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ABSTRACT
We consider a pair of nodes with stochastic traffic flows who
wish to communicate in a bi-directional communication sce-
nario using intermediate relays in two-hop fashion. Inter-
mediate relays are capable of XOR network coding. Trans-
mission scheduling is done by tailoring the backpressure al-
gorithm to the problem at hand. Two main alternatives for
network operation are either to have queues at the relays
(hop-by-hop scheduling) or no queues at the relays (imme-
diate forwarding). In this two-way network with stochastic
flows, we formulate and show that the resulting stability
regions of these two approaches are identical.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—wireless communications, store and
forward networks, network communications

General Terms
Theory, Performance

Keywords
Two-way relaying, network stability, network coding

1. INTRODUCTION
In multi-hop networks, where intermediate relay nodes as-

sist source node(s) [3, 8, 7], cross-layer approaches in which
physical layer decisions are made jointly with higher layers
[13, 4] have recently been attracting considerable attention.
To that end, one essential issue is to consider the stochastic
nature of the traffic to be communicated and to determine

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICON’08, November 17-19, 2008, Maui, Hawaii, USA.
Copyright 2008 ACM ICST 978-963-9799-36-3 ...$5.00.

the power levels and the rates allocated for nodes accord-
ing to the queue states as well as the channel states and
allowable transmission modes [4, 13, 14]. Another topic of
recently growing interest is network coding, where data is
mixed at intermediate nodes in the network. Network cod-
ing has been shown to maximize multicast rate in single
source scenarios [1].

A number of “throughput optimal” network control poli-
cies that ensure bounded queues whenever arrival rates lie
in the stability region of the network have been developed
[13, 4, 14, 9]. The most common of such approaches is the
backpressure policy, also known as the Maximum Differen-
tial Backlog (MDB) algorithm, which has the desirable prop-
erty of not requiring any a priori information on the input
traffic statistics [13, 4]. MDB has recently been extended
for cooperative communication scenarios as well [14].

Many wireless applications such as ad-hoc networks and
peer-to-peer systems are based on two-way traffic. As a re-
sult, there has been considerable attention in understanding
and exploiting the bi-directional nature of the information
flow with intermediate relays [9, 10, 11, 6, 12, 5]. The nature
of network coding is suitable for such scenarios [11].

In [2], we found that the backpressure policy tailored to
the two-way four-node diamond network offers a diverse va-
riety of transmission protocols and queueing options. In this
work, we consider a pair of nodes with stochastic flows that
communicate with each other in a bi-directional fashion, via
two-hops where the intermediate relays utilize network cod-
ing. We consider slotted operation and two scheduling tech-
niques. One option is hop-by-hop scheduling, with queueing
at the relay(s). The other is immediate forwarding, where
the relays immediately forward the received information at
the relay nodes without queueing. In this work, we formu-
late the stability regions for the two-way network with net-
work coding at the relay nodes and show that the resulting
stability regions of these two approaches are identical.

2. SYSTEM MODEL
For clarity of exposition, we first consider a two-hop bi-

directional network G with three nodes N= {1,R,2} as
shown in Figure 1. The end nodes {1,2} are sources which
aim to communicate with each other. No direct link exists
between the end nodes, and, thus the relay node enables



1 R 2

Figure 1: Single relay two-way network.

communication. Decode-and-forward relaying is used [3].
We extend our analysis to the two-way diamond network
with sources {1,2} and two relays {3,4} in Section V.

As in references [14, 2], within a time slot, we enforce a
half-duplex constraint, i.e., nodes cannot transmit and re-
ceive information simultaneously. Rate allocation decisions
are made in each slot using the maximum differential back-
log algorithm [13], tailored to the problem at hand.

The bi-directional information flow is carried out in two
phases. In the first phase, information is transmitted to the
relay node. In the second phase the relay node R transmits
to the end nodes.

Traffic arriving at node i is assumed to be an ergodic
process. Packet lengths {Li} of traffic at node i are as-
sumed to be i.i.d. with E[Li] < ∞ and E[L2

i ] < ∞. We
assume infinite buffers. Due to the bi-directional nature of
the model, we differentiate queues at relays according to
their final destination. We thus define “forward” and “re-
verse” queues associated with transmission to node 2 (from
1) and 1 (from 2), respectively. All nodes know all channel
coefficients and queue states. We assume the channels are
static. The power constraint is P for all nodes, the noise
variance and bandwidth are normalized to one.

