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Abstract—In this work, we derive the secrecy degrees of
freedom (s.d.o.f.) region of the Gaussian two-way wiretap
channel in which the eavesdropper channel state is arbitrarily
varying and is unknown to the legitimate nodes. We prove that
the s.d.o.f. region is identical to that when the eavesdropper
channel is fixed and globally known. A multi-stage coding
scheme that combines secret key generation and confidential
message transmission is developed to prove achievability. The
confidentiality guarantee provided in this work is in the sense
of strong secrecy.

I. INTRODUCTION

Providing confidentiality in communication, i.e., secrecy,

using information theoretic measure, goes back to Shannon

[1]. This approach was later developed in [2] which utilizing

different entropy measures. While prevalent architectures for

secure communication are still primarily based on cryp-

tographic techniques, providing secrecy using information

theory is attractive since it does not rely on unproved assump-

tions on computational hardness. Furthermore, information

theoretic approaches can sometimes lead to cryptographic

results as well [3]. Consequently, there appears to be sus-

tained interest in studying secrecy problem using information

theory, see [4] for a summary of recent works.

As in all security studies, a significant challenge in infor-

mation theoretic secrecy is modeling the adversary properly.

Most early works assume the eavesdropper channel is fixed

and perfectly known to all nodes, while other works assume

the distribution of the eavesdropper channel states is known

to all nodes [5]. Recently, [6]–[8] study secrecy capacity

when the eavesdropper channel is arbitrarily varying and

its channel states are known to the eavesdropper only. For

this setting, it is shown that the optimal transmission is very

different from previous work. Known results focus on the

secrecy degrees of freedom (s.o.d.f.) for different channel

models, which is a high SNR approximation of the secrecy

capacity. Reference [7] finds the s.d.o.f. for the single-user

Gaussian multi-input-multi-output (MIMO) wiretap channel.

The s.d.o.f. region of the Gaussian MIMO broadcast channel

is given in [8]. The s.d.o.f. region of the Gaussian MIMO

multiple access channel where all legitimate nodes have the

same number of antennas is found in [7].

In this work, we investigate s.o.d.f. region of the Gaussian

two-way wiretap channel with this setting. In this channel,

two full-duplex transmitters engage in two-way communi-

cation in the presence of an eavesdropper. This model was
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Fig. 1. Gaussian Two-way Wiretap Channel where the Eavesdropper
Channel is Arbitrarily Varying

studied extensively assuming the channel state of the eaves-

dropper is fixed and known to the legitimate communication

parties, see [9]–[12] for example. Yet none of the achievabil-

ity schemes proposed in these works applies to the case of

arbitrarily varying eavesdropper channel. Recently, reference

[13] studied the same channel model with a even stronger

assumption: assuming the channel state is controlled by the

eavesdropper but unknown to the legitimate communication

parties. It is shown in [13] that it is still possible for the

secrecy rate to scale with the transmission power but the

s.d.o.f. number achieved in [13] does not match with the

converse in [10].

The main contribution of this work is deriving the s.d.o.f.

region of the Gaussian two-way wiretap channel when the

eavesdropper channel was modeled as arbitrarily varying as

in [7] and prove that the converse of [10] is tight for this case.

The achievability scheme overlaps secret key generation and

confidential message transmission. For secret key generation,

a two-step scheme combining [13] and [8] is used to achieve

strong secrecy.

II. SYSTEM MODEL

The channel model is shown in Figure 1. The main

channel is a Gaussian two-way channel composed of two

full-duplex nodes. The output during the ith channel use for

this channel, after canceling the self-interference in a full-

duplex transceiver, can be expressed as [9]:

Ya,i = Xb,i + Nca,i, Yb,i = Xa,i + Ncb,i (1)

where Xa,i and Xb,i are the signals transmitted by nodes

a and b respectively during the ith channel use, and Ya,i

and Yb,i denote their received signals. Nca,i and Ncb,i are
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Gaussian random variables with unit variance.1 We assume

the eavesdropper channel to be noiseless as a worst case

assumption:

Ỹi = H̃i,aXa,i + H̃i,bXb,i (2)

Without loss of generality, we assume |H̃i,a|
2 + |H̃i,b|

2 =
1. Otherwise, the eavesdropper can normalize its received

signals to conform to this constraint.

