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MIMO Multiple Access Channel With an Arbitrarily
Varying Eavesdropper: Secrecy Degrees of Freedom

Xiang He, Member, IEEE, Ashish Khisti, Member, IEEE, and Aylin Yener, Member, IEEE

Abstract—A two-transmitter Gaussian multiple access wiretap
channel with multiple antennas at each of the nodes is investi-
gated. The channel matrices of the legitimate users are fixed and
revealed to all the terminals, whereas the channel matrices of
the eavesdropper are arbitrarily varying and only known to the
eavesdropper. The secrecy degrees of freedom (s.d.o.f.) region
under a strong secrecy constraint is characterized. A transmission
scheme that orthogonalizes the transmit signals of the two users at
the intended receiver, and uses a single-user wiretap code for each
user, is shown to achieve the s.d.o.f. region. The converse involves
establishing an upper bound on a weighted-sum-rate expression.
This is accomplished by using induction, where at each step one
combines the secrecy and multiple-access constraints associated
with an adversary eavesdropping a carefully selected group of
sub-channels.

Index Terms— Arbitrarily varying channel, information theo-
retic security, MIMO multiple access wiretap channel, secrecy de-
grees of freedom.

I. INTRODUCTION

I NFORMATION theoretic security was first introduced by
Shannon in [1], which studied the problem of transmitting

confidential information in a communication system in the pres-
ence of an eavesdropper with unbounded computational power.
Since then, an extensive body of work has been devoted to
studying this problem for different network models by deriving
fundamental transmission rate limits [2]–[4] and designing low-
complexity schemes to approach these limits in practice [5], [6].
Secure communication using multiple antennas was exten-

sively studied as well, see e.g., [7]–[18], [30]. These works
investigated efficient signaling mechanisms using the spatial
degrees of freedom provided by multiple antennas to limit
an eavesdropper’s ability to decode information. The under-
lying information theoretic problem, the multiantenna wiretap
channel, was studied and the associated secrecy capacity
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was identified. We note that these works assumed that the
eavesdropper’s channel state information is available either
completely or partially, although such an assumption may not
be justified in practice.
As a more pessimistic but stronger assumption, references

[19]–[21] study secrecy capacity when the eavesdropper
channel is arbitrarily varying and its channel states are known
to the eavesdropper only. Reference [20] studies the single-user
Gaussian multi-input-multi-output (MIMO) wiretap channel
and characterizes the secrecy degrees of freedom (s.d.o.f.). The
same paper extended the single user analysis to the two users
Gaussian MIMO multiple access (MIMO-MAC) channel and
characterized the s.d.o.f. region when all the legitimate termi-
nals had equal number of antennas. However, the MIMO-MAC
with arbitrary number of antennas at the terminals was left as
an open problem.
Our main contribution is to fully characterize the s.d.o.f.

region of the two-transmitter MIMO MAC channel when the
eavesdropper channel is arbitrarily varying. We show that the
s.d.o.f. region can be achieved by a scheme that orthogonalizes
the transmit signals of the two users at the intended receiver.
Moreover, it suffices to use a single-user wiretap channel code
[20] and no coordination between the users is necessary except
for synchronization and sharing the transmit dimensions. To
establish the optimality of this scheme, our converse proof
decomposes the MIMO MAC channel into a set of parallel and
independent channels using the generalized singular value de-
composition (GSVD). A set of eavesdroppers, each monitoring
a subset of links, is selected using an induction procedure and
the resulting secrecy constraints are combined to obtain an
upper bound on a weighted sum-rate expression. The outer
bound matches the achievable rate in terms of the s.d.o.f.
region, thus settling the open problem raised in [20] for the
case of two transmitters.
The scalar multiple-access channel when the eavesdropper

