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Strong Secrecy and Reliable Byzantine Detection in
the Presence of an Untrusted Relay
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Abstract—We consider a Gaussian two-hop network where the
source and the destination can communicate only via a relay node
who is both an eavesdropper and a Byzantine adversary. Both the
source and the destination nodes are allowed to transmit, and the
relay receives a superposition of their transmitted signals. We pro-
pose a new coding scheme that satisfies two requirements simul-
taneously: the transmitted message must be kept secret from the
relay node, and the destination must be able to detect any Byzan-
tine attack that the relay node might launch reliably and fast. The
three main components of the proposed scheme are the nested lat-
tice code, the privacy amplification scheme, and the algebraic ma-
nipulation detection (AMD) code. Specifically, for the Gaussian
two-hop network, we show that lattice coding can successfully pair
with AMD codes enabling its first application to a noisy channel
model. We prove, using this new coding scheme, that the proba-
bility that the Byzantine attack goes undetected decreases expo-
nentially fast with respect to the number of channel uses, while the
loss in the secrecy rate, compared to the rate achievable when the
relay is honest, can be made arbitrarily small. In addition, in con-
trast with prior work in Gaussian channels, the notion of secrecy
provided here is strong secrecy.

Index Terms—Algebraic manipulation detection (AMD) code,
Byzantine detection, information-theoretic secrecy, lattice code,
relay channel, strong secrecy.

I. INTRODUCTION

I NFORMATION-theoretic secrecy, first proposed by
Shannon [1], provides confidentiality of transmitted

information against an adversary regardless of its computa-
tional power. Shannon proved that if the adversary has access
to the signals transmitted by the sender of the secret message
through a noiseless channel, then, to achieve complete inde-
pendence between the confidential message and the adversary’s
observation, the sender and the receiver have to share a secret
key of the same rate as the message. Although Shannon’s result
implied that secret communication was impractical in this
setting, it was later shown by Wyner [2] that this pessimistic
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result was a consequence of the noiseless channel assumption.
Specifically, it was shown that when the adversary has noisy
observations of the signals transmitted by the sender, a nonzero
transmission rate for the secret message is achievable without
requiring the transmitter to preshare a key with the receiver
[2]–[4]. More recently, the fundamental rate limits at which
the secret communication can take place in the presence of
an eavesdropper were studied for a number of multiterminal
models, e.g., the broadcast channel [5], [6], the multiple access
channel [7]–[9], and the interference channel [10]–[12].
Secure communication for channel models with a relay node

has been studied from a variety of perspectives, including the
relay node as a helper to the legitimate communication link [13],
or to an eavesdropper [14]. In [15]–[18], the authors consider
the case where the relay node itself is the eavesdropper from
whom the information transmitted from the source to the desti-
nation must be kept secret. This setting, which provides theoret-
ical foundations toward the utilization of untrusted relay nodes
in network design, is relevant in practice: The potentially un-
trusted routers of today’s Internet routinely relay sensitive infor-
mation for its users. The current approach is that the authenticity
and secrecy of the information is protected by security protocols
assuming these routers are limited in computational power [19].
It is interesting to address the role of these routers if they are ad-
versaries with unlimited computation power.
To answer this question, in [16], [17], and [20], as a first step,

we considered the case where the relay node was “honest but
curious.” This means that the curious relay node is not trusted
with confidential messages. On the other hand, it is honest in
the sense that it conforms to the system rules and performs
the designated relaying scheme in every channel use. He and
Yener [16] considered the three-node relay network with such a
relay. In [17] and [20], the authors considered the two-way relay
channel where two nodes could only communicate through such
a relay node. In these works, we showed that if the relay was
not trusted but honest, recruiting it to help relay information
can provide a higher secrecy rate than simply treating the relay
node as an eavesdropper. This effect is most pronounced in the
two-hop model studied in [17], in which the achievable rate is
0 if the relay node is excluded from communication, and in-
creases to being within 1bit of the rate of having trusted relay
if the untrusted relay node is properly utilized. Similar observa-
tions can be made in networks with multiple confidential mes-
sages [18].
It is the next natural step to consider the problem where the

relay node is curious and is potentially dishonest, i.e., when the
relay can deviate from its designated behavior. This can be as
benign as the relay node experiencing a failure and stopping
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transmission, which is obviously easy to detect. However, if
the relay is a malicious entity, or is captured by one, a more
detrimental scenario can materialize. Specifically, the relay can
attempt to deceive the destination into accepting a counterfeit
message by actively manipulating the signals it relays. Such
behavior is a “Byzantine attack” [21]. When the adversary
is limited in computational power, this type of attack can be
detected via message authentication code or digital signatures
[19]. The security guarantee promised by these schemes is
essentially based on the absence of known effective attack
strategies and the fact that their reliability can be proved if a
very small set of assumptions is made (see [22, Th. 12.14, Th.
13.11], for example).
In this paper, we tackle the case where the Byzantine adver-

sary has unlimited computational power. In an effort to demon-
strate the simplest network which relies on an untrusted node
to communicate, we consider a two-hop network [17]. In con-
trast to [17], which considered an honest but curious relay, we
allow the relay node to actively modify the transmitted signal
in any way it desires. The goal of the destination thus becomes
detecting reliably that the message has been altered, whenever
the relay node chooses to do so.
Toward accomplishing this goal, there are several known re-

sults that can be leveraged, each with their own limitations. For
example, Byzantine attack detection can be viewed as an au-
thentication problem, by treating the counterfeit message as a
message from a “wrong” source node. An information-theoretic
secrecy scheme with an authentication capability was proposed
in [23]. However, like other message authentication codes [22],
the source has to share an authentication key with the destina-
tion beforehand.
It is known, on the other hand, that to detect the Byzantine

