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Transceiver Optimization for
Multiuser MIMO Systems

Semih Serbetli, Student Member, IEEE, and Aylin Yener, Member, IEEE

Abstract—We consider the uplink of a multiuser system where
the transmitters as well as the receiver are equipped with multiple
antennas. Each user multiplexes its symbols by a linear precoder
through its transmit antennas. We work with the system-wide
mean squared error as the performance measure and propose
algorithms to find the jointly optimum linear precoders at each
transmitter and linear decoders at the receiver. We first work
with the case where the number of symbols to be transmitted
by each user is given. We then investigate how the symbol rate
should be chosen for each user with optimum transmitters and
receivers. The convergence analysis of the algorithms is given, and
numerical evidence that supports the analysis is presented.

Index Terms—MMSE receivers, multiuser MIMO system, re-
ceiver beamforming, transmitter beamforming.

I. INTRODUCTION

DUE to the emerging demand on new multimedia appli-
cations, next-generation wireless systems are expected to

support higher data rates. The scarcity of wireless bandwidth
prompts the need for spectrally efficient methods. Using mul-
tiple transmit and receive antennas is an effective means to in-
crease spectral efficiency [1], [2]. Recently, there has been con-
siderable research in exploiting the space dimension through
transmit diversity, space-time coding, and spatial multiplexing
for multiple input multiple output (MIMO) systems that em-
ploy multiple transmit and/or receive antennas [3]–[5]. In partic-
ular, spatial multiplexing can be used to transmit multiple data
streams that can be separated using receiver signal processing,
e.g., [6] and [7].

Performance improvement for MIMO systems can be
achieved by exploiting various levels of feedback information
available at the transmitter. In the absence of channel state-
related feedback, multiantenna structure of the system can be
used for spatial multiplexing as in BLAST [6] or for coding as
in space-time coding [3], [4]. Antenna selection is a spatial mul-
tiplexing technique that assumes limited feedback information
from the receiver to the transmitter. The information about which
transmitter antennas should be used to achieve a certain data rate
is fed back, and the potential high capacity of a MIMO system can
be realized with limited increase in complexity at the transmitter.
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Capacity of MIMO systems with antenna selection has been
studied recently [8], [9]. Minimum error rate antenna selection
methods are proposed for single-user MIMO systems employing
maximum likelihood and linear receivers in the context of spatial
multiplexing in [10]. Optimum MIMO transmission schemes
with antenna selection are analyzed in [11].

Spatial multiplexing can significantly benefit from transmit
precoding when channel information is available at the trans-
mitter side. In such cases, designing the appropriate precoding
strategy has been studied under a variety of system objectives
[5], [7], [12], [13]. All of these studies, as with most of the
MIMO system analysis, have been done for a single-user system
that transmits multiple data streams. In the case of a multiuser
MIMO system where users’ transmissions interfere with each
other, the system objectives should be optimized jointly for all
users given the channels of all users. Thus, optimal designs of
single-user systems are not directly applicable. In this context,
optimum or near-optimum transmit strategies that maximize the
information theoretic sum capacity of vector multiple access
channels have been investigated [14], [15]. A recent reference
considers optimum transmit strategies relevant for a multicar-
rier scenario [16].

Joint transmitter and receiver design is an effective interfer-
ence management technique for multiuser systems. In partic-
ular, signature sequence optimization in CDMA systems, which
aims to determine optimum transmitter sets to enhance the per-
formance of the overall system, has been investigated for several
channel models. Optimum CDMA signature sequence sets are
identified, and iterative algorithms that converge to the optimum
signature sequence set are proposed in [17]–[21]. For multipath
CDMA systems, jointly optimum transmission schemes are in-
vestigated, and iterative algorithms to find the optimum signa-
ture sets are proposed in [22]–[24].

Transmit and receiver beamforming for multiuser MIMO sys-
tems when each user is transmitting a single data stream have
also been studied extensively up to date. Receiver beamforming
has been shown to be effective in interference suppression in
multiuser systems [25], [26]. Jointly optimum transmit powers
and receiver beamformers were found in [27]. Reference [28]
proposed an iterative algorithm for determining the downlink
powers and transmit beamformers given a signal-to-interference
ratio (SIR) target at the single antenna receiver of each user. The
optimality of a similar algorithm was shown in [29]. Algorithms
that identify transmit and receiver beamforming strategies and
the corresponding transmit power assignments are proposed in
[30] with the aim of maximizing the minimum achievable SIR
or providing each user with its SIR target. The algorithms sug-
gested were numerically shown to enhance system performance
but were observed to converge to local optima [30].
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Fig. 1. System model of multiuser MIMO system.