channel is perfectly known, has been studied extensively e.g.,
[22]–[29]. If the channel model has real inputs and output,
Gaussian signaling is in general suboptimal and user coop-
erating strategies, as well as signal alignment techniques,
are necessary [26]. It was shown in [28, Sec. 5.16] that the
individual s.d.o.f. of this model could not exceed 2/3. Recently,
[29] improves this result and shows that the sum s.d.o.f. of
this model cannot exceed 2/3 and shows this is achievable for
almost all channel gains by using a scheme that transmits a
superposition of information and noise symbols. Interference
alignment is used to align the noise symbols at the legitimate
receiver, and simultaneously mask the information symbols at
the eavesdropper.
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The remainder of this paper is organized as follows. In
Section II, we describe the system model. The main result is
stated as Theorem 1 in Section IV. The proof of the theorem is
divided into two parts. First, we establish the result for the case
of parallel channels in Section V. Subsequently, in Section VI
we establish the result for the general case by decomposing
the MIMO-MAC channel into a set of independent parallel
channels. Such a reduction is used both in the proof of the
converse as well as the coding scheme. Section VII concludes
the paper.
We use the following notation throughout the paper. For a

set denotes the set of random variables and
similarly denotes the set of variables . We
use to denote a nonnegative sequence of that converges
to 0 when goes to . We use bold uppercase font for ma-
trices and vectors. The distinction between matrices and vectors
will be clear from the context. For a set denotes its car-
dinality and a short hand notation is used for the sequence

. Finally, denotes the empty set.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a discrete-time channel
model where two transmitters communicate with one receiver
in the presence of an eavesdropper. We assume transmitter
has antennas, , the legitimate receiver has
antennas whereas the eavesdropper has antennas. The
channel model is given by

(1)

(2)

where denotes the time-index,
are channel matrices and is the additive Gaussian noise ob-
served by the intended receiver, which is composed of indepen-
dent rotationally invariant complex Gaussian random variables
with zeromean and unit variance. The sequence of eavesdropper
channel matrices is an arbitrary sequence
of length and only revealed to the eavesdropper. In contrast,

are revealed to both the legitimate parties and the
eavesdropper and remain constant during the period of commu-
nication. We assume , the number of eavesdropper antennas,
is known to the legitimate parties and the eavesdropper.
We define a length code for our setup as follows. User

, wishes to transmit a confidential message
, to the receiver over channel uses, while both messages,
and , must be kept confidential from the eavesdropper.

The message and are uniformly distributed over the sets
and , respectively. We assume that .

User transmits an input sequence where
is the encoding function at user . The de-

coder outputs an estimate of the trans-
mitted messages where is the decoding
function. The error probability is defined as,

.

Fig. 1. The MIMO MAC wiretap channel where
.

A sequence of codes is said to be feasible if the
following conditions are satisfied.
a) Reliability Constraint: .
b) Power Constraint: The sequence must satisfy the
power constraint

(3)

for each message and .
c) Secrecy Constraint: We consider the strong secrecy con-
straint [20]

(4)

We say that the rate-pair is achievable if there
exists a sequence of codes with that satisfies
the above conditions. The associated s.d.o.f. are defined as [30],
[31]:

(5)

The set of all achievable s.d.o.f. constitutes secrecy degrees
of freedom.We note the use of in (5) implies that for any
coding scheme one must consider a subsequence of powers that
attains the . For the upper and lower bounds we consider,
the limit actually exists, and hence and are the same.
We make the following additional remark about the channel

model.
Remark 1: An arbitrarily varying channel (AVC) is defined

by a stochastic mapping where and are
the alphabets of the channel input and output symbols, respec-
tively, and

Here is the transition probability that the channel
output symbol is observed when a channel input symbol is
transmitted and the channel state equals . The sequence

denotes the sequence of channel states that can
vary in an arbitrary manner. There is a large variety of prob-
lems on AVC channels depending on the nature of the error-cri-
teria used (average ormaximal error) and the permissible coding
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Fig. 2. (a) A special case of MIMO MAC wiretap channel where
, (b) Comparison between achievable s.d.o.f.

region and a simple outer bound derived by considering one eavesdropper at a
time.

strategies (deterministic versus random coding). We refer the
reader to [32, Ch. 12] for a comprehensive treatment of AVC
channel models.
In this paper, we assume that the eavesdropper’s channel is an

AVC channel, where the state variable
[cf. (2)]. We assume that no common randomness is shared be-
tween the legitimate users. The encoders are allowed to use pri-
vate randomness in their encoding functions. Furthermore, we
assume that the state sequence be independent of :

(6)

The evaluation of, e.g., (4) is based on this condition.
Remark 2: For proving our converse it is sufficient to con-

sider a (weaker) compound channel model [30]—the channel
matrices are selected at the start of the communication from
a certain set, say , and remain fixed for the entire codeword.
By a judicious choice of the set it is possible to obtain a
matching upper bound for the s.d.o.f.