attack, which is a milder requirement than authentication, it is
not essential to share keys. In [24], the so-called algebraic ma-
nipulation detection (AMD) code was used for encoding the
data from the source node which ensures the probability that the
Byzantine attack succeeds can be made arbitrarily small with an
arbitrarily small loss in rate. A limitation of this scheme is that
it has to be used along with a secrecy sharing scheme that has
a certain linearity property [24], a property that is easily ful-
filled in a noiseless network as shown in [21] and [25]. Indeed,
in [25], we considered a deterministic two-hop network and it
was shown that by using an AMD code, the probability that the
Byzantine adversary wins decreases exponentially fast with re-
spect to the total number of channel uses while the loss in
rate can be made arbitrarily small. On the other hand, for noisy
channels, secret sharing schemes generally fail to have the re-
quired linearity property. As a result, to date, the strongest result
that could have been obtained is that, for a noisy two-hop net-
work, the probability that a Byzantine attack goes undetected
decreases exponentially only with respect to [25].
The main contribution of this study is to demonstrate that for

the Gaussian two-hop network, the probability that a Byzantine
attack goes undetected, i.e., the adversary wins, can be made
to decrease exponentially fast with respect to , while the
loss in secrecy rate can be made arbitrarily small. Hence, the
same result achievable for the deterministic two-hop network
is attainable for the noisy two-hop network. This represents a

Fig. 1. Gaussian two-hop network. Phase 1 is indicated by solid line, and phase
2 by dashed line. R/E: Relay/Eavesdropper. is not shown.

departure from traditional security approaches that assume a
noiseless bit pipe for communication and brings the physical
characteristics of the channel into the picture while providing a
guarantee thought to be possible only in the noiseless setting.
The key to prove this result is the introduction of a new strong
secrecy scheme. Its existence is proved using the representation
theorem presented in [11] and [26] and the privacy amplifica-
tion technique presented in [27] and [28]. Compared to the pre-
viously known strong secrecy schemes, the main differences are
as follows.
1) Unlike the randomly generated codes in [29], the decoder
of the new scheme is linear for certain rate configurations.

2) Unlike [11] and [26], the codeword consists of a single
lattice point rather than multiple lattice points. This allows
the mutual information between the confidential message
and eavesdropper’s observation to decrease exponentially
with respect to as in [30] while still preserving the
linear property of the decoder.

The first item provides the linear property required by AMD
codes. The exponential decay property in the second item is es-
sential in preserving the Byzantine detection performance of-
fered by AMD codes. As will be explained in Section VI-B,
existing strong secrecy methods are not sufficient for these pur-
poses.
The remainder of this paper is organized as follows: In

Section II, we describe the system model and formulate the
Byzantine detection and secrecy problem. In Section III, we
review known Byzantine detection schemes, in particular, the
AMD code and describe the technical obstacles to be overcome
in this study. Section IV describes the overall architecture
of the Byzantine detection scheme proposed in this paper.
Sections V–VII examine each component in the scheme in
detail and analyze the performance of the scheme. Section VIII
concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The Gaussian two-hop network with a Byzantine relay node
is shown in Fig. 1. In this model, node 1 wants to send a con-
fidential message to node 2. Since it cannot communicate
with node 2 directly, it recruits the help of a relay node, who
is not trusted with the message . The signal received by the
relay node consists of the signals transmitted by both nodes 1
and 2, and the signal broadcasted by the relay node is heard by
both nodes as well. These are fitting assumptions for the wire-
less medium.
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Let denote the signal transmitted by node 1,
2 and the relay. Let and denote their received
signals, respectively. After normalizing the channel gains, we
have

(1)

(2)

where , , and are independent Gaussian random vari-
ables with zero mean and unit variance, and is the normalized
channel gain. Since is not used in the scheme described in
this paper, it is omitted in Fig. 1 for clarity. Each node is as-
sumed to be half-duplex. For simplicity, the relay node trans-
mits in half of all channel uses. Without loss of generality, it
is assumed that nodes 1 and 2 do not transmit when the relay
node transmits since the relay node cannot receive and relay
their transmitted signals simultaneously. It is also assumed that
during the channel uses that the relay node transmits, its trans-
mission power averaged over these channel uses should not ex-
ceed . During the remaining channel uses that nodes 1 and 2
may transmit, the transmission power of each of these two nodes
averaged over these channel uses should not exceed .
We assume the Byzantine adversary at the relay node can em-

ploy any stochastic function to compute its current transmitted
signal. Let be its transmitted signal at the channel use.
Let be the local randomness available to the relay node. Let

be the signals it received in the past. Let be the con-
fidential message it is currently relaying. Let be the relaying
function. Then, the attacker (relay) can compute

(3)

It might seem inconsistent at first glance to assume the Byzan-
tine adversary knows the message, which should be kept secret
from the relay node in the first place. However, in reality, the
secrecy of the message can be broken due to a nontechnical
reason, for example, by human error. In that case, the defini-
tion (3) will guarantee that the performance of the Byzantine
detection scheme is not affected. Through this pessimistic as-
sumption, we are able to claim that the scheme can deal with
worst case attacks.
Let the total number of channel uses be , during

which each node transmits during channel uses. Let be
the estimate of computed by the destination, i.e., node 2,
based on its observation. Note that because the relay can be a
Byzantine adversary, node 2 may or may not accept as a
genuine message from node 1 based on certain criteria.
The Byzantine detection problem for secure communication

using an untrusted relay can be stated as follows:
Find the secrecy rate of , defined as

(4)

such that the following conditions hold.
1) When the relay node is honest, and is uniformly dis-
tributed over the message set, then both and

(5)

should decrease exponentially fast with respect to the total
number of channel uses. Hence, the transmission of is
reliable.

2) For all in the message set, the probability that the ad-
versary wins, wins , given by

wins

(6)

should decrease exponentially fast with respect to the total
number of channel uses. Hence, any modification on is
detected reliably.1

3) should decrease exponentially fast with re-
spect to the total number of channel uses. This means the
information that the adversary has regarding the value of
is negligible.

Remark 1: Observe that the condition of reliable Byzantine
detection in 2) is independent of the distribution of .