3. RATE REGIONS AND THROUGHPUT OP-
TIMAL RATE ALLOCATION

For hop-by-hop scheduling, one of the following two trans-
mission phases is selected for the time slot.

3.1 Phase I
In the first phase, where data is transmitted to the re-

lay node, we have a multiple access channel whose capacity
region is given by:

R1R ≤ log(1 + h1RP ) (1)

R2R ≤ log(1 + h2RP ) (2)

R1R + R2R ≤ log(1 + (h1R + h2R)P ). (3)

where RiR is the rate from node i to relay node R and
√

hiR

denotes the channel gain from node i to node R.

3.2 Phase II
In this phase, the relay broadcasts to the end receivers.

Note that, due to the bi-directional nature of communica-
tion, the end nodes 1 and 2 can subtract their own infor-
mation from the received broadcast message [9]. Thus, we
can assume that the operation is interference-free since all
packets originate from the end nodes. In the bi-directional
network, we exploit network coding following a similar ap-
proach to reference [11], by having the relay nodes trans-
mit the exclusive-OR (XOR) of the information destined to
nodes 1 and 2. In this case, the overall rate must be selected
as the minimum of rates achievable between the relay and
both end nodes. Both end nodes would be able to decode
the overall codeword, obtaining the desired information by

an XOR operation. If the queue for data to be combined
for one of the end nodes empties before the end of the al-
located transmission duration, zero padding is applied. In
such a scenario, the remaining part of the codeword con-
sists of data for one end. Hence, the effective rate region for
Phase II is given by

RR1 ≤ min(log(1 + h1RP ), log(1 + h2RP )) (4)

RR2 ≤ min(log(1 + h1RP ), log(1 + h2RP )). (5)

3.3 Immediate Forwarding
An alternative transmission scheme for bi-directional com-

munication is to divide the time slot into two phases and im-
mediately forward the traffic received in the first phase by
the relay nodes to the end nodes in the second phase [9, 10,
6] without queues at the relay nodes. References [9, 10] con-
sider three-node networks with immediate forwarding with
superposition coding at the relay. Within a time-slot, now
end-to-end rate regions are defined:

<e−e = ∆(<Phase1)
T

(1−∆)(<Phase2), (6)

where ∆ ∈ [0, 1]is the time sharing parameters of the relay
receive phase, and <Phase1, <Phase2 are rate regions corre-
sponding to Phase I and Phase II.

Having discussed the achievable rate regions for different
transmission stages, we next present the throughput optimal
network control policy.

3.4 Network Control Policy
Our aim is to ensure the bi-directional network to op-

erate according to a policy, where the queue backlogs re-
main bounded for any rate arrival vector that lies within
the stability region of the network. The stability region of
a network is defined as the closure of the set of all arrival
rate vectors such that there exists some feasible joint rate
allocation and routing policy in the network that guaran-
tees that all queues in the network are stable. For the bi-
directional network, at each time slot, active link selection
and the corresponding rate allocation is done in accordance
with the maximum differential backlog policy, also known as
the backpressure approach [13]. We note that for the case
of multiple relays cooperating, more advanced backpressure
algorithms based on the cooperative maximum differential
backlog algorithm(CMDB) [14] can be used. The optimal
rate allocation at each time slot is given by the solution of
the following optimization problem:

max
R∈C

X
(i,j)∈L

w∗ijRij , (7)

where

w∗ij = max
k∈K

qk
i − qk

j , (8)

with qk
i denoting the queue length associated with destina-

tion k at node i in bits. In our problem, for hop-by-hop
scheduling, due to the half-duplex constraints, one of the
two activation sets defines the allowable rates for the capac-
ity regions depending on whether the relay is receiving or
transmitting:

CM → {R1R, R2R, 0, 0} (9)



CB → {0, 0, RR2, RR1}. (10)

The instantaneous link capacity region, i.e., the set of fea-
sible link rates in any time slot is defined as C= CM

S
CB .

