ ∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

+ 8e−nα(ε̄). (275)

Hence we have obtained (84) in Lemma 5.

Recall that Ỹn
G is the signal received by the eavesdropper

if X̄n = X̄n
G. Since H̃(i) always has the form given by (34),

we have

fh̃n,Ỹn
G
(yn) = fh′n,Ỹn

G
(yn) . (276)

Therefore, the first term in (275) can be written as:

2
∑
w

pW (w)

∫ ∣∣∣fh′n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

≤2
∑
w

pW (w)

∫ ∣∣∣fh̃n,Ỹn
C |W (yn|w)− fh′n,Ỹn

C |W (yn|w)
∣∣∣ dyn

+ 2
∑
w

pW (w)

∫ ∣∣∣fh′n,Ỹn
G
(yn)− fh′n,Ỹn

C |W (yn|w)
∣∣∣ dyn.
(277)

Recall that we label each codebook with (i, j). In the encoder,
we let W = i and let the distribution over j be pj , which is
uniform. We denote the codeword with label (w, j) by xn

w,j .
Then, each term inside the sum over w in the first term of
(277) can be upper bounded as:∫ ∣∣∣fh̃n,Ỹn

C |W (yn|w)− fh′n,Ỹn
C |W (yn|w)

∣∣∣ dyn
≤
∑
j

pj

∫ ∣∣∣∣∣ fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
−

fh′n,Ỹn|X̄n

(
yn|xnw,j

)
∣∣∣∣∣ dyn. (278)

The term inside the sum over j can be upper bounded by:∫ ∣∣∣fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
− fh′n,Ỹn|X̄n

(
yn|xnw,j

)∣∣∣ dyn
(279)

=

∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

>r2

∣∣∣∣∣ fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
−

fh′n,Ỹn|X̄n

(
yn|xnw,j

)
∣∣∣∣∣ dyn

+

∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

<r2

∣∣∣∣∣ fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
−

fh′n,Ỹn|X̄n

(
yn|xnw,j

)
∣∣∣∣∣ dyn

(280)

≤
∫

1
nσ2 ‖yn−h̃nxn

w,j‖2
>r2

fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
dyn+

∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

>r2
fh′n,Ỹn|X̄n

(
yn|xnw,j

)
dyn

+

∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

<r2

∣∣∣∣∣ fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
−

fh′n,Ỹn|X̄n

(
yn|xnw,j

)
∣∣∣∣∣ dyn.

(281)

Note that from the triangular inequality, we have:∥∥∥yn − h̃nxnw,j

∥∥∥
≤
∥∥yn − h′nxnw,j

∥∥+
∥∥∥(h′n − h̃n

)
xnw,j

∥∥∥ (282)

≤
∥∥yn − h′nxnw,j

∥∥+ r′σ
√
n. (283)

The last step follows from (78) and (79).

Therefore 1
nσ2

∥∥∥yn − h̃nxnw,j

∥∥∥2 > r2 implies:

1

nσ2

∥∥yn − h′nxnw,j

∥∥2 > (r − r′)2 (284)
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for

r > r′. (285)

This means that if (285) holds, (281) is upper bounded by:∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

>r2
fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
dyn

+

∫
1

nσ2 ‖yn−h′nxn
w,j‖2

>(r−r′)2
fh′n,Ỹn|X̄n

(
yn|xnw,j

)
dyn

+

∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

<r2

∣∣∣∣∣ fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
−

fh′n,Ỹn|X̄n

(
yn|xnw,j

)
∣∣∣∣∣ dyn.

(286)

Hence, if r > r′ and

(r − r′)2 ≥ NE(1 + ε) (287)

then (281) can be upper bounded by [33, (B2)]:

2e−nα(ε)+∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

<r2

∣∣∣∣∣ fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
−fh′n,Ỹn|X̄n

(
yn|xnw,j

)
∣∣∣∣∣ dyn.

(288)

The second term in (288) can be upper bounded by:∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

<r2

∣∣∣∣∣ fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
−

fh′n,Ỹn|X̄n

(
yn|xnw,j

)
∣∣∣∣∣ dyn

=

∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

<r2

⎧⎨
⎩

fh̃n,Ỹn|X̄n

(
yn|xnw,j

)∣∣∣∣1− fh′n,Ỹn|X̄n(yn|xn
w,j)

fh̃n,Ỹn|X̄n(yn|xn
w,j)

∣∣∣∣
⎫⎬
⎭ dyn.