III. MOTIVATION

We discuss a simple example that illustrates why the problem
considered is nontrivial. As illustrated in Fig. 2(a), in this ex-
ample, each transmitter has two antennas and the intended re-
ceiver has three antennas, while the eavesdropper has only one
antenna. Let denote the transmitted signals from
the two users and denote the signals observed by the
intended the receiver. And the main channel is given by

(7)

(8)

where denote additive channel noise. As shown
in [20], a s.d.o.f. is achievable for a
user if the other user remains silent. Time sharing between these
two users leads to the following achievable s.d.o.f. region:

(9)

A. Cut-Set Upper Bound

For the converse, we begin by considering a simple “cut-set”
like upper bound, which reduces each channel to a single-user

MIMO wiretap channel. First, by revealing the signals trans-
mitted by user 2 to the intended receiver and assuming that the
eavesdropper monitors either or we have that .
Similarly, we argue that . To obtain an upper bound on the
sum-rate, we let the two transmitters to cooperate and reduce the
system to a 3 3 MIMO link. The s.d.o.f. of this channel [20]
yields . This outer bound, illustrated in Fig. 2(b),
does not match with the achievable region given by (9).

B. Proposed Upper Bound

As we shall show in Theorem 1, (9) is indeed the s.d.o.f.
capacity region and hence a new converse is necessary to
prove this result. It can be readily seen that the outer bound
in Section III-A only considers one eavesdropper at a time.
For example, when deriving , we assume there is only
one eavesdropper which is monitoring either or . When
deriving , we assume there is only one eavesdropper
which is monitoring either or . Similarly, when deriving

we again assume that there is one eavesdropper on
either of the links. Our key observation is that a tighter upper
bound is possible to find if we consider the simultaneous effect
of two eavesdroppers.
In our system model, because of the AVC model, there are

infinitely many possible eavesdroppers, each corresponding to
a different channel state sequence. The challenge is to find a fi-
nite number of eavesdroppers, whose joint effect leads to a tight
converse. Our choice of eavesdroppers is based on the following
intuition: when an eavesdropper chooses which links to mon-
itor, it should give precedence to those links over which only
one user can transmit. This is because these links are the major
contributor to the sum s.d.o.f. since they are dedicated
links to a certain user. Based on this intuition, we consider the
following two eavesdroppers: one monitors for and the
other monitors for . As we shall show later in Lemma 1,
the first eavesdropper implies the following upper bound on :

(10)

and the second eavesdropper implies the following upper bound
on :

(11)

Their joint effect can be captured by adding (10) and (11) [33],
which leads to:

(12)

Since there is only one term, which is , at the right side of the

mutual information , we observe the sum
s.d.o.f. cannot exceed 1, thereby justifying that (9) is indeed the
largest possible s.d.o.f. region for Fig. 2(a).
As captured by (10) and (11), a simultaneous selection of two

different eavesdroppers for the two users reduces the effective
signal dimension at the receiver from three to one, thus leading
to a tighter converse. As we shall show later in Section V-C,
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Fig. 3. The s.d.o.f. region in Theorem 1: (a)
, (b) ,

(c) .

in generalizing this example, we are required to systematically
select a sequence of eavesdroppers using induction.

IV. MAIN RESULT

In this section, we state the main result of this paper. To ex-
press our result, we define as the rank of and
as the rank of . We will refer to as the number of
transmit dimensions at user and as the number of
dimensions at the receiver.
Theorem 1: The s.d.o.f. region of the MIMO multiple access

channel with arbitrarily varying eavesdropper channel is given
by the convex hull of the following five points of :

(13)

(14)

(15)

(16)

(17)

where we use .
Fig. 3 illustrates the structure of the s.d.o.f. region as a func-

tion of the number of eavesdropping antennas. In Fig. 3(a), we
have . In this case, the s.d.o.f. region
is a polymatroid [34, Definition 3.1] described by
and . Fig. 3(b) illustrates the shape of
the s.d.o.f. region when