The weight vector is given by ~w∗=(q1−qRf , q2−qRr, qRf , qRr),
where subscripts “f” denote “forward”, “r” denote “reverse”
for the relay queues. Accordingly, the resulting rate alloca-
tion is given by the configuration maximizing either[

R∈CM

�
R1R(q1 − qRf ) + R2R(q2 − qRr)

	
(11)

or [
R∈CB

�
RR2(qRf ) + RR1(qRr)

	
, (12)

Similar to [14, 2], for either the multi-access or the broad-
cast case, the rate allocation is determined in order to max-
imize the weighted sum of the two rate terms. The optimal
operating points are found for the multi-access and broad-
cast case, and under hop-by-hop scheduling the policy selects
the optimal rate allocation as the operating point yielding
the maximum weighted rate. Either a Phase I or Phase II
is scheduled each time slot. The rate allocation for Phase I
defines the decoding order to be followed by the relays. In
particular, data of the end node with the higher weight is
decoded after the data of the other node.

For immediate forwarding, rate allocation is done in accor-
dance with the backpressure approach as well. Due to the
absence of relay queues, the backlogs reduce to the queue
lengths for the two end nodes since the opposite edge of the
link is assumed to be the other end node. The optimization
problem reduces into the maximization of the inner product
of two end-to-end rate terms and two queue terms at 1 and
2, i.e.,

max
(R1,R2)∈<e−e

q1R1 + q2R2. (13)

4. STABILITY REGIONS
In this section, we formulate and compare the stability re-

gions for the hop-by-hop scheduling and immediate forward-
ing cases for the two-way single-relay network with network
coding.

4.1 Hop-by-hop Scheduling
The stability region is the set of all arrival rates such that

there exists non-negative flow variables which the arrival
rates are supported relative to a weighted graph defined by
the long-term rates in the convex hull of C, conv(C). In the
bidirectional network at hand, this corresponds to the set
of source rate vectors (ρ2

1, ρ
1
2) that can be supported. For

the two-hop bidirectional network, in the hop-by-hop case
(Fig.2), the following flow conservation relations must be
satisfied:

ρ2
1 = f1R (14)

ρ1
2 = f2R (15)

for source nodes, and

0 = fR2 − f1R (16)

1 R 2
ρ1

2 ρ2
1f1R f2R

fR1 fR2

Figure 2: Hop-by-hop scheduling flows.

1 R 2
ρ1

2 ρ2
1

f12

f21
Figure 3: Immediate forwarding flows.

0 = fR1 − f2R (17)

for the relay node, where fij denotes flows from node i to
node j. Additionally,

ρ2
1 = fR2 (18)

ρ1
2 = fR1 (19)

for the conservation of traffic specific to each commodity,
that is the arrival rate of a specific commodity is equal to
the departure rate. Moreover, f ∈ conv(C). In hop-by-
hop scheduling, conv(C) is the set of convex combinations
between CM = (R1R, R2R, 0, 0) and CB = (0, 0, RR2, RR1),
where CM and CB were defined in Section III.

In other words,

conv(C) = (
S

∆∈[0,1]

(∆R1R, ∆R2R, (1−∆)RR2, (1−∆)RR1)).

(20)
The flow conservation equations dictate

ρ2
1 = f1R = fR2 (21)

ρ1
2 = f2R = fR1, (22)

and (f1R, f2R, fR2, fR1) ∈ conv(C). In order to ensure that
the flow conservation equations hold, some hop flows should
be equal to each other. In the broad sense, arrival vectors
in the stability region can be characterized by arrival rate
vectors that are equal to the flow values such that ∆R1R =
(1 − ∆)RR2 and ∆R2R = (1 − ∆)RR1. Points from the
original (R1R, R2R) region are scaled as well as points from
(RR2, RR1) for a specific ∆. The overall convex hull is the
collection of all points for every ∆. For each ∆, flow variables
satisfying the flow conservation equalities are valid.

4.2 Immediate Forwarding
For immediate forwarding (Fig.3), we have

ρ2
1 = f12 (23)

ρ1
2 = f21 (24)

for source nodes and f ∈ conv(C). C is now two-dimensional,
and for a specific ∆, is defined as

C∆ = (min(∆R1R, (1−∆)RR2), min(∆R2R, (1−∆)RR1)),
(25)

where the individual phase rates R1R, R2R, RR1, RR2 are de-
fined similarly as in the hop-by-hop case.

Here, conv(C) is defined as the set of convex combina-
tions between all C∆. The requirements due to the flow
conservation equations are that the input arrival rate vec-
tors are supported by the overall conv(C). We have individ-
ual hop rates from the regions defined for (R1R, R2R) and



(RR2, RR1). These rate pairs are scaled for a specific ∆ time
sharing parameter. Next, the minimum of hop components
towards each direction are determined as end-to-end rates.
Finally, the overall convex hull is defined by convex com-
binations between these regions for specific ∆. The set of
allowable arrival rate pairs that can be supported are defined
by the resulting convex hull region.