(289)

Recall that when 1
nσ2

∥∥∥yn − h̃nxnw,j

∥∥∥2 < r2, from (269)-(273)
we have

1− eng(r,r
′) ≤ 1−

fh′n,Ỹn|X̄n

(
yn|xnw,j

)
fh̃n,Ỹn|X̄n

(
yn|xnw,j

) ≤ 1− e−ng(r,r′).

(290)

Since g(r, r′) > 0, we have

0 ≤
∣∣∣∣∣1−

fh′n,Ỹn|X̄n

(
yn|xnw,j

)
fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
∣∣∣∣∣

≤ max{eng(r,r
′) − 1, 1− e−ng(r,r′)}. (291)

Note that 1 − e−x ≤ 1 when x ≥ 0. When 0 ≤ x < 1,
ex − 1 ≤ 2x. Hence as long as

ng(r, r′) < 1 (292)

we have (289) upper bounded by:∫
1

nσ2 ‖yn−h̃nxn
w,j‖2

<r2
fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
2ng (r, r′) dyn

≤2ng (r, r′) . (293)

Therefore as long as (285),(287) and (292) are satisfied, (279)
is upper bounded by:∫ ∣∣∣fh̃n,Ỹn|X̄n

(
yn|xnw,j

)
− fh′n,Ỹn|X̄n

(
yn|xnw,j

)∣∣∣ dyn

≤2e−nα(ε) + 2ng (r, r′) . (294)

Applying this result to (277), we have

2
∑
w

pW (w)

∫ ∣∣∣fh̃n,Ỹn
G
(yn)− fh̃n,Ỹn

C |W (yn|w)
∣∣∣ dyn

≤4e−nα(ε) + 4ng (r, r′)

+ 2
∑
w

pW (w)

∫ ∣∣∣fh′n,Ỹn
G
(yn)− fh′n,Ỹn

C |W (yn|w)
∣∣∣ dyn
(295)

and, we obtain (85) in Lemma 5.
Since h′n ∈ SM , we can apply (68)-(69) to h ′n, and bound

(295) by:

4e−nα(ε) + 4ng (r, r′) + 12(2M + 1)2NTNE exp(−c′n).
(296)

Applying this result to (274)-(275), we obtain (86) in
Lemma 5.

It remains to check that (285), (287) and (292) are satisfied.
This is guaranteed by the definitions of r and r ′ in (79) and
(80) and the condition (83) in the Lemma 5. Hence we have
completed the proof of Lemma 5.

APPENDIX H
PROOF OF (161)

Let X1, X2 denote the main channel inputs and let Y1, Y2
denote the main channel outputs after performing SVD de-
composition. Hence Yk = skXk + Zk, k = 1, 2, where Zk is
the channel noise. Then we observe the secrecy rate is upper
bounded by

max
fX1,X2 (x1,x2)

E[|X1|2+|X2|2]≤P̄

min

{
I (X1, X2;Y1, Y2|X1) ,
I (X1, X2;Y1, Y2|X2)

}
(297)

where fX1,X2(x1, x2) denotes the probability density distri-
bution of X1, X2. The two mutual information terms in (297)
come from assuming the eavesdropper receives X1 and X2

respectively. The bound (297) is upper bounded by

max
P1+P2≤P̄ ,Pk≥0,k=1,2

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
fX1,X2 (x1,x2)

E[|Xk|2]≤Pk,k=1,2

I (X1, X2;Y1, Y2|X1) ,

max
fX1,X2 (x1,x2)

E[|Xk|2]≤Pk,k=1,2

I (X1, X2;Y1, Y2|X2)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(298)

which is (161).

APPENDIX I
WEAK SECRECY PROOF WITH A STATIC EAVESDROPPER

CHANNEL

The proof for weak secrecy differs from that of strong
secrecy in Section IV-D. Additionally, different from previous
weak secrecy proofs, one has to exercise care in ensuring
that the equivocation constraint is satisfied for any (unknown)
eavesdropper channel gain. For these reasons, we provide the
proof here. We show the existence of a codebook composed of
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sub-codebooks each of which is a good channel code for the
eavesdropper channel17 whereas the entire codebook is a good
channel code for the main channel. These properties allow us
to bound the equivocation as in [17].