Our aim in this work is to design algorithms that converge to
the optimum transmitters (precoders) and receivers (decoders)
for all users in a multiuser MIMO system when users transmit
possibly multiple data streams. The channels are assumed to be
flat and known at the receiver side, and we assume that there ex-
ists an error-free and low-delay feedback channel to each user.
The transmitters and receivers are assumed to be linear for all
users. A multiuser MIMO system can be viewed as a MIMO
system with a channel matrix that consists of the channel gains
of all transmitter-receiver pairs of all users where each user’s
symbols can be precoded only by that user’s transmitter an-
tennas. We work with a system-wide performance measure for
the joint optimization of transmitters and receivers, namely, the
system-wide mean squared error (MSE). In contrast to receiver
optimization for fixed transmitters, e.g., in [31], optimization of
the individual MSEs is not equivalent to total MSE optimization.
However, one can construct iterative algorithms for the cases
where users transmit single or multiple symbols that monotoni-
cally decrease the total MSE under the given system constraints.

For a given number of symbols to be transmitted by each
user, we propose two different algorithms that use alternating
minimization to find the optimum transmitter and receiver set.
The first algorithm enables parallel updates for all users over
the transmitters and receivers. The second algorithm allows us
to observe that there exists an optimum transmitter set that dis-
tributes each user’s power equally to each of its symbols. This
observation enables the formulation of the multiuser MIMO
system with multiple symbols transmitted by each user as a
system where multiple virtual users transmitting one symbol
each. We then propose an alternative iterative algorithm that op-
timizes the transmitter vector of each virtual user one at a time
for faster convergence. The proposed algorithms are observed to
converge to the best transmitter-receiver pairs under the given
power constraints and result in enhanced performance for all
users. We also observe that when the number of symbols to be
transmitted by each user exceeds a certain threshold, the overall

system performance degrades, and we suggest guidelines for the
number of symbols transmitted per user.

The algorithms proposed employ iterative updates of the
transmitters and receivers. It is important to note that the
updates depend on the error-free and low-delay feedback
channels and that the feedback can be of one of the two forms:
Either i) the necessary information at each iteration is fed back
to the transmitter side for users to perform the actual update, or
ii) the algorithm is run offline, and the resulting transmitter for
each user is fed back to the user.

Throughout the derivation of the algorithms, the channels
are assumed to be flat and slowly varying. In fact, we need the
channels to be varying slowly as compared with the conver-
gence time of the proposed iterative algorithms. Since there
is no structural constraint imposed on channel matrices, the
algorithms are valid for any multiuser MIMO system having
slow channel variations such as multiuser multiantenna systems
[30] and OFDMA systems [32] in fixed (or very slow mobility)
wireless environments and wireline multiuser systems [33],
[34]. The algorithms are derived for synchronous uplink
systems such as multiantenna TDMA systems (SDMA/TDMA
systems) where time slots are shared by several users, and
multiuser detection schemes are performed for each time slot,
resulting in improved user capacity [35]–[37]. However, the
algorithms can be extended for the asynchronous case simply
by increasing the dimensions of the channel, transmitter, and
receiver matrices by the time index, and optimum transmission
schemes can be found for blocks of symbols for each user.

II. SYSTEM MODEL AND PERFORMANCE METRIC

We consider the uplink of a single cell synchronous system
with users. The receiver employs antennas. We assume
that the th user multiplexes a fixed number of data streams
through its transmit antennas employing an linear
transmitter in one symbol period (Fig. 1). We assume that the
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number of symbols for each user is given and fixed first. We will
remove this assumption in Section V and determine the number
of symbols to be transmitted. Similar to the notation in [7], the
received vector is

(1)

where is the symbol vector, is the matrix
of complex channel gains, is the zero mean complex Gaussian
noise vector with , and denotes the Hermitian
of a vector or matrix. Denote the covariance of the transmitted
signal vector of user by . Assuming the symbols of each user
are independent, the covariance of the transmitted signal vector
is . The transmit power constraint
for user is tr . The linear
receiver of user is denoted by . The decision statistic is
given by

(2)

In this work, we aim to design transmitter-receiver pairs that
minimize the system-wide MSE. The MSE incurred by user ,
MSE is

MSE

tr

(3)

where tr denotes the trace of matrix . The total MSE of
all users in the system is given by

MSE tr

(4)

The performance metric, system-wide total MSE is formu-
lated for synchronous uplink systems such as multiantenna
TDMA systems with no intersymbol interference. This assump-
tion is valid, for instance, when a guard time is added to each
symbol duration to prevent successive symbol interference and
increasing the observation period. We note that the formulation
can be adapted for asynchronous case simply by increasing the
dimensions of the channel, transmitter, and receiver matrices
by the time index for a given time interval.

Consider transmission of a block of symbols for each user.
User has symbols to send, and the transmitter and re-
ceiver matrices of user have dimensions of and

, respectively. The channel matrix of user for an
symbol period of time can be constructed simply by inserting

the channel gains related to the contributing symbol intervals.
Defining the appropriate transmitter, receiver, and channel ma-
trices, the system-wide total MSE can be formulated in the same
manner as above. Note that for this approach, each symbol is
precoded over a time interval of symbol duration, and the op-
timum transmission scheme for a block of transmission is found.
Keeping in mind that the following development may be ex-
tended to address the block transmission scenario, we will use
the synchronous model in the sequel for clarity of exposition.