. In Fig. 3(b), without loss of generality,
we assume and the s.d.o.f. region is bounded by the
lines and

(18)

When , the s.d.o.f.
region, as illustrated in Fig. 3(c) is bounded by and the
line

(19)

The s.d.o.f. region in Theorem 1 allows the following simple
interpretation: the region can be expressed as a convex hull of
a set of rectangles shown by Fig. 4 [illustrated for Fig. 3(a)].
Each rectangle is parameterized by the dimensions of the sub-

Fig. 4. Interpretation of the s.d.o.f. region as a convex hull of rectangles:
, where is the number of degrees

of freedom occupied by user . To achieve reliable transmission, we must have
(20) and (21).

space occupied by the transmission signals from the two users,
denoted by , where indicates the dimension of user

. Then, in order for the signals from both transmitters
to be received reliably by the receiver, we must have

(20)

(21)

Each user then transmits confidential messages with
over the available dimensions, where the

term is an effect of the secrecy constraint (4).
It is clear that given by (16) and (17) are in one of these

rectangles. Hence, the convex hull of these rectangles yields the
s.d.o.f. region stated in Theorem 1.
Finally, we note that if the s.d.o.f.

region reduces to and this implies that secure communi-
cation is not possible in this regime.

V. PROOF FOR THE PARALLEL CHANNEL MODEL

In this section, we establish Theorem 1 for the case of parallel
channels. As illustrated in Fig. 5, the receiver observes

(22)

(23)

(24)

where the noise random variables across the subchannels are
independent and each is distributed according to and

and denote the transmit symbols of
user 1 and user 2, respectively.
The parallel channel model is a special case of (1) with

(25)
where , and denote the identity matrices of size

, and , respectively, and and denote the
matrices, all of whose entries are zeros. Note that we do not
make any assumption on the eavesdropper’s channel model (2).

A. Achievability

It suffices to establish the achievability of points and
in (16) and (17), respectively. The rest of the region follows
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Fig. 5. Definition of the set , where .

through time-sharing between these points. Note that for the
proposed parallel channel model

(26)

(27)

To prove the achievability of , we restrict user 2 to transmit
only on the last components of (24) and allow user 1 to
transmit over all of the components of in (22) and (23).
Note that in this case, the signals of these two users do not in-
terfere with each other at the intended receiver. From [20], user
1 can transmit such that and

(28)

and user 2 can transmit such that and

(29)

where we use to denote the sequence
. Furthermore, since is independent of
we have that

(30)

(31)

Note that for , we have

(32)

(33)

(34)

(35)

where the last step follows from the fact that is
independent from . Therefore, from (32)–(35) we
observe that (28) implies

(36)
Using (36) and (31), we obtain

(37)
and the secrecy constraint (4) follows from the data-processing
inequality. Hence, we have proved the point is achievable.
The achievability of is proved by repeating the argument

above by exchanging user 1 with user 2.
Remark 3: As is evident from (37), the secrecy guarantee

achieved by one user is not affected by the transmission strategy
of the other user.

B. Converse :

We need to show that the s.d.o.f. region is contained within

(38)

(39)

(40)

Since (38) and (39) directly follow from the single user case in
[20], we only need to show (40).
Let be the set of links such that an eavesdropper is mon-

itoring for . . .
We establish the following upper bound on the achievable rate
pairs:
Lemma 1:

(41)

(42)

where .
Proof: The proof is provided in Appendix A.

The proof is completed upon adding (41) and (42) so that

(43)

and using

(44)

(45)

(46)

where characterizes the prelog scaling of
with respect to .
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C. Converse :

Without loss of generality, we assume . Let
be the set of links such that an eavesdropper is monitoring for

. Let , and .
Define the set such that . Since

, we have .
Then, Theorem 1 reduces to and

(47)

which we show now. We first introduce the following lemma.
Lemma 2: For any choice of and with appro-

priate cardinalities, the rates and are upper bounded
by

(48)

(49)

where .
Proof: The proof is provided in Appendix B.

For the remainder of the proof, we assume without loss of
generality that . We fix
while choosing different sets of elements: ,
the sets , and a sequence of in the following re-
cursive manner.
Definition 1: Let . For , recursively

construct as follows.
1) Case I:
Let , where de-
notes the th smallest element in . Let ,
and . This case is illustrated in Fig. 6(a) for .