4.3 Comparison of Stability Regions
For hop-by-hop scheduling, the following flow conserva-

tion equations should be satisfied:

∆R1R = (1−∆)RR2 (26)

∆R2R = (1−∆)RR1. (27)

This means that we need

R1R
R2R

= RR2
RR1

. (28)

For any (R1R, R2R) pair on the Phase I boundary, we can
find a corresponding (RR2, RR1) pair on the Phase II bound-
ary.

Furthermore,

∆
(1−∆)

= RR2
R1R

= RR1
R2R

(29)

1
∆

= R1R
RR2

+ 1 = R1R+RR2
RR2

= R2R+RR1
RR1

(30)

∆ = RR2
R1R+RR2

= RR1
R2R+RR1

. (31)

Again, for each Phase I boundary point there is a corre-
sponding Phase II point and a resulting ∆. Moreover, the
resulting arrival rates supported are given by

ρ2
1 = f1R = ∆R1R = R1RRR2

R1R+RR2
(32)

ρ1
2 = f2R = ∆R2R = R2RRR1

R2R+RR1
. (33)

On the other hand, for immediate forwarding, for a spe-
cific ∆,

C∆ = (min(∆R1R, (1−∆)RR2), min(∆R2R, (1−∆)RR1)),
(34)

where the individual phase rates R1R, R2R, RR1, RR2 are de-
fined similarly as in the hop-by-hop scheduling case. Next,
conv(C) is defined as the set of convex combinations between
all C∆.

First, we show that rate pairs supported resulting from
the flow conservation equations of hop-by-hop scheduling
are also supported by immediate forwarding. Indeed, as will
be shown, these equations define rate pairs such that both
rates cannot be increased simultaneously for a given Phase
I or Phase II boundary point.

Proposition 1. For immediate forwarding, the following
equations define rates and flows such that:
a)For any rate pair (R1R, R2R) from the Phase I boundary,
both resulting rate components can not be increased simulta-
neously.
b)For any rate pair (RR1, RR2) from the Phase II boundary,
both resulting rate components can not be increased simulta-
neously.

∆R1R = (1−∆)RR2 (35)

R1R

R2R

RR2

RR1

Phase IIPhase I
Figure 4: Moving on the Phase Rate Region Bound-
aries.

∆R2R = (1−∆)RR1. (36)

Solving the equations, we have

∆ = RR2
R1R+RR2

= RR1
R2R+RR1

, (37)

and obtain the ∆ s maximizing the individual rates, and the
resulting flows are

ρ2
1 = f12 = ∆R1R = R1RRR2

R1R+RR2
(38)

ρ1
2 = f21 = ∆R2R = R2RRR1

R2R+RR1
. (39)

Proof. First, note that rates from Phase I (R1R, R2R)
are coupled with each other. In a similar fashion, rates from
Phase II (RR2, RR1) are coupled. To see whether we can
have any rate improvement, first, for a fixed (R1R, R2R),
vary ∆, (RR1, RR2). Note that while moving on the Phase
II boundary (Fig. 4), while we increase one rate the other ei-
ther remains the same or decreases. Similarly, if we decrease
one rate, the other one either remains the same or increases.
That is, we cannot increase or decrease both rates simulta-
neously. To accommodate for this behavior, in the following
analysis, we note that γ1, γ2 cannot be of the opposite sign.
Assume ε > 0.

(i) ∆ to ∆ + ε, (RR1, RR2) to (RR1 ± γ1, RR2 ∓ γ2).

min((∆ + ε)R1R, (1−∆− ε)(RR2 ∓ γ2)) =
min(∆R1R + εR1R, (1−∆)RR2 − εRR2 ∓ γ2(1−∆− ε))

(40)

min((∆ + ε)R2R, (1−∆− ε)(RR1 ± γ1)) =
min(∆R2R + εR2R, (1−∆)RR1 − εRR1 ± γ1(1−∆− ε)).

(41)
In either subcase, the second term of one of the two rates

decreases, hence one of the rates is reduced and no overall
improvement on the rates is possible.