Total MSE minimization by choosing the transmitters and re-
ceivers has recently been studied for synchronous CDMA sys-
tems with single antennas in the context of CDMA signature op-
timization [20]. This performance measure is desirable to work
with in transmitter optimization, in contrast with each user mini-
mizing its own MSE, as is adapted in receiver optimization [31].
This is because the choice of the transmitter of a user affects the
MSE of each user in the system. In the following sections, we
pose the problem of minimizing the total MSE in the presence
of power constraints and devise iterative algorithms that con-
verge to the solution of the corresponding problems. Note that
this problem is a generalized version of what is posed in [16]
without any constraints on the number of users or channel struc-
ture.

III. MSE MINIMIZATION

A. Multiple Symbol Transmission

We now pose the problem of minimizing the MSE subject
to a transmit power constraint for each user for a predefined
number of symbols to be transmitted for each user s. As is
explained in Section II, the transmit power constraint for user
can be expressed as tr . Formally, the optimization
problem is

MSE (5)

s.t. tr (6)

where we optimize the MSE over the transmitter ma-
trices and the receiver matrices . Notice
that the only constraint imposed on the system is the transmit
power constraint for each user. Then, the Lagrangian dual ob-
jective of this optimization problem is

tr

tr (7)

where is the Lagrange multiplier associated with the
transmit power constraint of user . Optimum transmitter and
receiver structures should satisfy the first-order optimality con-
ditions for each user. Simply taking the derivative with respect
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TABLE I
MULTIPLE SYMBOL ALGORITHM, IMPLEMENTATION 1. SEE APPENDIX A FOR EXPLICIT CALCULATION OF � (n+ 1)

TABLE II
MULTIPLE SYMBOL ALGORITHM, IMPLEMENTATION 2. SEE APPENDIX A FOR EXPLICIT CALCULATION OF � (n+ 1)

to the transmitter and the receiver of user and equating it to
zero, we arrive at

(8)

(9)

where s can be found by the power constraint as shown in
Appendix A:

tr (10)

Note that, as expected, the optimum receivers for a given set
of transmitters are in the form of the well-known MMSE re-
ceivers [31]. Note also that the transmitters are functions of re-
ceivers of all users, whereas the receivers are functions of trans-
mitters of all users. To find the joint optimum set of transmitters
and receivers, one can devise iterative algorithms that monoton-
ically decrease the total MSE. In particular, alternating mini-
mization where variables are optimized one at a time, keeping
all others fixed, proves attractive in the design of such itera-
tive algorithms [38]. Equations (8) and (9) describe the trans-
mitter-receiver updates we can perform. The algorithm starts
with a given set of transmitters receivers, and we can update the
receivers and transmitters independently in a par-
allel fashion using (8) and (9). Note that at each iteration, the
Lagrange multiplier in (9) should be calculated such that the
transmit power constraint is satisfied. The algorithm is shown
in Table I, where .

Alternatively, if we assume that each receiver is updated in-
stantaneously when the transmitter is updated, we can reduce
the two step iteration given by (8) and (9) to a single iteration.

This is accomplished by inserting the resulting receivers of (8)
in (9). Let us define

(11)

Then, following some straightforward algebra, we arrive at the
following iteration:

(12)
Note that the iterative algorithm defined by Table II may

choose to iterate over each user’s transmitter by updating (11)
with the newest transmitter found before the next user’s iteration
for faster convergence. Both the two-step algorithm of (8) and (9)
and the algorithm given by (12) decrease the MSE at each step.

The algorithms proposed in Tables I and II can be run online
or offline. Online implementation of the algorithms requires the
feedback of the necessary information to the users to perform the
actual updates, whereas the offline implementation requires the
feedbackof the resulting optimum transmitter matrixofeach user
to the user. The algorithm presented in Table II, for example, re-
quires that each user has access to the matrix and its channel
matrix to update its transmitter. When the channel is used as
time duplex mode, channel state information can be estimated at
the transmitter. In such a case, broadcasting the matrix after
each update will suffice for the implementation of the algorithm.

B. Single Symbol Transmission

In the previous section, we proposed an algorithm to find
the optimum transmitter and receiver set using alternating mini-
mization. In this section, we explore a reformulation of the MSE
by utilizing the resulting receiver structure (MMSE receivers)
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so that transmitters and receivers can be optimized jointly. The
motivation of this approach is to achieve faster convergence.

First, let us consider a multiuser MIMO system with users
each transmitting a single data stream. In this case, the commu-
nication model is the same as the system studied in [30]. The
transmitter and receiver matrices become vectors, and we will
denote the transmitter and receiver vectors for user by and

, respectively, where transmitter has a power constraint of .
The MMSE receiver for user is given by

(13)

where is given by (11), i.e., .
Substituting the above for the receivers, the MSE of user be-
comes

MSE (14)

and the total MSE of all users in the system is

MSE

tr tr (15)

Next we note that using the matrix inversion lemma, can
be expressed as

(16)

with . Since does not depend
on , we can easily express the total MSE as

MSE (17)

where represents the terms independent of user . Thus,
from the perspective of user , MSE can be minimized by
choosing to maximize the second term in (17). It is easily
shown that we need to maximize the second term.
Thus

MSE (18)

(19)

The maximization of the second term is accomplished simply by
choosing to be the maximum generalized eigenvalued eigen-
vector of and . An iterative
algorithm that minimizes the MSE can be devised as follows:
Each user takes turns in optimizing the MSE function from its
perspective as explained above, monotonically decreasing the
MSE function at each iteration.