Remark 2: For the achievable scheme, we develop in
the sequel, nodes 1 and 2 do not use the signals they re-
ceive in the past to compute the signals they transmit in
the future. Consequently, we have and

. Hence, in reality, we only need
to prove that is negligible for 3) to hold.

Remark 3: It should be noted that the Byzantine detection
problem described here is different from that in references
[31]–[34]. In these works, the adversaries also actively manip-
ulate the signals received by the destination. The goal in these
references is to find a way for reliable communication in the
presence of such adversaries carrying out the worst case attack.
In the two-hop network considered in this paper, this is not
possible since there is no direct link between the two legitimate
communicating nodes. Hence, when Byzantine behavior is
detected, we need to forgo the relay.

Remark 4: For simplicity, we use power constraint for all
nodes. The Byzantine detection scheme proposed in this paper
can be easily adapted to the case where nodes have unequal
power constraints, since the coding scheme does not depend
on the rate at which the relay node can transmit to the second
node. Let denote the power constraint of the relay, and let

denote the power constraints of the two source
nodes. . The relay would need more channel
uses to transmit if is small. When , the scheme can
be applied by treating the power constraints of the two sources
to be .

III. KNOWN BYZANTINE DETECTION SCHEMES

In this section, we review some known Byzantine detection
schemes and explain why they are insufficient for the scenario
considered in this study.

1When conditioned on a fixed message value , (3) becomes
. In this case, the set of strategy available to the

attacker is identical regardless of whether the Byzantine adversary knows
or not and hence the proof which shows is negligible is identical
in both cases.
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A. Algebraic Watchdog

Kim et al. [35] proposed to use the sender of the confiden-
tial message to monitor the behavior of the relay node. When
the message is confidential as in our setting, using this so-called
watchdog is not possible. This is because there is no direct link
between the two legitimate communicating nodes which means
the sender has no information regarding the signals transmitted
by the destination. As will be explained in Section V, these
signals are necessary in order to deploy cooperative jamming
[7] to keep the message secret from the relay node (see also
[17]). Since the received signals at the relay is corrupted by
signals transmitted by the destination, so are the signals trans-
mitted from it. This prevents the source from detecting whether
the relay misbehaves by just looking at its transmitted signals
without the knowledge of the signals transmitted from the des-
tination.

B. AMD Codes

Cramer et al. [24] proposed AMD codes, with which the re-
ceiver can achieve Byzantine detection. They are defined as fol-
lows [24]. Let denote a Galois field that has ele-
ments, where is a prime number and is a positive integer. An
AMD codeword is composed of three parts: , where
is the vector on representing the message. The
component is called the random seed and is generated from

by the encoder itself. is the hash tag and is computed
according to the hash rule:

(7)

where is the component of and the addition and multi-
plication is defined over . Suppose that node 2 receives
, , , where . Let . . Then,
[24] has the following result:

Theorem 1 [24, Th. 2]: Assume at least one of ,
, is not zero. If the distribution of conditioned on

is uniform over the field , being a
prime, and is not divisible by , then the probability that
the hash rule (7) holds for is bounded by .

Remark 5: The rate of the AMD code is . The rate can
be made arbitrarily close to 1 by choosing a large enough value
for .
On the other hand, an AMD codeword can be represented by

less than bits. Hence, if we fix and ,
the codeword length is a linear function of . Consequently, for
a given code rate, the probability that can pass the
hash rule check (7) decreases exponentially fast with respect to
the codeword length.

Despite the excellent performance of the AMD code, ap-
plying it in a noisy channel is by no means straight-forward.
This is exemplified by the condition in Theorem 1: The distri-
bution of conditioned on must be uniform
over the field . In a noisy channel, in general, and
are not independent. In the two-hop network considered in

this paper, this can be seen from the expression of . Let

Fig. 2. Architecture of the Byzantine detection scheme.

be the decoding function used by node 2. Let be the signal
received by node 2 if the relay is honest, and if the relay is
dishonest. Assuming the decoding result is correct at all nodes
if the relay is honest, is given by

(8)

(9)

By observing (9), we notice that the condition in Theorem 1
can be fulfilled if is linear in its first parameter and
is independent from . In general, it is difficult for a decoding
function to be linear without a specifically designed signaling
scheme.

IV. ARCHITECTURE

This section provides an architectural overview of the
Byzantine detection scheme proposed in this paper. As shown
in Fig. 2, conceptually the scheme can be divided into three
layers.
1) The bottom layer is the physical layer responsible for sig-
nals from node 1 to node 2 to be transmitted reliably. For
this purpose, the relay is asked to perform compute-and-
forward [36], which we shall review in Section V. In this
scheme, signals are transmitted in the unit of so-called lat-
tice points [37]. For now, for conceptual ease of under-
standing, these lattice points can be viewed as elements
from a Galois field .

2) Since the compute-and-forward scheme by itself is gener-
ally insufficient to ensure the secrecy of the data, a middle
layer, called “translation layer,” is introduced to achieve
secrecy. In the translation layer, data from upper layers are
mapped to lattice points so that when these lattice points
are transmitted by the physical layer through the relay,
the eavesdropper at the relay can obtain little information
about the data. Furthermore, the mapping is designed such
that the linearity property required by AMD codes, as de-
scribed in Section III, can be satisfied.

3) The top layer, the AMD coding layer, takes the confidential
message in the format of elements from for
some positive integer . This layer then computes the
AMD codeword from , which becomes the component
in the AMD codeword, as described in Section III. The
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resulting AMD codeword is then sent to the translation
layer for transmission.

On the time axis, the transmission of an AMD codeword can
be divided into the following four stages (see Fig. 2).
1) The zeroth stage generates a random seed, which is the
component in an AMD codeword . .

2) The first stage generates a one-time pad , which will be
used to secure the hash tag . .

3) The second stage transmits , where is the
addition operation defined over .