Node a, b each wants to send a confidential message

Wa, Wb to node b, a over n̄ channel uses respectively. Node

b, a each decodes the message intended for it as Ŵa, Ŵb

from the signals it received and any other side information

available to it. For reliable reception of Wl, l ∈ {a, b}, we

require:

lim
n̄→∞

Pr(Wl 6= Ŵl) = 0, l ∈ {a, b} (3)

Let H̃i denote [H̃i,a, H̃i,b]. We assume the eavesdropper

channel state information sequence H̃
n̄ is independent from

{X n̄
a , X n̄

b }. In this case, as shown in [7], the strong secrecy

constraint can be defined as:

lim
n̄→∞

I
(

Wa, Wb; Ỹ
n̄|H̃n̄ = h̃

n̄
)

= 0, ∀h̃n̄ (4)

We require the limit in (4) to be uniform over all possible

sequences of eavesdropper channel states [7]. Note that

although the definition in (4) is stated for H̃
n̄ being any

given sequence h̃
n̄, it also implies the message is secure for

H̃
n̄ with any distribution [7].

The secrecy rates for the message Wl, Rs,l, l ∈ {a, b}, is

defined as

Rs,l = lim
n̄→∞

1

n̄
H(Wl), l ∈ {a, b} (5)

such that both (3) and (4) are satisfied. Secrecy capacity

region is defined as the union of all achievable secrecy rate

pairs.

We assume the transmitter at node a and b are constrained

in terms of average transmission power. For simplicity, we

use the same power limit for both nodes, i.e.,

lim
n̄→∞

1

n̄

n̄
∑

i=1

E[|Xl,i|
2] ≤ P̄ , l ∈ {a, b} (6)

The secrecy degrees of freedom (s.d.o.f.) region is a

characterization of the high SNR behavior of the secrecy

capacity region, which is defined as:

{(da, db) : dl = lim sup
P̄→∞

Rs,l

log2 P̄
, l ∈ {a, b}} (7)

III. MAIN RESULT

Theorem 1: The s.d.o.f. for the Gaussian two way wiretap

channel with arbitrarily varying eavesdropper channel de-

scribed in Section II is given by

0 ≤ dl ≤ 1, l ∈ {a, b} (8)

0 ≤ da + db ≤ 1 (9)

1The subscript c stands for channel.
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Fig. 2. Key Generation and Message Transmission Scheme. The figure
illustrates the first three stages. Wi denotes the confidential message.
Ki denotes the key generated at each stage. Φ denotes the secrecy key
generation module described in Section VI

The converse proof for Theorem 1 follows from directly

from [10]. Hence we only need to prove achievability.

IV. ACHIEVABILITY: ARTIFICIAL NOISE

We only need to prove that da = 1, db = 0 is achievable.

The achievability of da = 0, db = 1 follows from the

symmetry of the channel model. The whole s.d.o.f. region

then follows from time sharing between these two pairs of

degrees of freedom.

Since we assume the eavesdropper channel is noiseless,

we introduce artificial noise [14] at Node a and b to limit

the received signal to noise ratio at the eavesdropper. This

means

Xl,i = X̃l,i + Nl,i, l ∈ {a, b} (10)

where Nl,i is a Gaussian random variable with zero mean

and unit variance. With the inputs given by (10), the channel

model can be re-written as:

Ya,i = X̃b,i + Nb,i + Nca,i (11)

Yb,i = X̃a,i + Na,i + Ncb,i (12)

Ỹi =
∑

l∈{a,b}

H̃i,lX̃l,i +
∑

l∈{a,b}

H̃i,lNl,i (13)

The coding scheme shall be performed over X̃l,i, l ∈ {a, b}.

V. ACHIEVABILITY: OVERVIEW

Since only one node is transmitting the confidential mes-

sage for the case we are interested, which is da = 1, db = 0,

we shall replace Wa with W in the sequel.