For single symbol transmission, the vector form of the trans-
mitters and receivers allow us to optimize each user’s trans-
mitter and receiver jointly at each step. Thus, the single symbol
algorithm proposed is expected to converge faster than the algo-
rithms proposed in the previous section.

The single symbol algorithm can also be used to devise an
algorithm for multisymbol transmission that has faster conver-
gence. Indeed, every multisymbol transmission of each user can
be viewed as single-symbol transmissions of each symbol with
a linear transmitter of the associated column of linear trans-
mitter matrix. This “conversion” from multisymbol scenario to
single-symbol scenario presents us with the opportunity to em-
ploy the above transceiver optimization algorithm. However,
contrary to the case of the multisymbol algorithm that does not
provide specifics regarding the allocation of the total transmit
power of a user between its symbols, we now need to con-
strain the power of each symbol to be able to apply the single
symbol algorithm. Hence, we next establish that assuming a
certain power distribution, the total transmit power of a user
equally distributed between its symbols will not prevent us from
achieving the global optimum point.

Recall that when MMSE receivers are used, the MSE of a
multisymbol transmission can be reformulated as

MSE tr

tr (20)

where . We observe that any
two possible transmitters for user , , and that satisfy

have the same contribution to the MSE
function where is the transmitter covariance ma-
trix of user for .1 Notice that there exists an
optimum transmitter covariance matrix that minimizes the
MSE in terms of user , and any optimum transmitter matrix
should satisfy the optimum transmitter covariance matrix con-
straint . Our aim is now to impose power con-
straints on the columns of the optimum transmitter matrix. It is
important to note that we cannot pick an arbitrary power dis-
tribution at will since a transmitter matrix that satisfies both the
given power distribution constraint and the optimum transmitter
covariance matrix constraint may not exist. In such a case, we
would be confining ourselves to a transmitter search space that
is strictly suboptimum. Fortunately, there exists a power distri-
bution that guarantees the existence of at least one transmitter
matrix satisfying both the given power distribution constraint
and the optimum transmitter covariance matrix constraint for
any case. This is the equal power distribution, as shown in the
following lemma.

Lemma 1: For any , there exists a transmitter ma-
trix such that for ,

, i.e., each column vector has equal power.
Proof: Denote as rank . ’s and ’s are the

eigenvalues and associated eigenvectors of . Thus,
. In addition, in terms of

the column vectors of , . Assume
that . Then, a set that
satisfies remains to be found.

1Note that the rank of R cannot exceed the rank of F and, thus, is lower
than or equal toM .
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TABLE III
SINGLE SYMBOL ALGORITHM

Assume that is a diagonal matrix with value at the
entry , and is the phase matrix with

at the th entry. In terms of , is

(21)

(22)

and the eigendecomposition of is

(23)

Hence, should satisfy

(24)

(25)

(26)

The above shows that should have orthogonal rows. Such a
matrix can be formed by assigning to the th
entry with the assumption .

Lemma 1 shows that an equal power distribution for any
given covariance matrix (including the optimum covariance
matrix) exists. The proof is by construction and essentially tells
us that assuming the symbols as virtual users with equal powers
will not preclude the single symbol algorithm from achieving
the global optimum performance of the system in terms of
system-wide total MSE. That is to say that the single symbol
algorithm searches for transmitter matrices in a reduced search
space that includes the global minimizer of the system-wide
MSE.

It follows from the above that any multiple symbol transmis-
sion scenario can be viewed as a single symbol transmission sce-
nario, where symbols of user represent virtual users
each with power constraint and channel matrix

. The total number of virtual users is and
an iterative algorithm that minimizes the MSE can be devised
as follows: Each virtual user takes turns in optimizing the MSE
function from its perspective as explained for the single symbol
transmission case, monotonically decreasing the MSE function
at each iteration. The algorithm is shown in Table III. The algo-
rithm can be run both online and offline. For online implemen-
tation of the algorithm, each transmitter requires the matrix
and the channel matrix of its own . This algorithm may be
preferable for implementation due to its potential for faster con-
vergence than the multiple symbol algorithm.

IV. CONVERGENCE ISSUES

In this section, we investigate the convergence properties
of the algorithms we proposed. The algorithms iterate over

the users each time decreasing the system-wide MSE. Clearly,
the MSE function is bounded below. This implies that the
algorithms, which produce decreasing sequences that are lower
bounded, are convergent. Unfortunately, although the MSE
function is convex over each of the transmitter and receiver
matrices, it is not jointly convex on all the variables. Therefore,
although each step of each of the the algorithms we propose
finds the minimum of the MSE function over the variable
over which we optimize, the fixed point of the algorithm is
not guaranteed to converge to the global minimum due to the
possible multimodality of the MSE function.