(ii) ∆ to ∆− ε, (RR1, RR2) to (RR1 ± γ1, RR2 ∓ γ2).

min((∆− ε)R1R, (1−∆ + ε)(RR2 ∓ γ2)) =
min(∆R1R − εR1R, (1−∆)RR2 + εRR2 ∓ γ2(1−∆ + ε))

(42)

min((∆− ε)R2R, (1−∆ + ε)(RR1 ± γ1)) =
min(∆R2R − εR2R, (1−∆)RR1 + εRR1 ± γ1(1−∆ + ε)).

(43)
The first terms of both expressions decrease, hence the both
rates are reduced and no overall improvement on the rates
is possible.

When we change ∆ while (RR1, RR2) is fixed for a fixed
(R1R, R2R), note that both rates decrease. For fixed ∆,
adjusting (RR1, RR2) results in either the decrease of one of
the rates while the other remains the same, or both rates
remain the same.

Next, for a fixed (RR1, RR2), consider varying ∆, (R1R, R2R).
Again, while moving on the Phase I boundary(Fig.4), while
we increase one rate either the other remains the same or



decreases. Likewise, if we decrease one rate the other one
either remains the same or increases. That is, we cannot in-
crease or decrease both rates simultaneously. Again, we note
that γ1, γ2 cannot be of the opposite sign in the following
analysis. Assume ε > 0.

(i) ∆ to ∆ + ε, (R1R, R2R) to (R1R ± γ1, R2R ∓ γ2).

min((∆ + ε)(R1R ± γ1), (1−∆− ε)RR2 =
min(∆R1R + εR1R ± γ1(∆ + ε), (1−∆)RR2 − εRR2)

(44)

min((∆ + ε)(R2R ∓ γ2), (1−∆− ε)RR1 =
min(∆R2R + εR2R ∓ γ2(∆ + ε), (1−∆)RR1 − εRR1).

(45)
The second terms of both expressions decrease, hence both

rates are reduced and no overall improvement on the rates
is possible.

(ii) ∆ to ∆− ε, (R1R, R2R) to (R1R ± γ1, R2R ∓ γ2).

min((∆− ε)(R1R ± γ1), (1−∆ + ε)RR2 =
min(∆R1R − εR1R ± γ1(∆− ε), (1−∆)RR2 + εRR2)

(46)

min((∆− ε)(R2R ∓ γ2), (1−∆ + ε)RR1 =
min(∆R2R − εR2R ∓ γ2(∆− ε), (1−∆)RR1 + εRR1).

(47)
In either subcase, the first term of one of the two rates is
reduced and no overall improvement on the rates is possible.

When we change ∆ while (R1R, R2R) is fixed for a fixed
(RR1, RR2), note that both rates decrease. For fixed ∆,
adjusting (R1R, R2R) results in either the decrease of one of
the terms while the other remains the same, or both remain
the same.

Hence, pairs of (R1R, R2R, ∆, RR1, RR2) given by the two
equalities are pairs maximizing both rates in the sense that:
(i) For any point (R1R, R2R) on the Phase I boundary, no
other combination of ∆, (RR1, RR2) results in higher rates.
(ii)For any point (RR1, RR2) on the Phase II boundary, no
other combination of (R1R, R2R), ∆ results in higher rates.

So, both rates cannot be simultaneously increased apart
from rate pairs given by these equations.

Note that these equations are essentially identical to the
flow conservation equations of the hop-by-hop case. So, im-
mediate forwarding supports all arrival rate pairs supported
by hop-by-hop scheduling.

One possible question is whether we can support extra
flow pairs with immediate forwarding by increasing one of
the rates while not necessarily maximizing the other. Note
that it is obvious that rates are individually maximized when
∆R1R = (1−∆)RR2 and ∆R2R = (1−∆)RR1.

Proposition 2. Assume that one of the rates is maxi-
mized, that is one of the equalities ∆R1R = (1−∆)RR2 and
∆R2R = (1 − ∆)RR1 is tight, while the other rate is sim-
ply the value which results from choosing the parameters to
maximize the former rate. All such rate pairs can also be
supported by the hop-by-hop flow conservation equations.

Proof. Given in the Appendix.

We have shown that all arrival rate pairs supported by
immediate forwarding can also be supported by hop-by-hop
scheduling as well. As a result, we have proven the following

1 2

3

4

Figure 5: Two-way diamond network.

theorem:

Theorem 1. Every arrival rate pair in the hop-by-hop
scheduling case can be supported by the immediate forward-
ing case and every arrival rate pair in the immediate for-
warding case can be supported by the hop-by-hop scheduling
case. The resulting stability regions are identical.