4) The third stage transmits .
During stages 0, 1, and 3, we use compute-and-forward relaying
at the physical layer. During stage 2, since is already secured
by the one-time pad , a conventional two-hop decode-and-for-
ward relay scheme is sufficient to transmit . Hence, in this
stage, node 2 remains silent.
The zeroth stage, during which the random seed is gener-

ated, is composed of the following steps.
1) A lattice point is chosen from the nested lattice code-
book, which we shall define in Section V, according to a
uniform distribution and transmitted to node 2 through the
physical layer using compute-and-forward.

2) is computed by the translation layer through ,
where is a linear mapping that maps a transmitted lattice
point from to . We shall prove in The-
orem 2 in Section VI that there exists such a linear mapping
that preserves the confidentiality of against the eaves-
dropper.

The same steps are used to generate the one-time pad in
stage 1.
The third stage, during which is transmitted, is composed

of the following steps.
1) First is mapped to an element in a finite field, which is
represented by in (39).

2) The translation layer then maps the field element to a lat-
tice point using a stochastic encoder, which will be de-
scribed explicitly in (39).

3) is then transmitted by the physical layer using compute-
and-forward relaying.

Node 2 computes its estimate for , , and , denoted by , ,
and respectively, using the decoder offered by the physical
layer. The estimate for , , is computed from . It then
accepts as genuine if , , satisfies (7) by substituting , ,
with , , .

Remark 6: Here, the transmission of uses the idea of mes-
sage authentication codes with key manipulation security in [24,
Sec. 4]. Note that for a given , the distribution of hash tag is
in general not uniform. Hence, the distribution of depends on
the distribution of . However, as we shall see in Section VI-A,
if we want to use the strongly secure scheme in Section VI-A
to transmit and desire to fix the hash function , we
need to know the distribution of beforehand, which is difficult
since the distribution of is hard to determine beforehand. To
solve this problem, we introduce another random seed from

, which can be generated via the linear coding scheme
in Section VI-A. From Lemma, is uniformly distributed over

. Hence, can be transmitted by using as a one-time
pad.

V. COMPUTE-AND-FORWARD

In this section, we review the compute-and-forward scheme
that uses nested lattice codes. This scheme was used in [36] for a
Gaussian two-way relay channel without eavesdroppers. Later,
it was used in [26] as a building block to transmit confidential
messages when the relay is honest but curious, i.e., is an eaves-
dropper but not a Byzantine adversary. In this study, we use this
relay method in the physical layer as part of the Byzantine de-
tection scheme.
We begin by introducing some notations for the nested lattice

structure: For a lattice , the modulus operation is
defined as , where
is the Euclidean distance between and . The fundamental
region of a lattice is defined as the set
. A pair of -dimensional lattices is said to have a

nested structure if [37].
Now consider a pair of -dimensional nested lattice pair

which is designed as in [37]. The signal transmitted by
each node is given by

(10)

where , and are two fixed vectors
in and are known by the relay node. For our purpose,
will be computed from the confidential message. is indepen-
dent from and is chosen from according to a uni-
form distribution. As a result, serves
as the cooperative jamming signal to confuse the untrusted relay
node.
An honest relay node will then decode and

transmit during phase two, where
is a fixed vector in and is known by node 2. Node 2 then
decodes from the signal it received
during phase two. An estimate of , denoted by , is then
computed from .
Define be the cardinality of a set . Define as

(11)

Define as the average transmission power per dimension of
the nested lattice :

(12)

where denote the Euclidean distance between and 0 in
dimensional real space . Then, it was shown in [38] that

if

(13)

the probability decreases exponentially with re-
spect to .

Remark 7: It is clear that if the relay chooses to transmit
for some arbitrary , then
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Fig. 3. Lattice input wiretap channel.

node 2 will be forced to accept a message that does not orig-
inate from node 1. This shows that unless some proper mea-
sures are taken, a Byzantine adversary can easily succeed in
this scenario.

Remark 8: , are conventionally defined as
random variables uniformly distributed over [37]. The
reason of defining them to be random is that it is easier to an-
alyze the average error performance of an ensemble of lattice
code books parameterized by the dithering vectors than to ana-
lyze the error performance of a specific lattice code book [39].
However, from the result on the average performance, we can
also claim that there must exist some fixed ,
which corresponds to fixed lattice codebooks in the ensemble,
and these also provide vanishing error proba-
bility and meet the average power constraints [11]. Hence, in
the sequel, we assume , are fixed.

VI. USING NESTED LATTICE CODES TO PROVIDE STRONG
SECRECY

The channel input–output relationship implied by the com-
pute-and-forward scheme described in Section V is summarized
by the lattice input wiretap channel shown in Fig. 3.2 The main
channel takes input , and produces output
. The eavesdropper channel also takes input , and has the

same observation as the signals received by the relay node in the
two-hop network. It is clear that the eavesdropper observation is
not independent from . Hence, an additional measure is nec-
essary to secure the data if this scheme is used to transmit con-
fidential message. This operation, as mentioned in Section IV,
is carried out in the translation layer and is described in this
section.

A. Strongly Secure Scheme

1) When for a Prime : The self-similar nested
lattice code with a prime nesting ratio, i.e., , is a special
case of the good nested lattice ensemble proposed in [37, Sec.
7]. We first consider this case since when is a prime, the set

is isomorphic to a finite field, as shown by
the following lemma.

Lemma 1: When for a prime and the generation
matrix of has full rank, is isomorphic3

to .

2The only difference from the original two-hop network is that in the two-hop
network, it takes another channel uses for the relay to relay the lattice point
to node 2 during which node 1 and 2 do not transmit. Here, to simplify the
argument, we omit this detail and will take these additional channel uses into
account when we revisit the two-hop network in Section VII.
3This is a group isomorphism over the addition operation. It is not a field

isomorphism.

Proof: The proof is provided in Appendix A.

Remark 9: The isomorphism in Lemma 1 is not affected by
the choice of . The fixed dithering vector is simply used to
constrain the average power of the lattice code book.