The 2nR codewords are sampled from (43) as in Sec-
tion IV-C where R is

R = I(X̄;Y)− 2δn. (299)

and {δn}, which will be specified later, is a positive sequence
that converges to 0 when n goes to ∞. The number of bins and
the number of codewords per bin however differ from those
in Section IV-C, i.e., we now have

NB = 2n(R−I(X̄;Ỹ)+δn) (300)

NC = 2n(I(X̄;Ỹ)−δn). (301)

The intended receiver uses the same decoding rule as in
(51). We also define a fictitious decoder φh̃ used by the
eavesdropper whose channel state matrix is h̃. The decoder
computes j, the codeword index, given the bin index i = i 0
and Ỹn = ỹn, and is a maximum likelihood decoder:

φh̃(ỹ
n) = arg min

j:xn
i0,j∈C

‖ỹn − H̃xni0,j‖. (302)

We use ηh̃,j|i to denote the error probability for the eavesdrop-

per to reliably decode j given i and Ỹn when the channel state
matrix is h̃.

Let the distribution of i, j as pi,j . Then we can define the
average probability of decoding error, η h̃, as

ηh̃ =
∑
i,j

pi,j(i, j)ηh̃,j|i. (303)

In (303), pi,j is determined by the encoder fn used by the
transmitter, which we shall specify next. Let the confidential
message W be uniformly distributed over the set of {i}. Given
W = i, fn selects a codeword from all the codewords with
label i according to a uniform distribution. With this encoder,
we note that pi,j is uniform, and therefore

H(X̄n) = nR (304)

For the intended receiver, we simply follow the definitions
of the probability of decoding error in (52)-(54).

First, we have the following lemma.
Lemma 13: For the codebook ensemble described above,

EC [ηh̃] is the same for all h̃.
Proof: Consider two eavesdroppers, whose respective

channel matrices are given below:

h̃ = [I,0]U1 (305)

h̃′ = [I,0]U2. (306)

Let C1 be any codebook from the ensemble {C} described in
Section IV-C. Let C2 be

C2 = U−1
2 U1C1 (307)

= {U−1
2 U1x

n, xn ∈ C1}. (308)

17That is to say that if the eavesdropper knows the transmitted signals are
restricted to a certain sub-codebook, it can decode the transmitted confidential
message reliably.

Define the probability density function of a codebook, f(C),
as

f(C) =
∏
i,j

QX̄n
T
(xni,j). (309)

Since a unitary transform does not change the L2 norm, we
have

f(C1) = f(C2). (310)

We also observe from the maximum likelihood decoder (302),
that the value of ηh̃ for a given codebook C, ηh̃(C), only
depends on the set h̃C, which is defined as:

h̃C = {h̃xn : xn ∈ C}. (311)

Since

h̃C1 = h̃′C2, (312)

we have

ηh̃(C1) = ηh̃′(C2). (313)

Let U′ = U−1
2 U1. Then we have

EC[ηh̃] =
∫
ηh̃ (C1) f (C1) dC1

(314)

=

∫
ηh̃′ (U

′C1) f (U′C1) dC1
(315)

=

∫
ηh̃′ (C2) f (C2) dC2

(316)

=EC[ηh̃′ ]. (317)

We again quantize the channel gains of the eavesdropper
channel. Let us construct the same finite set SM we used in
the strong secrecy proof.

From [34, (7.3.22)], we know that there exists an error
exponent E(R) > 0 such that, for some n0,

λ = EC [λC ] ≤ 5 exp(−nE(R)), ∀n > n0. (318)

By the same argument, for an eavesdropper whose channel
matrix h̃ is in the set SM , we know there exists an error
exponent E ′

h̃
(R̃) > 0 such that for some n0,

EC [ηh̃] ≤ 5 exp(−nE′
h̃
(R̃)), ∀n > n0, (319)

where R̃ = I(X̄, Ỹ)− δn.
Note that by Lemma 13, EC [ηh̃] is not a function of h̃.

Hence, if an error exponent holds for a certain h̃, it holds
for all h̃. Therefore, we can omit the subscript h̃ in the error
exponent and rewrite it as E ′(R̃).