5. EXTENSION TO THE TWO-WAY DIA-
MOND NETWORK

Next, we generalize our results on the stability regions
for the single relay two-way network to the bi-directional
diamond network with two relays {3,4} (Fig.5). First, we
consider the model where one of the two relays receives or
transmits data transmitted at a given time instant. In the
hop-by-hop scheduling case, each time slot either sources
transmit to one of the two relays, or one of the relays for-
wards previously received data via XOR network coding.
On the other hand, in immediate forwarding, at each time
slot, one relay is determined, and within the time slot the
relay first receives data from the sources and immediately
forwards it within the same slot.

5.1 Hop-by-hop Scheduling
As in the single relay case, flow conservation equations

need to be satisfied for the sources and relays. The stabil-
ity region corresponds to the set of the source rate vectors
(ρ2

1, ρ
1
2) that can be supported. In particular, the following

flow conservation relations must be satisfied:

ρ2
1 = f13 + f14 (48)

ρ1
2 = f23 + f24 (49)

for the source nodes, and

0 = f32 − f13, 0 = f31 − f23 (50)

0 = f42 − f14, 0 = f41 − f24 (51)

for the relay nodes, where fij denotes flows from node i to
node j. Additionally,

ρ2
1 = f32 + f42 (52)

ρ1
2 = f31 + f41 (53)

for the conservation of traffic specific to commodities. Again,
f ∈ conv(C). For the diamond network, using hop-by-hop
scheduling, conv(C) is the set of convex combinations be-
tween CM3 = (R13, R23, 0, 0, 0, 0, 0, 0),
CM4 = (0, 0, R14, R24, 0, 0, 0, 0), CB3 = (0, 0, 0, 0, R32, R31, 0, 0)
and CB4 = (0, 0, 0, 0, 0, 0, R42, R41) where phase rates are
defined similarly as in Section III, with nodes 3 or 4 replac-
ing R.



In other words,

conv(C) = (
SP
∆i=1

(∆1R13, ∆1R23, ∆2R14, ∆2R24, ∆3R31,

∆3R32, ∆4R41, ∆4R42)),
(54)

and (f13, f23, f14, f24, f31, f32, f41, f42) ∈ conv(C). The ar-
rival rate vectors are equal to:

ρ2
1 = f13 + f14 = ∆1R13 + ∆2R14 (55)

ρ1
2 = f23 + f24 = ∆1R23 + ∆2R24, (56)

where ∆1 + ∆2 + ∆3 + ∆4 = 1.
According to the flow conservation equations at the relays,

we have the following requirements:

∆1R13 = ∆3R32, ∆1R23 = ∆3R31 (57)

∆2R14 = ∆4R42, ∆2R24 = ∆4R21. (58)

Note that when we consider the flow conservation equa-
tions related with each relay node, they are in similar form
as the single relay case. So, we have

R13
R23

= R32
R31

(59)

R14
R24

= R42
R41

. (60)

For any rate pair on the Phase I boundary of each relay,
we can find a corresponding pair on the Phase II boundary
of the same relay.

However, one difference from the single relay case is in the
calculation of the resulting time sharing parameters:

∆1
∆3

= R32
R13

= R31
R23

(61)

∆2
∆4

= R42
R14

= R41
R24

. (62)

We do not have explicit expressions, but rather have in-
dividual relations between time sharing parameters related
with each relay. Let us define τ = ∆1 + ∆3. As a result,
∆2 + ∆4 = 1− τ .
Now let us focus on f13:

f13 = ∆1R13 = τ(∆1
τ

)R13 (63)

∆1
τ

= 1

1+
∆3
∆1

= R32
R32+R13 (64)

f13 = τ R13R32
R32+R13

. (65)

Note that R13R32/(R32 + R13) is equal to the arrival rate
that would have resulted if only relay 3 was operating. We
denote that as f ′13. Following a similar logic for the remain-
ing flow variables, we have:

ρ2
1 = τf ′13 + (1− τ)f ′14

ρ1
2 = τf ′23 + (1− τ)f ′24

(66)

for all τ ∈ [0, 1], since ∆1 +∆3 can take any value from 0 to
1. The main observation is that the overall stability region
of the relay selection based two-way diamond network is a
time-sharing between all points in the stability regions of
two single-relay two-way networks.