As we will show later in the proof of Theorem 2, the isomor-
phism property proved by Lemma 1 allows the resulting decoder
to be linear and proves to be of critical importance in the Byzan-
tine detection scheme in Section VII.
The next theorem declares the existence of the strong secrecy

scheme.

Theorem 2: For a given constant that can be arbitrarily
small, assume is a prime large enough such that

(14)

Then for an integer , such that

(15)

there exists a linear mapping from to such
that
1) has full row rank ;
2) when are uniformly distributed over

and are independent of each other, there exists
a positive constant such that

(16)

Before proving the theorem, we need several supporting re-
sults.
First, the following representation theorem from [26] is

useful.

Theorem 3 [26]: For any , such that
, there exists a functionmapping from to an integer
in such that is uniquely determined given

the value of the function, , and . Theorem
3 can be used to prove the following result. Define as

(17)

which is obtained by subtracting the channel noise from
. Then, based on Theorem 3, in (17) can be represented

by . Since , are
known by each node, this means in (17) can be represented
by .
We also need the following lemma which says most matrices

have full rank.

Lemma 2: Let be taken from the set of linear mappings
from to according to a uniform distribution.
Hence, can be represented as a matrix over with
rows and columns. The probability that has full row rank
is greater than .

Proof: The lemma can be derived from [40, Lemma 6]. A
self-contained proof is provided in Appendix B for the reader’s
convenience.
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Finally, we need the following results on privacy amplifica-
tion [27], which we state here for completeness.

Definition 1 [27, Definition 1]: A set of functions
is a class of universal hash function if for a function taken
from the set according to a uniform distribution, and

, the probability that holds is at most
.

We next state the results based on these definitions.

Lemma 3 [27]: The set of linear mappings as defined in
Lemma 2 is a class of universal hash function.

Theorem 4[27, Corollary 4]: Let be selected according to
a uniform distribution from a class of universal hash function
from to . For two random variables , being
defined over , if for a constant , , then

(18)

where is the Rényi entropy
and denotes the Shannon entropy.
The following theorem provides a bound on the decrease of

Rényi entropy given that a finite number of bits are revealed.

Theorem 5 [41, Th. 5.2] [28, Lemma 3]: Let and be
random variables. Let be the alphabet set of . Let .
Then with probability at least , we have

.
Denote with for notational simplicity.

With these preparations, we are now ready to prove Theorem 2:
Proof of Theorem 2: For the distribution for

stated in Theorem 2, is independent from . Therefore,
we have

(19)

Let be the integer defined in Theorem 3. Then, according
to Theorem 5, for a given integer , and

, with probability :

(20)

(21)

(22)

Thanks to Lemma 1, an element can be identified to an
element of , which is isomorphic to ; there-
fore, with a slight abuse of notation we write in place of

, where is the group isomorphism between
and .
According to Lemma 3, is a universal hash function.

Hence, according to Theorem 4, we have

(23)

where is given by (22)

(24)

Since depending on the value of and (22) holds with
probability , from (23), we have

(25)

Note that
(26)

Hence, in order for to be negligible,
we expect and to decrease exponentially
with respect to . To achieve this, we choose , where

so that in (24) is positive. We choose
such that for

(27)

(28)

(29)

We observe that if (27)–(29) are satisfied, to decrease
exponentially with respect to . We also observe that if we let

, then (27)–(29) lead to (15).
For these choices of and , from (25) and (26), we observe

that there exists , such that

(30)

We next use the fact that for sufficiently large , most have
full row rank as shown in Lemma 2. Therefore, for a uniform
distribution for , and being independent, there
must exists a , such that
1) has full rank;
2) from the Markov inequality

(31)

Finally, we use Theorem 3 which says in (31) can
be replaced by . Hence, we have proved Theorem 2.

The secrecy generation scheme described above is useful
only if the generated random variable, , can serve as the
random seed, , in the AMD tuple as described in Section III.
Hence, we need the following lemma on the distribution of

.

Lemma 4: If is uniformly distributed over , and
has full row rank, Then, is uniformly distributed over

.
Proof: Since has full row rank, and its elements are taken

from the field , it can always be represented as

(32)

where is an invertible matrix, is an
matrix. Hence, is uniformly distributed over .
is an identity matrix. Since the sum of any two indepen-
dent field elements will be uniformly distributed if one of the
field element is uniformly distributed [39, Lemma 2], it can be
verified that is uniformly distributed over .
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2) General Case: When does not have the self-sim-
ilar relationship as described in Section VI-A1, we can still ex-
tract a strongly secure random variable from a lattice point using
the same method as shown in Section VI-A1. The only differ-
ence is that the map between the extracted random variable and
the lattice point will not be linear.
Consider a general -dimensional nested lattice codebook

. Recall that , as defined in (11), is the rate of the
codebook. Assume . Let be the operation that rounds
to the nearest integer less than or equal to . Define as

(33)

Then
(34)

Choose any subset of the codebook that
yields the minimal average decoding error probability with the
lattice decoder and has size . Define as a bijective
mapping from to . Then, we have the following
theorem.

Theorem 6: Let be a constant such that

(35)

Then, for an integer , such that

(36)

there exists a linear mapping from to such
that
1) has full row rank ;
2) when is uniformly distributed over , is uniformly
distributed over , are independent
of each other, we have

(37)

for a certain .

Proof: The proof is similar to that of Theorem 2, and is
given in Appendix C.

3) Encoder Construction: Although both Theorem 2 and
Theorem 6 can be used to prove the existence of an encoder
with rate arbitrarily close to , with defined
in (11), only Theorem 6 is used in the sequel to transmit confi-
dential messages. Theorem 2 is only used to generate strongly
secure random seeds, for which Theorem 2 is sufficient by it-
self. Hence, in this section, we discuss Theorem 6 only. The
argument we use is as follows.
For a given that has full row rank, let be an

matrix such that is a square matrix that is invertible.