Recall that 2δn = I(X̄,Y)−R. Hence, we can rewrite both
E(R) and E ′(R̃) as a function of δn. From [34], E(R) and
E′(R) have the following property: For R > 0 and R̃ > 0:

1) E(R) and E ′(R̃) are both positive.
2) Both E(R) and E ′(R̃) are monotonically decreasing

functions of δn.
3) If δn → 0, then both E(R) and E ′(R̃) converge to 0.

Let Ē(δn) = max{E(R), E′(R̃)}. Then Ē(δn) also has the
three properties listed above. From the linearity of expectation,
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for sufficiently large n that does not depend on h̃, we can
write:

EC

⎡
⎣λC +

∑
h̃∈SM

ηh̃

⎤
⎦ ≤ 5((2M + 1)2NTNE + 1)e−Ē(δn)n.

(320)

This means there must exist one codebook in the ensemble
such that

λC ≤ 5((2M + 1)2NTNE + 1)e−Ē(δn)n (321)

ηh̃ ≤ 5((2M + 1)2NTNE + 1)e−Ē(δn)n. (322)

To prove the secrecy constraint holds, we first consider the
equivocation for one eavesdropper whose channel matrix is in
the set SM , with this codebook:

H
(
W |Ỹn

h̃

)
(323)

≥H
(
W |Ỹn

h̃

)
−H

(
W |Ỹn

h̃
, X̄n

)
(324)

=H
(
X̄n|Ỹn

h̃

)
−H

(
X̄n|W, Ỹn

h̃

)
(325)

≥H
(
X̄n|Ỹn

h̃

)
− 1− ηh̃nR (326)

≥H
(
X̄n|Ỹn

h̃

)
− 1− 5nR

(
(2M + 1)

2NTNE + 1
)
e−Ē(δn)n

(327)

=H
(
X̄n

)
− I

(
X̄n; Ỹn

h̃

)
− nεn (328)

≥nR− h
(
Ỹn

h̃

)
+ h

(
Ỹn

h̃
|X̄n

)
− nεn (329)

where (326) follows from Fano’s inequality, (327) follows
from (322) and εn is defined as:

εn =
1

n
+ 5R

(
(2M + 1)

2NTNE + 1
)
e−Ē(δn)n. (330)

To proceed, we need the following lemma.
Lemma 14:

h
(
Ỹn

h̃

)
≤ NEn log πe(P + σ2), ∀h̃. (331)

Proof: Let Ỹi denote the part of Ỹn
h̃

received during the
ith channel use. We have

n∑
i=1

E
[
‖Ỹi‖2

]
(332)

=

n∑
i=1

E
[
‖h̃X̄i + Ñi‖2

]
(333)

=

n∑
i=1

E
[
‖Ñi‖2

]
+ E

[
‖h̃X̄i‖2

]
(334)

=nNEσ
2 +

n∑
i=1

E
[
‖h̃X̄i‖2

]
. (335)

Let h̃j be the jth row of h̃. From (34), we have h̃jh̃j
H

= 1.
Using this result, (335) equals

nNEσ
2 +

n∑
i=1

NE∑
j=1

E
[
|h̃jX̄i|2

]
, (336)

which, due to Cauchy-Schwarz inequality, is upper bounded
by

nNEσ
2 +

n∑
i=1

NE∑
j=1

E
[
‖h̃j‖2‖X̄i‖2

]
(337)

=nNEσ
2 +

NE∑
j=1

‖X̄n‖2 (338)

≤nNE

(
σ2 + P

)
. (339)

The last step follows from the following fact

1

n
‖X̄n‖2 ≤ P, ∀X̄n ∈ C. (340)

Note that this is a stronger requirement than the average power
constraint, in that it requires the power of each codeword not
to exceed P . This is guaranteed by our codebook construction
described in Section IV-C. Lemma 14 then follows by using
the fact that the average power constrained random vector
achieves the largest differential entropy when it has Gaussian
distribution with i.i.d. components [47].

Using Lemma 14 and the fact that h
(
Ỹn

h̃
|X̄n

)
=

nNE log πeσ2, we arrive at:

H
(
W |Ỹn

h̃

)
≥nR− nNE log2

(
1 + P/σ2

)
− nεn (341)

=n
(
I
(
X̄;Y

)
−NEC

(
P/σ2

))
− n(2δn + εn).