As shown in Figure 2, communication is divided into

several stages. The ith stage generates a secret key Ki

through a key generation protocol Φ, which we shall describe

in Section VI. The key generated by the ith stage is then

used as a one-time pad in the i + 1th stage to transmit a

confidential message Wi+1. Except for the first stage, each

stage serves the dual purpose of generating a new secret

key and transmitting a separate confidential message using

previously generated keys [15].
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VI. SECRECY KEY GENERATION PROTOCOL: Φ

A. Codebook C with code length n

Define P as the remaining power budget after the power

expended on artificial noise. P = max{P̄ − 1, 0}. Define

C(x) = log2(1 + x). The codebook C with parameter n
is composed of 2n(C(P (1−εP )/2)−δ) i.i.d. n-length sequences

sampled from the following distribution:

QX̃n(xn) = µ−1
n,εP

ϕ (xn)

n
∏

i=1

QX̃ (xi) (14)

where QX̃ (x) is a rotationally invariant complex Gaus-

sian distribution with variance P (1 − εP ) for a posi-

tive constant εP which can be arbitrarily small. µn,εP
=

∫

ϕ (xn)
n
∏

i=1

QX̃ (xi)dxn and ϕ (xn) equals 1 if 1
n‖x

n‖2 ≤

P and equals 0 otherwise.

B. Encoders and Decoders for codebook Ca, Cb

The encoders and decoders used by node a and b each

take one codebook as parameters, denoted by Ca and Cb

respectively. The codebooks are generated as described in

Section VI-A.

Define a⊕ b as a+ b mod |C|, where |C| is the size of the

codebook Ca. Cb has the same size as Ca.

During the ith stage, node b generates a random number

Kb,i from {0, ..., |C|− 1} and transmits the Kb,ith codeword

from the codebook Cb. For node a, we have the following:

1) In the 0th stage, node a generates a random number

Ka,0 from {0, ..., |C| − 1} and transmits the Ka,0th

codeword from the codebook Ca.

2) In the ith stage, i ≥ 1, it transmits the (Ka,i ⊕ Wi)th
codeword from the codebook Ca, where Ka,i is com-

puted from the previous stage as we shall describe be-

low in (17). Wi is the confidential message transmitted

by this stage.

Node a and b then decode Kb,i and Ka,i respectively from the

signals they received during this stage. Denote the decoding

result as K̂l,i, l ∈ {a, b}.

The secret key generated at node a is then given by:

Ki = Ka,i ⊕ K̂b,i (15)

The secret key generated at node b is given by:

K ′
i = K̂a,i ⊕ Kb,i (16)

Ki and K ′
i should equal to each other with high probability.

Node a then uses Ki as the input to the key generation

protocol in the next stage:

Ka,i+1 = Ki (17)

C. Two-Step Key Generation

For a given Wi and Ki, the set of codewords that can

be transmitted, denoted by BWi,Ki
contains 2nC(P (1−εP )/2)

i.i.d. sequences. However, in order to confuse the eaves-

dropper, BWi,Ki
should be greater 2nC(P (1−εP )), where

C(P (1−εP )) is the maximal rate at which the eavesdropper

can decode. Therefore, the size of BWi,Ki
must be increased.

This is achieved by using a two-step scheme [8]: Instead

of using just one codebook, we shall use a collection of

codebooks. We first generate a secret key at a low rate,

then use the generated key to determine which codebook is

used. Since the eavesdropper is not aware of the value of

the secret key, he must consider the union of BWi,Ki
from

all possible codebooks, which effectively makes the set of

possible codewords larger. The achievable secrecy rate with

this scheme is derived next.

VII. SECRECY ANALYSIS

Let ni = ain be the number of channel uses taken during

step i, i = 1, 2. ai > 0. a1 + a2 = 1.

We first need the following result implied by [13].

Lemma 1: There exists a positive number c, such that

(d1 = c, d2 = 0) is achievable.

For stage k, using Lemma 1, we first generate a secret

key Kk,1 with rate R0(P ) using a1n channel uses. Due to

Lemma 1, limP→∞ R0(P ) = ∞. Let |Kk,1| = 2a1nR0(P ).

Kk,1 is uniformly distributed over {0, ..., |Kk,1| − 1} and

I
(

Kk,1; Ỹ
a1n
k

)

≤ e−αa1n (18)

Let K̂k,1 denote the estimate of Kk,1 computed by node b.