Define and such that

(38)

Then, . Define as the inverse of , then

the encoder is given by

(39)

where be the input to the encoder. We assume
is uniformly distributed over . is

the output of the encoder. represents the randomness in the
encoding scheme. We observe that, if is
uniformly distributed over and (39) is used as the en-
coder, is also uniformly distributed over the set . Since

is chosen when has a uniform distribution over ,
this means that when (39) is used as an encoder, the secrecy con-
straint in Theorem 6, (37), still holds.
Since the encoder (39) uses channel uses to transmit a
binary vector, the rate achieved by the encoder is

(40)

where equals if or 0 otherwise. According to (13),
this means can be arbitrarily close to4

(41)

B. Comparison With Other Wiretap Coding Schemes

Although this work leverages the same technique, namely,
privacy amplification as [28], it is distinct from [28] in the fol-
lowing aspects:
Maurer and Wolf [28] proposed that one can invoke any

weakly secure scheme multiple times and extract a strongly
secure key using privacy amplification. Let denote the
set of functions , and are constants.
In our model, each invocation of the weakly secure scheme
involves channel uses, where is the dimension of
the lattice code. Suppose this scheme is invoked for times.
Then, the total number of channel uses is . Let denote
the generated key and be the signals observed by the
eavesdropper; then it can be shown by following [28] that5

(42)

In this paper, in Theorem 2 can be viewed as the strongly
secure key. Based on Theorem 2, we have

(43)

By comparing (43) with (42), we observe their relationship de-
pends on whether the lattice dimension can be kept as a con-
stant. If is to be kept as a constant, then another layer of error
correction code must be used as an outer code to correct the er-
rors from the inner code which is the nested lattice code. The

4Due to the structural limitation, (41) is not known to be achievable via self-
similar nested lattices.
5To obtain (42), it is necessary to replace the weak typicality notion in [28]

with strong typicality.
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redundancy introduced by the outer code is called error recon-
ciliation bits in [28]. Doing so leads to a negligible loss in se-
crecy rates and does not affect (42). However, it should be noted
that these redundancy bits can also bemodified by the Byzantine
adversary, which must be detected reliably. Yet, introducing the
outer code renders the decoding operation to be nonlinear, since
the decoder of most error correction code entails nonlinear op-
erations, which, as we have mentioned earlier in Section III-B,
makes it difficult to prove the effectiveness of AMD codes. This
is the major obstacle that prevents a direct application of [28] to
our problem and motivates devising a different strong secrecy
scheme given in this section.

VII. BYZANTINE DETECTION

In this section, we analyze the performance of the Byzantine
detection scheme.

A. Notation

Recall that, as described in Section IV, the transmission is
divided into four stages.
The notations for the average transmission power for each

stage are defined as follows. Recall that stage 0 and 1 are used to
generate and using an -dimensional lattice code as shown
in Section VI-A1. We shall use to denote the average power
per channel use for these two stages. Stage 2 transmits
via the conventional decode-and-forward two-hop protocol. For
such a protocol, we can use -dimensional lattice codes whose
rate equals bits per channel use. Let the average transmis-
sion power for this stage be . Stage 3 transmits via the en-
coder described in Section VI-A2, whose average transmission
power per channel use is . We choose as ,
where is a positive constant that can be made arbitrarily
small and is the overall transmission power limit defined in
Section II.
We next introduce the notations for the signals associated

with each stage: denote the signals trans-
mitted by node and the relay during the th stage,

. Similarly, de-
note the signals and channel noise observed during the th stage.

denotes the estimate for computed
by node 2. To simplify the notation, we omit the superscript for
these signals which were used to indicate their dimensions.

Remark 10: Note that both and are only functions of
the rate of their respective lattice code, which is . Hence,
and are only functions of . Therefore, we can increase

, while leaving unchanged.

B. Performance Analysis

We next derive the following important lemma which implies
the condition of AMD code stated in Theorem 1 can be fulfilled
using the transmission scheme described in Section IV.

Lemma 5: Let be any vector on . Then

(44)

where is a positive number defined in Theorem 2.

Proof: The proof of Lemma 5 is based on the strong se-
crecy offered by Theorem 2 and Theorem 6, and is provided in
Appendix D.

Remark 11: Lemma 5 implies that

(45)

Since , this means

(46)

Remark 12: Note that does not de-
pend on the error exponents of the lattice decoder. Also, it does
not depend on whether is known by the attacker beforehand.

We next link Lemma 5 and Theorem 1 with Pinsker’s in-
equality which leads to the following main result of this paper.

Theorem 7: For the Gaussian two-hop network, for a rate
smaller but arbitrarily close to

(47)

and a total number of channel uses .
1) When the relay is honest, the confidential message can
be transmitted at this rate such that all the three terms

, and

(48)

decrease exponentially fast with .
2) When the relay is not honest, the probability that the
Byzantine attack goes undetected, i.e., the probability
that the adversary wins, denoted as wins in (6),
decreases exponentially fast with .

Proof: We use “HRH” for “hash rule holds” for the AMD
code tuple

(49)

This means the message will be accepted by node 2.
Hence, the probability that the adversary wins is given by

wins

(50)

Define wins as the term (50) with
replaced by .

wins

(51)
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Note that wins would be the probability that the Byzan-
tine adversary wins if and are truly independent.
To evaluate the effect of being otherwise, we next bound the dif-
ference between wins and wins

wins wins (52)

(53)

Equation (53) is upper bounded by

(54)

(55)

(56)

(57)

Then, we use Pinsker’s inequality [42, Th. 2.33]

(58)

Let be . Let be
. Let be given by

(59)

Then, from Lemma 5, (57) is bounded by
because of Pinsker’s inequality. Hence, we have

wins wins (60)

From Theorem 1, wins is bounded by . Hence

wins (61)