5.2 Immediate Forwarding
The following flow conservation equations needed to be

satisfied at the source nodes: ρ2
1 = f12 and ρ1

2 = f21, where
(f12, f12) ∈ conv(C). The main difference from the single
relay case is conv(C), which is now the convex combination
of two separate single-relay immediate forwarding systems:

conv(C) = (
S

∆∈[0,1],γ∈[0,1],τ∈[0,1]

(τ(min(∆R13, (1−∆)R32))

+(1− τ)(min(γR14, (1− γ)R42))), (τ(min(∆R23, (1−∆)R31))
+(1− τ)(min(γR24, (1− γ)R41)))).

(67)
It is easy to notice that the expression is equivalent to the
time sharing between all points in the stability regions re-
sulting from using the relays separately. Hence, the stability
regions resulting from hop-by-hop scheduling and immedi-
ate forwarding are equivalent. Note that while making this
statement, we have used the fact that the stability regions
of using only one of the relays is identical for hop-by-hop
scheduling and immediate forwarding.

Remark : With multiple relays, another possibility is to
beamform data to be forwarded. Even though applying co-
herent beamforming simultaneously to both directions via
multiple relays becomes challenging when the XORed infor-
mation is to be transmitted, for the case when all channel
conditions are symmetric this can be done. In such a sce-
nario, sources transmit to both relays and both relays for-
ward data. The cooperative maximum differential backlog
algorithm [14] is suitable for such networks for rate alloca-
tion. The rate regions are modified, however the analysis
regarding the equivalence of the stability regions of hop-by-
hop scheduling and immediate forwarding applies, hence the
stability regions of these two approaches are also identical
for such scenarios as well.

6. NUMERICAL RESULTS
In order to evaluate the performance of various strategies,

we next present simulation results. Input traffic to the two
nodes are independent Poisson processes. Figure 6 demon-
strates queue evolution for a symmetric network with nor-
malized channel gains and power levels with a single relay
node. We observe that hop-by-hop scheduling and imme-
diate forwarding result in similar performance. Figure 7
demonstrates empirical stability regions for various strate-
gies, with h13P = h24P = 1 and h14P = h23P = 2, which
models a scenario where one relay is closer to one source and
the other relay is closer to the other source. The advantage
of relay selection multiple relays is seen, as the overall op-
eration is equivalent to time sharing between the individual
relays, leading to a larger stability region than both indi-
vidual cases. Again, we observe that hop-by-hop scheduling
and immediate forwarding result in similar performance.

7. CONCLUSIONS
In this paper, we considered the stability region for two-

hop bi-directional communication between a pair of nodes
with stochastic flows. The two main possible options for op-
eration are immediately forwarding data from the relay node
or storing the data received from the end nodes in the re-
lay buffers, and scheduling the next transmission. The relay
nodes use XOR network coding as the forwarding scheme.
The backpressure policy guarantees that the system will be



Figure 6: Mean queue backlogs vs. load for single
relay with symmetric channel conditions.
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Figure 7: Mean queue backlogs vs. load for the
diamond network.

stable for any arrival vector within the stability regions for
both configurations.

We have shown that hop-by-hop forwarding and imme-
diate forwarding result in identical stability regions, both
for the two-way single relay network and the two-way dia-
mond network. To achieve this performance, immediate for-
warding involves time-slot optimization and more complex
scheduling of two hops jointly, whereas hop-by-hop schedul-
ing necessitates buffers at the relays.

This work considers static channel gains and decode and
forward relaying. Incorporating the effect of time-varying
channels on stability regions and considering other relaying
strategies as well is of future interest.

APPENDIX
(Proof of Proposition 2 ) Recall that for the hop-by-hop schedul-
ing case, the flow conservation equations lead to points (R1R,

R2R, ∆, RR2, RR1) such that R1R
R2R

=RR2
RR1

, ∆ = RR2
R1R+RR2

=
RR1

R2R+RR1
, resulting in arrival rates ρ2

1 = ∆R1R = (1 −
∆)RR2, ρ1

2 = ∆R2R = (1 − ∆)RR1 with the ratio
ρ2
1

ρ1
2

=
R1R
R2R

= RR2
RR1

.

Let us consider the four such possible cases explained in
the proposition for immediate forwarding, and for each case
we are interested in whether these arrival rate pairs are sup-
ported by the hop-by-hop scheduling as well:

(i) Rate 1 selected such that ∆1R1R = (1−∆1)RR2, rate
2 results in min(∆1R2R, (1 − ∆1)RR1) which is equal to

∆1R2R in this case. Consequently, R1R
R2R

> RR2
RR1

. The result-

ing arrival rates supported are (∆1R1R, ∆1R2R).