Each node shall generate beforehand |Kk,1| independent

codebooks with code length n2. These codebooks are denoted

by {Cl,t}, l ∈ {a, b}, t ∈ {0, ..., |Kk,1| − 1}.

The encoder and decoder at node a, b then uses the scheme

described in Section VI-B to generate secret key Kk, where

node a uses the codebook Ca,Kk,1
. Node b uses the codebook

Cb,K̂k,1
. We next choose a1 such that

a1

a2
R0(P ) + C(P (1 − εP )/2) − δ ≥ C(P ) + δ (19)

for a positive δ that can be made arbitrarily small. Recall

that C(P (1 − εP )/2) − δ is the rate of BWi,Ki
without the

first step. a1

a2

R0(P ) is the rate increase due to first step. We

amplify BWi,Ki
so that its rate is slightly higher than the

rate at which the eavesdropper can decode, which is C(P ).
Then we have the following lemma:

Lemma 2: There exists a positive α, such that

I(Kk; Ỹ n
k |Wk) ≤ exp(−αn) (20)

The proof of Lemma 2 is based on (19) and (18) and will be

provided in the journal version of this work. Note that due

to Lemma 1, we can satisfy (19) and

lim
P→∞

a1 = 0 (21)

simultaneously. This means introducing step 1 will not de-

crease the degrees of freedom achieved by step 2.

Clearly the transmission rate we have achieved provide a

degree of freedom d1 = 1. We next verify that this rate is a

secrecy rate.
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Assume the transmission uses M + 1 stages. We need to

show that

I
(

W1, ...., WM ; Ỹ n
0 , Ỹ n

1 , ..., Ỹ n
M

)

= (22)

M
∑

k=1

I
(

Wk; Ỹ n
0 , Ỹ n

1 , ..., Ỹ n
M |W1, ..., Wk−1

)

(23)

vanishes. Each term in (23) can be written as:

I
(

Wk; Ỹ n
0 , Ỹ n

1 , ..., Ỹ n
M |W1, ..., Wk−1

)

(24)

= I
(

Wk; Ỹ n
0 , ..., Ỹ n

k |W1, ..., Wk−1

)

+ I
(

Wk; Ỹ n
k+1, ..., Ỹ

n
M |W1, ..., Wk−1, Ỹ

n
0 , ..., Ỹ n

k

)

(25)

We next introduce some supporting results.

A. Supporting Results

Lemma 3:

I
(

Kk−1; Ỹ
n
k−1|W1, ..., Wk−1

)

< exp(−nα) (26)

Lemma 3 follows from Lemma 2. Its proof is omitted and

will be provided in the journal version of this work.

Lemma 4:

I
(

Kk−1; Ỹ
n
0 , ..., Ỹ n

k−1|W1, ..., Wk−1

)

≤ (k − 1)e−nα

(27)

Proof: The proof is provided in Appendix A.

B. First term in (25) vanishes

The first term in (25) is upper bounded as follows:

I
(

Wk; Ỹ n
0 , ..., Ỹ n

k |W1, ..., Wk−1

)

(28)

= I
(

Wk; Ỹ n
k |W1, ..., Wk−1

)

+ I
(

Wk; Ỹ n
0 , ..., Ỹ n

k−1|Ỹ
n
k , W1, ..., Wk−1

)

(29)

The first term in (29) is upper bounded by:

I
(

Wk; Wk ⊕ Ka,k, Ỹ n
k |W1, ..., Wk−1

)

(30)

=I (Wk; Wk ⊕ Ka,k|W1, ..., Wk−1)

+ I
(

Wk; Ỹ n
k |Wk ⊕ Ka,k, W1, ..., Wk−1

)

(31)

≤I (W1, ..., Wk; Wk ⊕ Ka,k)

+ I
(

W1, ..., Wk; Ỹ n
k |Wk ⊕ Ka,k

)

(32)

Note that due to (15) and (17), Ka,k is given by

Ka,k = Ka,0 ⊕

k−1
∑

t=0

K̂b,t (33)