Each conveys bits of information, where is de-
fined in Theorem 2. Recall that the total number of channel uses
is denoted by . The relay node transmits during channel
uses. Node 1 transmits during the other channel uses. When
node 1 transmits, node 2 may or may not transmit depending on
which of the four stages described at the beginning of this sec-
tion is being executed. For the four-stage transmission scheme,
is given by

(62)

This is because channel uses are needed to transmit or
, and channel uses are needed to transmit . The third
term in (62) is the number of channel uses needed to transmit ,
where is the operation that rounds to the nearest integer
greater than or equal to . In this stage, each lattice point can
convey bits and takes channel uses to transmit. can
be represented by bits. Hence, is the
number of lattice points that need to be transmitted during this
stage, leading to the third term in (62) as being the total number
of channel uses for this stage.
Since is composed of elements from , the overall

secrecy rate is given by

(63)

By substituting (62) into (63), we observe can be made ar-
bitrarily close to by choosing a sufficiently large .
Let denote the transmission power averaged over the

channel uses during which a node transmits. Based on the
four-stage transmission scheme, of node 1 and the relay are
the same. of node 2 is smaller since it does not transmit
during the third stage. Hence, we only need to make sure
of node 1 does not exceed the power constraint . of node
1 is calculated as follows.
1) For the first two stages, each stage takes channel uses
and recall that we use to denote the average power per
channel use for these two stages.

2) The third stage takes channel uses and recall that we use
to denote the average power per channel use for this

stage.
3) The number of channel uses for the fourth stage is given
by the last term in (62).

Recall that we use to denote the average power per channel
use for this stage. Hence, is given by

(64)

can be made arbitrarily close to but strictly smaller than
by choosing a sufficiently large and a sufficiently small .
This also implies that can be made arbitrarily close to
(47).
Once and are fixed, is fixed. On the other hand, as

shown by (62) and (15), for a fixed , increases linearly with
respect to .
Select as in (15) such that increases linearly with respect

to . Then, from (61), we observe that the probability that the
adversary wins decreases exponentially fast with . Hence, we
have the bound on wins stated in the theorem.
We next check whether the secrecy constraint is satisfied:

(65)

(66)
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In (66), the first term decreases exponentially fast with respect
to due to Theorem 2. For the second term, we have

(67)

(68)

(69)

(70)

(71)

where was defined in (17).
Hence, the second term is bounded by , which also

decreases exponentially fast with respect to due to Theorem
2. The third term in (66) decreases exponentially fast with re-
spect to due to Theorem 6. Hence, (65) decreases exponen-
tially fast with respect to .
Finally, we checkwhether the confidential message , which

corresponds to in our scheme, can be transmitted reliably. We
observe that the probability does decrease expo-
nentially fast with respect to because the decoding error prob-
ability of the lattice decoder decreases at this speed, as stated in
the end of Section V.
The probability

(72)

depends on whether can be transmitted reliably. Since
they are also transmitted with the nested lattice code and de-
coded with a lattice decoder, the probability of decoding error
when transmitting also decreases exponentially with
respect to the dimension of the lattice, which in turn increases
linearly with . Hence, (72) also decreases exponentially fast
with respect to .
Hence, we have proved the theorem.

Remark 13: It is evident from (60) that if Lemma 5 were
weakened to just proving the left-hand side converging to 0,
which is the case if the secrecy notion like the one in [43] is used,
then it would not be possible to preserve the exponentially de-
creasing detection property offered by the AMD code. Hence, in
this problem, the secrecy notion as stated in [43] is insufficient,
and a stronger notion, as described by (16), is required.

Remark 14: Theorem 7 is an achievability result. Finding
good upper bounds for the secrecy rate for the two-hop network
with an untrusted relay is a nontrivial problem for which we
refer the interested reader to [20]. A simple upper bound for our
specific channel model described in Section II is one without
secrecy constraints which follows from [44] and is
. By comparison, the secret rate achieved in this study is

, which is within a constant gap from
this upper bound.

VIII. CONCLUSION

In this paper, we developed a coding scheme which provides
strong secrecy by combining nested lattice codes and universal
hash functions. In our previous work [26], the representation
theorem for nested lattice codes is used to bound the Shannon

entropy. Here, we showed that the same theorem is also useful in
bounding another information-theoretic measure, i.e., the Rényi
entropy, which in turn leads to the desired strong secrecy results
in a Gaussian setting. We showed that this coding scheme can
be used with AMD codes to perform Byzantine detection for
a Gaussian two-hop network where the relay is both an eaves-
dropper and a Byzantine attacker. Using this code, we showed
that the probability that a Byzantine adversary wins decreases
exponentially fast with respect to the number of channel uses.
It should be noted that, in this paper, we have assumed that

the channel gains are known by each node before the commu-
nication starts. It should be recognized that the Byzantine at-
tacker at the relay node may attempt to manipulate the channel
estimation process, for example, by broadcasting incorrect pilot
signals, to gain an advantage. Detection of this type of misbe-
havior is closely related to the physical layer implementation of
the system and is left as future work.
We have also assumed a model that is discrete in time, which

implicitly assumes the signals interfere synchronously at the
relay. The effect of synchronization on secrecy is certainly
worth further investigation.

APPENDIX A
PROOF OF LEMMA 1

When and the generation matrix of has full rank,
there are lattice points in . Each point in

can be represented by its coordinates, which
is a vector composed of integers: .
We next prove the followingmapping is an isomorphism from

to the group of a finite field :

(73)

maps the coordinates to a polynomial.
First we prove that two elements in

cannot be mapped to the same element in . This can
be proved via contradiction: Suppose they can. Then, we have
two points , and , whose coordinates are and

, respectively, such that

(74)

(75)

This means . Let be . Then
and .

Define the quantization operator as

(76)

where denotes the Euclidean distance between and .
has the following property: ,
. This can be shown as follows:

(77)

(78)

(79)

(80)
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Since , we have and .
However, we can also write

. This leads to a contradiction.
Since cannot map two different lattice points to the same

field element, and the set has the same car-
dinality as , must be a bijective mapping.
Finally, it is easy to verify that preserves the addition

operation:

(81)

This completes the proof that is an isomorphism.