At the fixed point of our multi symbol algorithm given in
Tables I and II, the set of transmitters remains unchanged when
the iteration is performed over all the users:

(27)
Simple linear algebra reveals that at the fixed point, each trans-
mitter needs to satisfy

(28)

Thus, at the fixed point, the columns of transmitter matrix of
each user are eigenvectors of the matrix with the
same eigenvalue of .

An observation that can readily be made from (28) is that the
set of transmitter matrices at the fixed point is not unique. For
example, if is the transmitter matrix of
user transmitting symbols at the fixed point, then phase ad-
dition to each column and/or permutation of the column vec-
tors will also satisfy the fixed
point equation.

It is also easily seen that if all columns of the initial trans-
mitter matrix of any user are in the null space of the channel
matrix of that user, then the algorithm will yield the undesirable
fixed point of the all zero transmitter matrix. Such undesirable
starting points should be avoided while implementing this algo-
rithm, for example, by choosing random starting points.

In general, the nonconvexity of the problem may prevent
the convergence of the algorithm to the global optimum. As
is common with nonconvex problems, our hope then lies in
finding the optimum by choosing multiple random starting
points and adopting to the best of the fixed points of multiple
runs. A moment’s thought reveals, however, that in certain
cases, we may be able to construct a mechanism to check if the
fixed point we derived is indeed the global optimum.
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To see this, let us recall that the MSE function is

MSE tr

tr (29)

where we have used MMSE receivers for all users. When we
substitute , the total MSE minimization problem
can be restated as

tr (30)

s.t. (31)

tr (32)

rank (33)

where refers to the positive semidefiniteness constraint
on . We will refer to (30)–(33) as the original transmit covari-
ance optimization problem in the sequel.

It can be shown that the MSE function is jointly convex in
. In addition, the constraints defined by (31) and (32) are

convex constraints. Thus, short of the rank constraint defined by
(33), which is a consequence of the fact that each is

, we have a convex optimization problem at hand. If we are
able to discard this constraint of the original transmit covariance
optimization problem, then the convex optimization problem
defined by (30)–(32) may prove useful in our quest to test the
optimality of the algorithm described in Section III. We will call
the resulting problem the relaxed transmit covariance optimiza-
tion problem. Since this optimization problem is convex and
Slater’s condition is satisfied, the Karush–Kuhn–Tucker (KKT)
conditions associated with the relaxed transmit covariance op-
timization problem are necessary and sufficient to test the op-
timality of the [39]. Constructing the Lagrangian dual
problem, one can come up with the following KKT conditions
for the relaxed transmit covariance optimization problem as de-
rived in Appendix A:

(34)

tr (35)

tr (36)

(37)

where are the dual variables.
Notice that anytime we relax an optimization problem by re-

laxing the constraints, the optimum point of the relaxed problem
is “better” (has a smaller MSE value) than or as good as the orig-
inal problem. Hence, if the solution of original problem achieves
the cost value for the relaxed problem, then the solution found
must optimize both the relaxed and the original problem. If the
solution we find for the original nonconvex problem proves to
be optimal for the relaxed convex problem, then it must be the
optimal for the original problem as well. Because KKT condi-
tions are necessary and sufficient for the relaxed problem, we
can check the optimality of the point with respect to the relaxed
problem. If the point is optimal, then it is so for both the re-
laxed and the original problem. Thus, if for given transmitters,

which lead to a set of , the above conditions are satis-
fied, i.e., the corresponding dual variables are found, then we
are at the global minimizer of the MSE function for both the
original transmit covariance optimization problem and the re-
laxed transmit covariance optimization problem. Observe that

can be readily constructed from the transmitters at the
fixed point of our algorithm.

It is important to note that the above serves as an exact op-
timality check when the rank constraint is redundant for the
problem. Observe that the rank constraint for the
matrix is necessary only for the case when .
Thus, for the cases where all users have , the MSE
minimization problem formulated as a function of the transmit-
ters with transmit power constraints, the relaxed transmit co-
variance optimization problem defined by (30)–(32) in terms of

are equivalent, and the optimality check above is exact.
For systems, where for at least one user, the KKT
conditions strictly correspond to the relaxed transmit covariance
optimization problem where the rank constraint is relaxed. In
this case, the KKT conditions, which are necessary and suffi-
cient for the relaxed transmit covariance optimization, are suf-
ficient but not necessary for the original transmit covariance
optimization problem. Specifically, we may be at the optimum
point of our rank constrained problem described by (30)–(33)
and not at the optimum point of the relaxed transmit covariance
optimization problem described by (30)–(32). This may lead to
cases where we misjudge the fixed point of our algorithm as a
local minimizer.

V. RATE ALLOCATION

So far, we considered transceiver optimization algorithms
for a given number of symbols to be transmitted by each user.
In this section, we ask the question of how many symbols each
user should end up transmitting with the corresponding optimum
transmitters and receivers. Note that in this case, the MSE opti-
mization problem consists of (30) to (32), i.e., the rank constraint
is no longer present. The following observation is immediate.