(342)

Since H(W ) is given by:

H (W ) = n
(
I
(
X̄;Y

)
− I

(
X̄; Ỹh̃

))
− nδn (343)

=n
(
I
(
X̄;Y

)
−NEC

(
P/σ2

))
− nδn (344)

we have shown the weak secrecy constraint holds for this first
case, i.e., we have

I
(
W ; Ỹn

h̃

)
≤ n (δn + εn) . (345)

To complete the proof, we next need to also show the
secrecy constraint holds when the eavesdropper’s channel
matrix is not in SM .

Let r2 = 2NE and (r′)2 = 2NTNEP
M2 . Define α as in (81)

with r2 = 2NE . Let gr,r′ = r′(2r + r′).
Let h̃ denote the channel matrix of the eavesdropper. From

our construction of SM , we know that we can quantize h̃ to
an h̃′ ∈ SM such that (70) holds.

We let the eavesdropper with channel matrix h̃ use the
same “fictitious” decoder we designed for the eavesdropper
with channel matrix h̃′. ηh̃ be the corresponding probability of
decoding error with this decoder. Then we have the following
lemma.

Lemma 15:

ηh̃ ≤ e−nα + 5((2M + 1)2NTNE + 1)e−(Ē(δn)−g(r,r′))n.
(346)

Proof: Let Bi0,xn be the set of values of Ỹn for which
the decoder ϕh̃′ outputs xn given the label i0. Define ηh̃|xn be
the probability of decoding error for the eavesdropper indexed
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by h̃ when the codeword xn is transmitted. Let Bxn = Bi0,xn

with i0 being the i label of xn. Let r2 = 2NE . Then we have

ηh̃|x
n =

∫
yn /∈Bxn

fh̃ (y
n|xn) dyn (347)

≤
∫
‖yn−h̃xn‖2≥nr2

fh̃ (y
n|xn) dyn+

∫
‖yn−h̃xn‖2

<nr2

yn /∈Bxn

fh̃ (y
n|xn) dyn (348)

≤e−nα +

∫
‖yn−h̃xn‖2

<nr2

yn /∈Bxn

fh̃ (yn|xn) dyn. (349)

Equation (349) follows from [33, (B2)]. Next, we apply (78)
and (268)-(272) to the second term of (349) with r 2 = 2NE

and (r′)2 = 2NTNEP
M2 and find that (349) is upper bounded by

e−nα + eng(r,r
′)
∫
‖yn−h̃xn‖2

<nr2

yn /∈Bxn

fh̃′ (y
n|xn) dyn (350)

≤e−nα + eng(r,r
′)
∫
yn /∈Bxn

fh̃′ (y
n|xn) dyn. (351)

Therefore

ηh̃ ≤ e−nα + eng(r,r
′)ηh̃′ (352)

≤ e−nα + 5((2M + 1)2NTNE + 1)e−(Ē(δn)−g(r,r′))n (353)

where the last step follows by applying (322). This concludes
the proof of Lemma 15.

We next repeat the equivocation computation in (323)-(345).
This yields:

I
(
W ; Ỹn

h̃

)
≤ n (δn + ε′n) , (354)

where

ε′n =
1

n
+

R
(
e−nα + 5((2M + 1)2NTNE + 1)

)
e−(Ē(δn)−g(r,r′))n.

(355)

The last step of the achievability proof requires choosing δn
carefully with respect to n, such that εn and ε′n goes to 0 as
n goes to ∞. This can be done by choosing Ē(δn) properly
as follows:

1) Ē(δn) decreases to 0 at the rate of n−1/2, which ensures
nĒ(δn) → ∞ as n → ∞.

2) M increases at the rate of n, hence g(r, r ′) decreases at
the rate of n−1. Therefore n(Ē(δn)− g(r, r′)) → ∞ at
the rate of exp(−c1

√
n) for c1 > 0, as n→ ∞.

Since Ē(δn) is a monotonically decreasing function of δn, this
means δn converges to 0 as n→ ∞. We also observe in this
case both εn and ε′n converge uniformly to 0 as n → ∞ for
any eavesdropper channel matrix.

In summary, for any eavesdropper, with the same codebook
C, we always have

lim
n→∞ sup

h̃

1

n
I
(
W ; Ỹn

h̃

)
= 0. (356)

The convergence is uniform over all possible values of the
eavesdropper channel states. The reliability requirement (6) is
fulfilled by (321).

Remark 13: The secrecy rate found (344) is identical to the
rate we derived with strong secrecy requirement in (89).
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