2) Case II:
Let , and , and ,
where . This case is illus-
trated in Fig. 6(b) for .

To interpret the above construction, we note that the set is a
row-vector with elements and let be obtained by con-
catenating identical copies of the vector, i.e.,

(50)

As shown in Fig. 6, by our construction, the vector spans
the first elements of , the vector spans the next
elements of , etc. The constant denotes the index number
of copies of the vector necessary to cover .
When , the row-vector terminates exactly at the

end of the last vector in . Hence,

(51)

By going through the above recursive procedure and invoking
Lemma 2 repeatedly, each time by setting in (48) and (49) to
be , we establish the following upper bound on the rate region.

Fig. 6. The set , and when and . (a) Case
I, . (b) Case II,

.

Lemma 3: For each and the set of chan-
nels defined in Definition 1, the rate pair

satisfies the following upper bound:

(52)

Before providing a proof, we note that (47) follows from (52)
as described below. Evaluating (52) with , using (51) and
letting ,

(53)

(54)

(55)

where the last step uses the fact that

(56)

and

(57)

Dividing each side of (55) by and taking the limit
yields (47).
Proof of Lemma 3: We use induction over the variable to

establish (52). For , note that and and
hence (52) is simply (49). This completes the proof for the base
case.
For the induction step, we assume that (52) holds for some
, we need to show that (52) also holds for , i.e.,

(58)
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holds. For our proof, we separately consider the cases when
and when holds.

When , from Definition 1

(59)

holds. Then, (58) follows by combining (52) with (48) as we
show below. Note that

(60)

(61)

(62)

(63)

(64)

where (60) follows from the chain rule of the mutual informa-
tion and the definition of in (59), while (62) follows from
the Markov condition

(65)
and the fact that already includes

, (63) follows from the fact that , while (64)
follows from the fact that .
Substituting (64) into the last term in (52), we obtain

(66)

Finally, combining (66) with (48) and using [cf. (59)]
we have

(67)

(68)

as required.

When , as stated in Definition 1 we introduce
and recall that

(69)
holds. From (49) and (58), we have that

(70)

(71)

As we will show subsequently,

(72)

Combining (48), (71), and (72) and using we
obtain that

(73)

(74)

which establishes (58).
It only remains to establish (72) which we do now. First, since

it follows that and hence we
bound the first term in the left-hand side of (72) as

(75)

Next, since the set constitutes the
first elements of and
constitutes the last elements of and we have
that

(76)
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where the last relation follows from the definition of [cf.
(69)]. Using (76), we can bound the second term in (72) as
follows:

(77)

(78)

(79)

(80)

where in (79), we use the Markov relation

(81)
and the fact that already contains

. Combining (75) and (80) gives

(82)

thus establishing (72).
This completes the proof.

D. Converse:

We assume without loss of generality that and
as before let be the set of links such that an eavesdropper
is monitoring for message . Since and

holds, we select the sets such that the relations
and are both satisfied. Define

and note that .
Theorem 1 reduces to the following region:

(83)

(84)

(85)

Since (83) and (84) directly follow from the single user case
[20], we only need to establish (85). As in earlier cases we
begin by establishing the following bounds on the rate pair

:

(86)

(87)

where .
Proof: The proof for (86) is identical to (48) in Lemma 2

since the proof does not depend on the choice of . The proof
for (87) is identical to (42) in Lemma 1.
To establish (83)–(85), note that by defining

(88)

we have from (87) that

(89)

and the bounds on and in (86) and (89) are identical
to the bounds (48) and (49) in Lemma 2 with . Applying

Lemma 3 to and for each , it follows
that

(90)

where the sets and the sequence are as in Definition 1.
Substituting (89) into (90) and evaluating the bound for ,
we have that

(91)

Finally, substituting

(92)

(93)

in (91) we obtain (85).

VI. GENERAL MIMO-MAC

The result for the general MIMO case (1) follows by a trans-
formation that reduces the model to the case of parallel inde-
pendent channels in the previous section while preserving the
s.d.o.f. region. As we discuss next, this transformation involves
the GSVD [35] and a channel enhancement argument. For an
analogous application of GSVD to broadcast channels, see e.g.,
[21], [36], [37]. We note that channel enhancement techniques
are used in many different problems in multiuser information
theory; see e.g., [12].