Observation 1: User cannot transmit more than rank
symbols without causing self interference among its symbols
where is the optimum transmitter covariance matrix of the
relaxed transmit covariance optimization problem.

It is evident that for no self interference among symbols,
the transmitter matrix of user , should have orthogonal
columns, and the number of orthogonal columns rank is
equal to rank . For a given power constraint for user

, the maximum rank that the optimum can achieve is
rank , where is the optimum transmitter covariance
matrix of user without any rank constraint. Thus, an optimum
transmitter of size rank can be formed, which
will result in noninterfering symbols for user . Note that in-
creasing beyond rank causes the rank constraint to
be redundant and does not change the optimum transmit covari-
ance matrix of the rank-constrained problem.

Observation 2: Increasing the number of symbols of user
beyond rank increases the system-wide MSE by 1 for

each additional symbol.
Noting that the resulting for user is the same for any

rank and that the transceiver structure of other users
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remains unchanged, we conclude that increasing the number of
symbols of user only increases MSE by rank as if

rank symbols are not transmitted at all. Obviously,
this results in degradation of performance for user and, hence,
the overall system, and is undesirable.

From the two observations, it follows that the the number of
symbols transmitted can be chosen to maximize the number
of symbols transmitted while avoiding self interference for
each user, and this judicious choice of number of transmitted
symbols can enhance the overall performance of the system. It
is evident that number of symbols transmitted by user should
be rank for the best system performance, in the minimum
MSE sense, while maximizing the symbol rate. Finding the
optimum set in this case aims to find the optimum trans-
mitter, receiver, and the number of symbols sent by each user
while maximizing the number of symbols transmitted without
causing self interference for each user and minimizing system-
wide MSE. Formally, the optimization problem becomes

MSE (38)

s.t. tr (39)

Note that there is no constraint other than the transmit power
constraint and positive semidefiniteness of the transmitter co-
variance matrices . Specifically, the rank constraints of
the transmitter covariance matrices defined by (33) for the MSE
minimization with predefined data rates (number of symbols)
are no longer present. Rather, the number of symbols to be
sent by each user is determined by the rank of the resulting
transmit covariance matrices. Notice that (38) and (39) is the
same problem as the relaxed transmit covariance optimization
problem, and the KKT conditions of this problem are those
given by (34)–(37) and are necessary and sufficient to check for
the optimality of the resulting transceivers.

The multiple symbol algorithms (Tables I and II) or the single
symbol algorithm (Table III) with the assumption that each user
transmits symbols can be used to find . Using these
results, the rank set is determined. Note that the
algorithms are run offline to find the transmitters and the corre-
sponding set. Then, the number of symbols to be trans-
mitted by each user is determined by rank , and
the corresponding optimum transmitter matrices are found by
simple factorization. Finally, the resulting transmitter matrices
and the number of symbols to be transmitted by each user are
fed back to each user.

A final observation before concluding this section is that a
similar problem is the information theoretic sum capacity max-
imization problem for multiuser MIMO systems, which also
aims to find the optimum covariance matrix of the transmitter,

[14]:

(40)

s.t. tr (41)

Since sum capacity function is jointly convex in and the
constraints are convex constraints, the information-theoretic
sum capacity maximization problem is a convex optimization
problem, and the KKT conditions are necessary and sufficient

to test the optimality of the . Although the optimization
problem given by (40) and (41) is similar to (30)–(32), the
KKT conditions are not identical to (34)–(37) [14]; specifically,
compare (34) with (42):

(42)

tr (43)

tr (44)

(45)

Note that are the dual variables. Observe that the op-
timal set for sum capacity maximization and MSE mini-
mization problems need not to be the same set.

VI. NUMERICAL RESULTS

In this section, we offer numerical results to support our
analysis. The simulations are performed for a multiuser MIMO
system where each user is equipped with
transmit antennas, and the receiver has antennas. Each
user performs binary modulation and has power constraint

. The channel realizations used in the sim-
ulations are presented in Table IV. The variance of the AWGN
noise used in the simulations is 0.8 per complex dimension.
Each plot shows the MSE or BER value versus the algorithm
iteration index, where an iteration signifies updating all users’
transmitters, i.e., updates. Throughout the simulations, the
BER for each iteration is found by averaging the BER of all
users for a data sample of bits. The BER and MSE values
resulting from the simulations are presented in Table V.

First, we consider a user MIMO system with each
user sending a single data stream. Both the algorithm described
by (12), dubbed Algorithm 1, and the algorithm described in
Section III-B, dubbed Algorithm 2, are simulated. Fig. 2 shows
the evolution of both algorithms as they converge to the op-
timum MSE value. Although both algorithms converge to the
optimum value, we observe that the convergence of Algorithm 2
that chooses the maximum generalized eigenvalued eigenvector
of and is faster. This is ex-
pected since Algorithm 2 assumes instantaneous receiver up-
dates with each user’s transmitter update and jointly optimizes
the transmitter and the receiver for each user, whereas Algo-
rithm 1 performs transmitter and receiver optimization for each
user in tandem. Fig. 3 shows the evolution of the average BER
with transceiver updates. Notice that the average BER is reduced
by 29-fold (14.6 dB).