Hence Ka,k is uniformly distributed. Ka,k is also indepen-

dent from W1, ...Wk . This implies the first term in (32)

is 0. The second term in (32) is 0 because as shown by

the transmission scheme in Figure 2, given Wk ⊕ Ka,k, the

signal received by the eavesdropper Ỹ n
k is independent from

W1, ..., Wk . Hence (32) is 0. The second term in (29) is upper

bounded by:

I
(

Wk, Ỹ n
k ; Ỹ n

0 , ..., Ỹ n
k−1|W1, ..., Wk−1

)

(34)

≤I
(

Wk, Ỹ n
k , Ka,k; Ỹ n

0 , ..., Ỹ n
k−1|W1, ..., Wk−1

)

(35)

=I
(

Ka,k; Ỹ n
0 , ..., Ỹ n

k−1|W1, ..., Wk−1

)

+ I
(

Wk; Ỹ n
0 , ..., Ỹ n

k−1|Ka,k, W1, ..., Wk−1

)

+ I
(

Ỹ n
k ; Ỹ n

0 , ..., Ỹ n
k−1|Wk, Ka,k, W1, ..., Wk−1

)

(36)

The second term in (36) is upper bounded by:

I
(

Wk; Ka,k, Ỹ n
0 , ..., Ỹ n

k−1, W1, ..., Wk−1

)

(37)

=I
(

Wk; Kk−1, Ỹ
n
0 , ..., Ỹ n

k−1, W1, ..., Wk−1

)

= 0 (38)

because Wk is independent from all signals and messages

in previous stages. The third term in (36) is 0 because as

shown in Figure 2, given Ka,k and Wk, the signals Ỹ n
k are

independent from Ỹ n
0 , ..., Ỹ n

k−1, W1, ..., Wk−1. The first term

in (36) is upper bounded by:

I
(

Ka,k; Ỹ n
0 , ..., Ỹ n

k−1|W1, ..., Wk−1

)

(39)

=I
(

Kk−1; Ỹ
n
0 , ..., Ỹ n

k−1|W1, ..., Wk−1

)

(40)

≤ (k − 1)e−nα (41)

due to Lemma 4.

C. Second term in (25) vanishes

I
(

Wk; Ỹ n
k+1, ..., Ỹ

n
M |W1, ..., Wk−1, Ỹ

n
0 , ..., Ỹ n

k

)

(42)

≤ I(Wk; Ka,k+1, Ỹ
n
k+1, ..., Ỹ

n
M

|W1, ..., Wk−1, Ỹ
n
0 , ..., Ỹ n

k ) (43)

= I
(

Wk; Ka,k+1|W1, ..., Wk−1, Ỹ
n
0 , ..., Ỹ n

k

)

+

I(Wk; Ỹ n
k+1, ..., Ỹ

n
M

|Ka,k+1, W1, ..., Wk−1, Ỹ
n
0 , ..., Ỹ n

k ) (44)

The second term in (44) is upper bounded by:

I(Wk; Ỹ n
k+1, ..., Ỹ

n
M

|Ka,k+1, W1, ..., Wk−1, Ỹ
n
0 , ..., Ỹ n

k ) (45)

≤ I(W1, ..., Wk, Ỹ n
0 , ..., Ỹ n

k ; Ỹ n
k+1, ..., Ỹ

n
M |Ka,k+1) (46)

which is 0 because Ka,k+1 is the only random variable shared

between the first k stages and later stages. The first term in

(44) can be written as:

I
(

Wk; Kk|W1, ..., Wk−1, Ỹ
n
0 , ..., Ỹ n

k

)

(47)

≤ I
(

Wk, Ỹ n
0 , ..., Ỹ n

k ; Kk|W1, ...., Wk−1

)

(48)

= I (Wk; Kk|W1, ..., Wk−1)

+ I
(

Ỹ n
k ; Kk|W1, ..., Wk

)

+ I
(

Ỹ n
0 , ..., Ỹ n

k−1; Kk|W1, ...., Wk, Ỹ n
k

)

(49)
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The first term in (49) is upper bounded by:

I (Wk; Kk, W1, ..., Wk−1) (50)

≤ I
(

Wk; Ka,k, K̂b,k, W1, ..., Wk−1

)