A. GSVD Transformation

Theorem 2[35]: Given a pair of matrices and such
that the rank of is , and the rank of is
, there exists unitary matrices and nonsingular

upper triangular matrix such that for
,

(94)

(95)

(96)

(97)

where are identity matrices, are
zero matrices, and are diagonal matrices with
positive real elements on the diagonal line that satisfy
, and . For clarity, the dimension of each

matrix is shown in the parenthesis in the subscript. has the
same number of columns as . has the same number of
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columns . However, are not necessarily square
matrices and can be empty, i.e., having zero number of rows.
For convenience in notation, we define and ob-

serve that is a square and nonsingular matrix. Then from The-
orem 2, we have

(98)

Without loss of generality, we can cancel and and rewrite
(1) as

(99)

Since and are unitary matrices, the components of are
independent from each other and the power constraints of each
transmitter remains the same as . Because the com-
ponents of are independent, the intended receiver can discard
the last components in without affecting the secrecy
capacity region of this channel. This means that we only need
to consider the case where and rewrite (1) as

(100)

B. Converse

For establishing the converse, we further enhance the channel
model in (100) to the following:

(101)

where is any sufficiently small constant such that,
times themaximal eigenvalue of , is smaller than
1 and is a circularly symmetric unit-variance Gaussian noise
vector.
To establish (101), note that we can express

(102)

where is a Gaussian random vector, independent of and
with a covariance matrix

(103)

which is guaranteed to be positive semidefinite by our choice of
. Upon substituting (102) into (100), we have

(104)

We consider an enhanced receiver that is revealed . Clearly,
this additional knowledge can only increase the rate and serves
as an upper bound. It is also clear that since is independent
of , it suffices to use this information to cancel
in (104) and then discard it. Furthermore, since the matrix is
invertible, upon canceling it, we obtain (101).

We further enhance the receiver by replacing and
with and so that the model reduces to

(105)

where

(106)

(107)

are obtained by replacing each diagonal by the identity ma-
trix. The model (105) can only have a higher capacity, since
each diagonal entry in is between . We observe that in
the resulting channel, model is identical to (22)–(24)

(108)

(109)

(110)

except that the noise variance is reduced by a factor of . Since
a fixed scaling in the noise power does not affect the secure-
degrees of freedom, an outer bound on the s.d.o.f. for the parallel
channel model (22)–(24) with , and defined via (105),
continues to be an outer bound on the s.d.o.f. region for the
general MIMO-MAC channel.
Substituting (108)–(110) in the upper bounds in Sections V-B,

V-C, and V-D, we establish the converse in Theorem 1.

C. Achievability

To establish the achievability for the general MIMO case,
we further use a suitable degradation mechanism to reduce the
model (100) to

(111)

where is any sufficiently large constant such that,
times the minimum eigenvalue of , is greater
than 1 and is a circularly symmetric unit-variance Gaussian
noise vector. Since is nonsingular, we are guaranteed that all
the singular values of are nonzero and hence a exists.
To establish (111), let be a Gaussian noise vector with

covariance

(112)

independent of and consider a degraded version of (100)

(113)

which can be simulated at the receiver by adding additional
noise to its output. Since , we
can express . Substituting into (113) and
canceling the nonsingular matrix , we arrive at (111).
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Let denote the minimum element on the diagonals
of and in (96) and (97), respectively. By appropriately
scaling down the transmit powers on each of the subchannels,
we can further reduce (104) to

(114)

where are defined in (106) and (107), respectively. The
model (114) is identical to the parallel channel model (22)–(24)
with the size of sets , and in (108)–(110) and with a
noise power that is larger by a factor of . Since a constant
factor in the noise power does not affect the s.d.o.f., the coding
schemes described in Section V-A achieve the lower bound in
Theorem 1.