For single-user MIMO systems, precoding with the maximum
eigenvalued eigenvector of is the optimum transmission
technique that achieves the minimum BER and the minimum
MSE in AWGN. For the system considered in Figs. 2 and 3, we
have compared the performance of the case where each user
transmits by precoding its symbol by its largest eigenvalued
eigenvector with that of the case where each user uses the
transceivers defined by the fixed point of our algorithms. Our
algorithms resulted in a BER of 0.0020 and an MSE of 0.7192,
whereas the eigen-beamforming resulted in a BER of 0.0077 and
an MSE of 1.0240. The example demonstrates that the system
performance of all users should be jointly optimized and that
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TABLE IV
SIMULATED MULTIUSER MIMO SYSTEM MODEL

TABLE V
BER AND MSE RESULTS FOR THE SIMULATED MULTIUSER MIMO SYSTEM
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Fig. 2. K = 4 user MIMO system withM = 1 data streams per user.N =

N = 4.

the solutions of single-user MIMO systems are not directly
applicable to multiuser MIMO systems.

Fig. 4 shows the MSE evolution when a fifth user becomes
active in the previous system. The minimum achievable MSE
of the system increases as expected due to higher number of
users and channel constraints. When the system is overloaded,
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Fig. 3. K = 4 user MIMO system withM = 1 data streams per user.N =

N = 4. BER analysis at each iteration.

the number of symbols transmitted is larger than the number of
, and the MSE minimization algorithm does not

constrain the distribution of the total MSE to the symbols. Thus,
there are many possibilities that achieve the same total MSE but
have different BER. Although the resulting transceivers are not
necessarily the global optimum in terms of BER, the simulations
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Fig. 4. K = 5 user MIMO system withM = 1 data streams per user.N =

N = 4.
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Fig. 5. K = 2 user MIMO system withM = 2 data streams per user.N =

4, N = 4.

show that the BER values of the resulting transceivers are lower
than the BER of the starting transceivers.

The performance comparison of Algorithms 1 and 2 for the
case of multiple symbol transmission is shown by Fig. 5 for

users, each equipped with transmitter antennas
and transmitting data streams. Total MSE mono-
tonically decreases and converges to its minimum value for both
cases. The convergence of Algorithm 2 is much faster than Al-
gorithm 1 for the multiple symbol transmission scenario as well.
The evolution of the average BER with the transceiver updates
is shown in Fig. 6. The effect of additional users in the system
can be observed in Fig. 7. While the performance of the system
degrades by the increased number of users, the relative conver-
gence speed of the algorithms remains the same.

Fig. 8 shows the evolution of the Algorithm 1 for a
user system, whereas Fig. 9 shows the evolution of Algorithm
2 for a user system. Each user transmits 2 data streams.
The convergence of the algorithms is observed for five random
starting points for both cases. Total MSE monotonically de-
creases and converges to its minimum value for each starting
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Fig. 6. K = 2 user MIMO system withM = 2 data streams per user.N =

4, N = 4 BER analysis at each iteration.
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Fig. 7. K = 3 user MIMO system withM = 2 data streams per user.N =

4, N = 4.

5 10 15 20 25 30 35 40 45 50
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Iteration Index

M
S

E

Fig. 8. K = 3 user MIMO system withM = 2 data streams per user.N =

N = 4 performance of Algorithm 1 with 5 different starting transmitter sets.
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Fig. 9. K = 2 user MIMO system withM = 2 data streams per user.N =

N = 4 performance of Algorithm 2 with 5 different starting transmitter sets.

TABLE VI
PROCESSING TIMES OF THE ITERATIVE ALGORITHMS FOR THE SIMULATED 4

USER 4 � 4 MIMO SYSTEM

transmitter set. Although the resulting transmitter sets are dif-
ferent, the total MSE of the system and of each user at the
fixed point are the same for each starting point. When trans-
mitter matrices are started randomly, we observed they consis-
tently converged to the same total MSE and set for a given
set of channel matrices .

In Section IV, a relaxed optimization problem is formed to
obtain a global optimality check that is valid for certain cases.
In such a formulation, the transmit covariance matrices of the
users are jointly convex. Thus, an iterative algorithm can be
devised such that each user optimizes its transmit covariance
matrix one at a time, and the convergence of such an algorithm
to the global minimum of the relaxed problem is guaranteed.
Several approaches can be developed to obtain the optimum
transmit covariance matrix for a single user. The first one is
simply applying Algorithms 1 and 2 to each user where each user
transmits as many symbols as its transmit antennas, as mentioned
in Section V. For such a case, the rank constraint on the transmit
covariance matrix becomes redundant, and the global optimum
transmit covariance matrix for the original optimization problem
and the relaxed optimization problem become the same. An-
other approach to solve such a convex optimization problem
is semidefinite programming. Such a formulation is done in
[40] by using the semidefinite programming software SeDuMi
for obtaining optimum transmit covariance matrix of the user
when the zero-forcing receiver is employed in a single-user
system. We can utilize this software to find the optimum transmit
covariance matrices for the multiuser system only when the rank
constraint is redundant. In this case, due to the joint convexity of
the transmit covariance matrices, an iterative algorithm that runs