(51)

which is 0. The second term in (49) vanishes when n goes to

∞ due to Lemma 3. The third term in (49) is upper bounded

by:

I
(

Ỹ n
0 , .., Ỹ n

k−1; Kk−1, Kk, Wk, Ỹ n
k |W1, ..., Wk−1

)

(52)

= I
(

Ỹ n
0 , .., Ỹ n

k−1; Kk−1|W1, ..., Wk−1

)

+ I
(

Ỹ n
0 , .., Ỹ n

k−1; Kk, Wk, Ỹ n
k |Kk−1, W1, ..., Wk−1

)

(53)

The first term in (53) vanishes when n goes to ∞ due to

Lemma 4. The second term in (53) is upper bounded by:

I
(

Ỹ n
0 , .., Ỹ n

k−1, W1, ..., Wk−1; Kk, Wk, Ỹ n
k |Kk−1

)

(54)

which is 0 because Kk−1 is the only random variable

connecting stage 0, ..., k − 1 to stage k. This implies the

second term in (25) vanishes.

VIII. CONCLUSION

In this work, we have studied the Gaussian two-way wire-

tap channel in which two full-duplex transmitters engage in

two-way communication in the presence of an eavesdropper.

The eavesdropper channel is arbitrarily varying and its state

only known to the eavesdropper. The s.d.o.f. region for this

channel has been identified. It is shown that, surprisingly,

the converse previously developed with the eavesdropper

channel state fixed and globally known is also tight in this

case. The achievability is proved with a multi-stage scheme

that combines secret key generation and confidential message

transmission.

APPENDIX A

PROOF OF LEMMA 4

I
(

Kk−1; Ỹ
n
0 , ..., Ỹ n

k−1|W1, ..., Wk−1

)

(55)

=I
(

Kk−1; Ỹ
n
k−1|W1, ..., Wk−1

)

+ I
(

Kk−1; Ỹ
n
0 , ..., Ỹ n

k−2|Ỹ
n
k−1, W1, ..., Wk−1

)

(56)

The first term in (56) vanishes when n goes to infinity due

to Lemma 3. The second term in (56) can be written as:

I(Ka,k−1 ⊕ Kb,k−1; Ỹ
n
0 , ..., Ỹ n

k−2

|Ỹ n
k−1, W1, ..., Wk−1) (57)

≤ I(Ka,k−1, Kb,k−1, Wk−1, Ỹ
n
k−1; Ỹ

n
0 , ..., Ỹ n

k−2

|W1, ..., Wk−2) (58)

≤ I(Ka,k−1; Ỹ
n
0 , ..., Ỹ n

k−2|W1, ..., Wk−2)

+ I(Kb,k−1, Wk−1, Ỹ
n
k−1; Ỹ

n
0 , ..., Ỹ n

k−2

|Ka,k−1, W1, ..., Wk−2) (59)

The second term in (59) is upper bounded by:

I(Kb,k−1, Wk−1, Ỹ
n
k−1; Ỹ

n
0 , ..., Ỹ n

k−2, W1, ..., Wk−2

|Ka,k−1) = 0 (60)

because as shown in Figure 2, given Ka,k−1, we

observe {Kb,k−1, Wk−1, Ỹ
n
k−1} are independent from

{Ỹ n
0 , ..., Ỹ n

k−2, W1, ..., Wk−2}. Since Ka,k−1 is just Kk−2,

the first term in (59) can be written as:

I
(

Kk−2; Ỹ
n
0 , ..., Ỹ n

k−2|W1, .., Wk−2

)

(61)

Hence from (55) to (61), we find that

I
(

Kk−1; Ỹ
n
0 , ..., Ỹ n

k−1|W1, ..., Wk−1

)

(62)

≤ I
(

Kk−2; Ỹ
n
0 , ..., Ỹ n

k−2|W1, .., Wk−2

)

+ e−nα (63)

Applying (55)-(61) repeatedly for k − 1, ...., 1, we find that

I
(

Kk−1; Ỹ
n
0 , ..., Ỹ n

k−1|W1, ..., Wk−1

)

≤ (k − 1)e−nα (64)
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