VII. CONCLUSION

In this paper, we have studied the two-transmitter Gaussian
complex MIMO-MACwiretap channel where the eavesdropper
channel is arbitrarily varying and its state is known to the eaves-
dropper only, and the main channel is static and its state is
known to all nodes. We have completely characterized the
s.d.o.f. region for this channel for all possible antenna configu-
rations. We have proved that this s.d.o.f. region can be achieved
by a scheme that orthogonalizes the transmit signals of the
two users at the intended receiver, in which each user achieves
secrecy guarantee independently without cooperation from the
other user. The converse was proved by carefully changing
the set of signals available to the eavesdropper through an
induction procedure in order to obtain an upper bound on a
weighted-sum-rate expression.
We note that the scope of this paper is limited to the case

of two-transmitters. Our proof involves simultaneously decom-
posing the channel matrices of the two users into parallel chan-
nels using the GSVD. Then a set of eavesdropper channels is
carefully constructed for the parallel-channel model to obtain
an upper bound, tighter than the usual cut-set bound. Since the
GSVD transform does not easily extend to more than two ma-
trices, we did not pursue the case of more than two transmitters
and leave this extension as a future work. We also note that our
setup assumes that the channel matrices of the legitimate re-
ceivers are static, i.e., fixed for the entire period of communica-
tion. Our core ideas readily extend to the case when the channel
gains of the legitimate users change over time, but are revealed
to all the terminals.
As suggested by this paper, the optimal strategy for a commu-

nication network where the eavesdropper channel is arbitrarily
varying can potentially be very different from the case where the
eavesdropper channel is fixed and its state is known to all termi-
nals. This is also observed for example in the MIMO broadcast
channel [21] and the two-way channel [38], [39].
Finally, we note that the proposed setup allows the eaves-

dropper terminals to perfectly emulate the legitimate receiver’s
channel if sufficiently many antennas are available. Such an
assumption may be unavoidable if the environment is uncon-
trolled and an eavesdropper could be placed right where the in-
tended receiver is located. In controlled environments where the
eavesdropper must maintain a certain physical separation, our
proposed setup may still be realistic if not pessimistic.

APPENDIX A
PROOF OF LEMMA 1

For , from Fano’s inequality, we have

(115)

(116)

(117)

(118)

where the last step (118) relies on the fact that the additive noise
at each receiver end of each subchannel in Fig. 5 is independent
from each other and hence

holds. Since is independent from and ,
(118) can be written as

(119)

(120)

where the last step (120) follows from the fact and
hence . We separately bound each of the two
terms above

(121)

(122)

(123)

where the last step follows from the Markov chain relation
. We upper bound the

second term in (120) as follows:

(124)

(125)

(126)

where we use the Markov relation
in step (124) and (126) follows from the fact

Markov relation

(127)

Note that (41) follows upon substituting (123) and (126) into
(120).
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For , from Fano’s inequality and the secrecy constraint,
we have

(128)

(129)

(130)

(131)

(132)

where (130) follows from the fact that is indepen-
dent of and (131) follows from the fact that

holds. We separately
bound each term in (132)

(133)

(134)

(135)

where the justification for establishing (135) is identical to (123)
and hence omitted. We finally bound the second term in (132)

(136)

(137)

(138)

(139)

(140)

where the justification for arriving at (140) is similar to (126)
and hence omitted.
Substituting (135) and (140) into (132), we establish (42).

APPENDIX B
PROOF OF LEMMA 2

Assume the eavesdropper monitors and for .
Then for , from Fano’s inequality, we have

(141)

(142)

(143)

(144)

(145)

(146)

(147)

where (145) follows from the fact that is independent
of , while (146) follows from the fact that
since the noise across the channels is independent the Markov
condition

holds and furthermore we have defined .
Since the channel noise is independent of the message,

holds. Hence,

(148)

(149)

(150)

(151)

where the last step uses the fact that the second term in (150)
involves conditioning on and hence is zero. This
establishes (48).
For , we assume the eavesdropper is monitoring

for . Using Fano’s inequality and the secrecy
constraint, we have

(152)

(153)

(154)

(155)

(156)

(157)

(158)

(159)

(160)

(161)

where (155) follows from the fact that are the
transmitted signals from user 1 and independent of
and (157) follows from the fact that and

and hence holds. Equation (159)
follows from the fact that since the noise on each channel is
Markov, we have
and hence the second term in (158) is zero.
Hence, we have proved Lemma 2.
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