the SeDuMi software to obtain the optimum transmit covariance
matrix of each user at each step can be formed and is guaranteed
to converge to the global optimum. For comparison purposes,
the SeDuMi-based iterative algorithm is devised as follows:
In each iteration, we rewrite the MSE function in terms of the
parameters of the associated user and form a semidefinite opti-
mization problem and solve for the optimum transmit covariance
matrix of the associated user by using the SeDuMi optimization
software. We simulated both Algorithm 2 and the SeDuMi-based
iterative algorithm for the same multiuser MIMO system. The
simulations showed that both algorithms converge to the same
set of transmit covariance matrices, and Table VI summarizes the
comparative simulation times of the algorithms. As expected, the
processing time for the updates of the SeDuMi-based algorithm
is much higher than Algorithm 2.

VII. CONCLUSION

In this paper, we proposed transmitter (and receiver) update
algorithms that are geared toward enhancing the system per-
formance by minimizing the total MSE in a multiuser MIMO
system. Motivated by the equivalence of the multisymbol mul-
tiuser system and the single symbol transmission with multiple
virtual users, we proposed an alternative iterative algorithm that
is observed to have faster convergence. All the algorithms pro-
posed in this paper can be applied to multiple and single symbol
transmission. We investigated the fixed-point properties and
identified an optimality check mechanism for the algorithms pro-
posed for the system. We investigated the relationship between
the number of symbols each user transmits and the performance
of the system. Specifically, we observed that by judicious choice
of the number of symbols to be transmitted by each user, the
performance of the system can be enhanced by avoiding self
interference while maximizing the data rate for each user.

It is important to note that the algorithms we propose here rely
on the updates through error-free, low-delay feedback channels.
To that end, the effect of the accuracy of the feedback on the
performance of the algorithms remain to be investigated.

APPENDIX A
CALCULATION OF LAGRANGE MULTIPLIERS

The algorithms proposed in Section III require the calculation
of the Lagrange multipliers ( ’s) at each step according to the
power constraint of each user. The proposed updates for each
implementation are as follows:

(46)

(47)

where should satisfy the following condition:

tr (48)

Notice that each update is in the form of

(49)

where and are known. can be decomposed as
by singular value decomposition. The value of

satisfying the KKT condition is either the positive value such
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that the linear transmitter satisfies the power constraint with
equality or 0. The value of satisfying the constraint with
equality can be found as

tr (50)

tr

(51)

tr

(52)

tr

(53)

tr (54)

Defining a new matrix that has a entry
in the th row and th column and in the same manner, the
equation can be expressed as follows:

(55)

Let us define the function .
The left-hand side of (55) is a function of the Lagrange mul-
tiplier , and we want to find , where the function
gets the value of . Recall that the parameters of the function

, ’s, and ’s are the diagonal entries of and
eigenvalues of , respectively, and are non-negative due to the
positive semidefiniteness of the matrices and for both
update mechanisms. The derivative of the function with
respect to the Lagrange multiplier is

(56)

and it is strictly negative due to the non-negativity of and
for . The function is a monotonically decreasing
function of non-negative , and there exists only one non-neg-
ative real value of that satisfies the (55). Thus, the value of
the Lagrange multiplier is the only non-negative real solution of
(55) if it exists; otherwise, it is 0.

APPENDIX B
DERIVATION OF THE KKT CONDITIONS FOR THE RELAXED

TRANSMITTER COVARIANCE OPTIMIZATION PROBLEM

The relaxed transmitter covariance optimization problem is

tr (57)

s.t. (58)

tr (59)

Let , , and denote the dual variables associated
with the constraint on , the power constraints, and the positive

semi-definiteness constraints of the covariance matrices .
The Lagrangian of the optimization problem is

tr tr

tr tr

tr tr tr

tr (60)

The objective of the dual program is

(61)
Taking the gradients and equating to 0, and should satisfy

tr tr (62)

(63)

(64)

and

tr (65)

resulting in

(66)

Thus, the dual optimization problem is

tr tr (67)

subject to (68)

(69)

Since the primal optimization problem is a convex problem, the
dual problem achieves its maximum where primal achieves its
minimum. Slater’s conditions are satisfied, and thus, the KKT
conditions are necessary and sufficient for the optimality of the
relaxed transmitter covariance problem. Using the complemen-
tary slackness condition, we arrive at the following KKT condi-
tions:

(70)

tr (71)

tr (72)

(73)

The global optimum transmitter covariance matrix should sat-
isfy the KKT conditions derived. Thus, there exists a positive
semidefinite matrix and non-negative for each if it is
global optimum. It is clear that due to (72) and the
positive semidefiniteness of both and . Thus, multiplying
both sides of (70) by results in

(74)
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The terms on both sides of the equation are known except for
the non-negative slack variable . If is the global optimum,
such a non-negative exists, and it can be found by using (74).
When is known, can be calculated by (70) and can be
checked for positive semidefiniteness and whether it satisfies
the trace condition (72).
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