APPENDIX B
PROOF OF LEMMA 2

Let be the th row of . Then does not
have full row rank if and only if

(82)

Since at least one has to be nonzero, there are possible
choices for .
For each choice of , since one is not zero, there

are solutions for . Hence, there are at most
that do not have full row rank. There are

possible in all, each chosen with equal probability.
Hence, the probability that does not have full row rank is
smaller than , and we have Lemma 2.

APPENDIX C
PROOF OF THEOREM 6

For the distribution for stated in Theorem 6,
is independent from . Therefore

(83)

Then, as in (22), with probability :

(84)

We next use the fact that when is uniformly distributed
over the set of linear functions from to , the
following equation holds according to Theorem 4:

(85)

where .

Hence

(86)

In order for to decrease exponentially fast with re-
spect to , we choose , where so that
is positive. Choose such that for

(87)

so that decreases exponentially fast with respect to .
Recall by (34), we have . Hence a sufficient
condition for (87) to hold is to require

(88)

This yields (36). For this and , from (86), we observe that
there exists , such that

(89)

We next use the fact that for sufficiently large , most has
full row rank as shown in Lemma 2. Therefore, under a uniform
distribution for , and being independent, there
must exists a , such that:
1) has full rank;
2)
Hence, we have proved Theorem 6.

APPENDIX D
PROOF OF LEMMA 5

As described in Section IV, the zeroth stage is used to transmit
. The 1st stage is used to transmit . The second stage is used
to transmit . The third stage is used to transmit .

A) Outline: Let in denote the addition operation
in the field where and are taken from. Let denote the
element such that . The proof can be divided into
two steps.
1) In the first step, we prove that

(90)

(91)

The proof uses basic relationships implied by the coding
scheme and the channel model through we gradually re-
place , and with random variables which are more
amenable to analysis. For this purpose, we shall use the
linear property of in Theorem 2 repeatedly.

2) In the second step, we use Theorem 2 to upper bound (91)
and prove Lemma 5.
B) Step 1: Recall that is the linear mapping whose exis-

tence is proved in Theorem 2. Then, we can write as

(92)

(93)

(94)
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Since is a function of and , (90) is
upper bounded by

(95)

is computed from by node 2. Hence, (95) is upper
bounded by

(96)

(97)

(98)

Recall that is the noise observed by Node 2 during the
stage responsible for transmitting . We observe that it is in-
dependent from all the other terms in the second term of (98).
This is because , , are only related to signals transmitted in
later stages. The relay node has no knowledge of . Hence,

cannot affect the relaying strategy.As a result, (98) equals

(99)

Recall that denotes the randomness available to the relay
node. Then, the expression in (99) is upper bounded by

(100)

(101)

Since is computed from at the relay node, it is a
deterministic function of , and potentially . Hence,
the second term in (101) is 0, and (101) equals

(102)

We next examine in (102). Recall that is defined as .
and are the estimates for and computed by node 2,

respectively. With these notations, we can express as

(103)

(104)

(105)

As seen from (103)–(105), is a function of , , and .
Therefore, (102) can be upper bounded by

(106)

Note that is computed from by node 2. Therefore, (106)
is upper bounded by

(107)

(108)

(109)

Again is independent from all the other terms in the
second term of (109). Hence, (109) equals

(110)

For , we have

(111)

(112)

(113)

Hence, is a function of , . Therefore,
(110) can be upper bounded by

(114)

is computed from by node 2. Hence, (114) is upper
bounded by

(115)

(116)

(117)

(118)

Finally, is computed from by node 2. Hence,
(118) is upper bounded by

(119)

(120)

Since is a deterministic function of , and po-
tentially , we can upper bound (120) with the following term
by replacing with :

(121)

(122)
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Equation (122) follows from .
We then use the fact that the stochastic encoder used by node 1
to transmit is independent from the stochastic mapping used
at other stages. Hence, we have

(123)

and (122) equals

(124)

(125)

Next we note that since , (125) equals

(126)

C) Step 2: Equation (126) is upper bounded by

(127)

Recall that the notation , as introduced in (17), denotes the
quantity obtained by subtracting the channel noise from .
Following this notation, we can upper bound (127) as

(128)

(129)

Since for , and hence
is a function of , we can drop from
(129) and write it as

(130)

which is further upper bounded by6

(131)

6We use the inequality
for discrete random variable , and random variable .

which, by applying the chain rule to the last term, can be written
as

(132)

We then use the two Markov chains shown below:

(133)

(134)

The Markov relation in (133) holds because given , the distri-
bution of only depends on the randomness in the trans-
mitter of nodes 1 and 2 during stage 0. The Markov chain in
(133) follows because

(135)

and

(136)

are Markov chains. Equation (135) is a Markov chain, because,
given , the distribution of only depends on , which
is independent from all the remaining terms in (135). Equation
(136) is a Markov chain, because, given and , which
implies and are given, the distribution of ,
only depends on the randomness in the transmitter of nodes 1
and 2 during stage 1 and stage 2.
Applying the two Markov chains (133) and (134) to the last

two terms in (132), we find that it equals

(137)

The first term in (137) equals

(138)

Since is extracted from a lattice point in based on
the strong secrecy scheme described in Section VI-A1, from
Theorem 2, we have .
For the second term in (137), note that is just ,

because node 2 remains silent at this stage. Therefore, this term
can be expressed as

(139)

(140)
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The second term in (140) is 0 since is a deterministic
function of . Therefore, (140) equals

(141)

(142)

Since is determined by , (142) is upper bounded by

(143)

(144)

(145)

(146)

Since is extracted from a lattice point in based on
the strong secrecy scheme described in Section VI-A1, hence
from Theorem 2, (146) is bounded by .
Therefore, (137) is bounded by . Hence, we

have Lemma 5.
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