We aim to find (R
′
1R, R

′
2R, ∆

′
, R

′
R1, R

′
R2) supported by

hop-by-hop scheduling such that ∆
′
R
′
1R = (1 − ∆

′
)R

′
R2,

∆
′
R
′
2R = (1 − ∆

′
)R

′
R1 and

R
′
1R

R
′
2R

=
R
′
R2

R
′
R1

= R1R
R2R

, which is

equal to the ratio of the arrival rates supported by imme-
diate forwarding for this case. These equalities are satisfied

for (R
′
1R, R

′
2R) = (R1R, R2R) and associated (R

′
R2, R

′
R1) sat-

isfying either:

a) (R
′
R2 > RR2) and (R

′
R1 < RR1). These rates lead to

∆
′

=
R
′
R2

R1R+R
′
R2

> ∆1. Finally, the arrival rates supported

= (∆
′
R1R, ∆

′
R2R) which is greater than (∆1R1R, ∆1R2R).

b) (R
′
R2 > RR2) and (R

′
R1 = RR1). These rates lead to

∆
′

=
R
′
R2

R1R+R
′
R2

> ∆1. Finally, the arrival rates supported

= (∆
′
R1R, ∆

′
R2R) which is greater than (∆1R1R, ∆1R2R).

c) (R
′
R2 = RR2) and (R

′
R1 < RR1). These rates lead to

∆
′

=
R
′
R2

R1R+R
′
R2

= ∆1. Finally, the arrival rates supported

= (∆
′
R1R, ∆

′
R2R) which is equal to (∆1R1R, ∆1R2R).

Hence, those arrival rates supported can also be supported
by hop-by-hop scheduling.

(ii) Rate 1 selected such that ∆1R1R = (1 − ∆1)RR2,
rate 2 results in min(∆1R2R, (1 − ∆1)RR1) which is equal

to (1 − ∆1)RR1 in this case. Consequently, R1R
R2R

< RR2
RR1

.

The resulting arrival rates supported are ((1−∆1)RR2, (1−
∆1)RR1).

We find (R
′
1R, R

′
2R, ∆

′
, R

′
R1, R

′
R2) such that ∆

′
R
′
1R = (1−

∆
′
)R

′
R2, ∆

′
R
′
2R = (1 − ∆

′
)R

′
R1 and

R
′
1R

R
′
2R

=
R
′
R2

R
′
R1

= RR2
RR1

,

which is equal to the ratio of arrival rates supported by
immediate forwarding. These equalities are satisfied for

(R
′
R1, R

′
R2) = (RR1, RR2) and associated (R

′
1R, R

′
2R) satis-

fying either:

a)(R
′
1R > R1R) and (R

′
2R < R2R) leading to ∆

′
=

RR2
R
′
1R

+RR2
< ∆1. Finally, the arrival rates supported =

((1 − ∆
′
)RR2, (1 − ∆

′
)RR1) which is greater than ((1 −

∆1)RR2, (1−∆1)RR1).

b)(R
′
1R = R1R) and (R

′
2R < R2R) leading to ∆

′
=

RR2
R1R+RR2

= ∆1. Finally, the arrival rates supported = ((1−
∆
′
)RR2, (1−∆

′
)RR1) which is equal to ((1−∆1)RR2, (1−

∆1)RR1).

c)(R
′
1R > R1R) and (R

′
2R = R2R) leading to ∆

′
=

RR2
R
′
1R

+RR2
< ∆1. Finally, the arrival rates supported =

((1 − ∆
′
)RR2, (1 − ∆

′
)RR1) which is greater than ((1 −

∆1)RR2, (1−∆1)RR1).
Hence, those arrival rates supported can also be supported

by hop-by-hop scheduling.
(iii) Rate 2 selected such that ∆2R2R = (1 − ∆2)RR1,

rate 1 results in min(∆2R1R, (1 − ∆2)RR2) which is equal
to ∆2R1R in this case. This is shown similarly as (i).

(iv) Rate 2 selected such that ∆2R2R = (1 − ∆2)RR1,
rate 1 results in min(∆2R1R, (1 − ∆2)RR2) which is equal
to (1−∆2)RR2 in this case. This is shown similarly as (ii).
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