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ABSTRACT
Some of the most widely deployed IoT devices in urban areas are

smartphones in the possession of urban individuals. �eir prolif-

eration has led to the emergence of crowdsensing/crowdsourcing

services, where humans collect data about their environment (using

phones), and servers aggregate the data for various application pur-

poses of interest. With the emergence of social media, a common

alternative form of human data entry has become media posts (e.g.,

on Twi�er). �is leads to the prospect of building crowdsensing

services on top of social media content, exploiting humans as “sen-

sors”. In this paper, we develop one such service, called StoryLine.
�e service detects and tracks physical urban events of interest to

the user, such as car accidents, infrastructure damage (in the a�er-

math of a natural disaster), or instances of civil unrest. It o�ers an

interface to client-side so�ware that allows browsing such events

in real time, as well as an interface for so�ware applications to a

structured representation of the events and their related statistics.

�e service embodies novel algorithms for real-time detection, de-

multiplexing, and tracking of physical events using social media

data. In our evaluation with Twi�er feeds, we show that our ser-

vice outperforms two state-of-the-art baselines in event detection

and demultiplexing. We also conduct two case-studies to show the

e�ectiveness of the real-time event detection capability and event

tracking performance of our system.
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1 INTRODUCTION
�e proliferation of smart phones in urban spaces makes them some

of the most commonly deployed devices in the emerging era of

IoT. A common use of smart phones has been in data collection

by exploiting phone sensors for various city-wide measurement

tasks. �is use is o�en termed crowd-sensing. While sensors o�er

a great opportunity for data collection on smart phones, a com-

mon alternative form of data entry is by the user via social media

applications. �is observation leads to the idea of building data

collection/crowd-sensing services on top of real-time social media

content. We shall henceforth call the idea of estimating physical

state from social media posts, social sensing [32].

StoryLine is a novel social sensing (back-end) service that exploits

real-time content posted on social media to detect, demultiplex, and

track instances of physical events of interest to the user. �e user

may specify the category of events of interest, such as car accidents,

road closures, concerts, or urban protests. �e current version of the

tool uses Twi�er. It is intended to complement services that collect

data from physical sensors. We leverage the intuition that Twi�er

posts (and, by implication, possibly similar microblogging media)

can be exploited as a novel sensing modality, not unlike acoustic

sensing, vibration sensing, or magnetic sensing. �e analogy is

straightforward as illustrated in Figure 1. Much the way physical

objects induce distinguishable signals in their physical environment

that can be detected by observing the physical medium, socially-

relevant events (such as car accidents, a�acks, natural disasters,

parades, or protests) induce distinguishable signals in their social

environment that can be detected by observing the social medium.

�e paper develops an IoT service that exploits this social modality

of sensing, motivated by the proliferation of users who post in

real-time to describe their surrounding world. �e service o�ers

a client-side interface and a programmers interface to browse and

2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation

 81

2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation

 81

2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation

 81 81 81 83



IoTDI’17, April 2017, Pi�sburgh, PA USA S. Wang et al.

Figure 1: �e Social Sensing Modality and its Analogy with
Physical Sensing

retrieve detected events, receive alerts when certain events occur,

and compute historical statistics.

StoryLine makes a fundamental contribution to event detection

literature on Twi�er; namely, to the authors’ knowledge, it is the

�rst paper that distinguishes between concurrent instances of a

user-speci�ed category of events (which we call event demultiplex-
ing) in a manner that (i) does not need location information and

(ii) is entirely unsupervised (i.e., does not need prior training or re-

mote supervision techniques). None of the prior work o�ers event

demultiplexing that has both of the above properties.

Demultiplexing is essential to our IoT service, where a city plan-

ner, for example, might want to know statistics of events occurrence

over time, which implies knowing how many events (say, car ac-

cidents) occured. Not relying on location metadata means we can

identify more events, since more than 98% of tweets are not geo-

tagged [29, 35]. Not using language features and related training

means the service can be deployed internationally at li�le or no

additional cost, regardless of local language. It will demultiplex

events described in most languages
1

(although will not be able to

merge descriptions of the same event across di�erent languages).

�e idea that social media posts collectively constitute a form of

sensing is not new. It dates back to the beginning of the decade. In

their pioneering work, Sakaki et al. [27] proposed an algorithm to

detect and track natural disasters, such as earthquakes and hurri-

canes. �e work exploited the spatio-temporal footprint of media

posts to detect and localize events. Since then, a large volume of

literature on event detection was published. Surveys of these tech-

niques recently appeared both for Twi�er-based detection speci�-

cally [6], and for detection from social media in general [14].

Work on Twi�er-based event detection generally falls into three

categories. First, some algorithms do detection but not demultiplex-

ing [3, 16, 21, 26]. Demultiplexing is a somewhat di�erent problem

from mere detection in that one needs to distinguish one concurrent

event instance (e.g., a car accident) from another. An algorithm

that does not do demultiplexing can detect, for example that a

major tra�c accident occurred, and can separate tra�c accidents

1
Since we still rely on white space as word/token separators, it will not work well for

languages with no spaces like Chinese.

from other types of events, such as �oods, but cannot easily dif-

ferentiate between two concurrent tra�c accidents. Many papers

in this category do a form of burst detection and text-similarity-

based clustering on tweets. Hence, for instance, tweets containing

words related to tra�c accidents end up in the same cluster (but

can include descriptions of multiple accidents).

A second category of work does demultiplexing (separation of

concurrent events of the same type) by clustering tweets based

on time and location [9, 22, 31]. �ey o�en use some notion of

coherence (increased frequency of keywords that are semantically
related) at a given location as an indicator that an event occured at

that location [40]. Unfortunately, on Twi�er, less than 2% of tweets

are geotagged [29, 35], so this approach can easily miss small events.

While user account registration information commonly includes

location (about 25% of accounts have it), it is course-grained (city-

scale only), and hence cannot help distinguish di�erent local events.

Finally, some papers indeed do demultiplexing without location

metadata [29, 35]. However, they use natural-language processing

or machine learning, and thus are language-speci�c and/or need

prior training. For example, some papers use shallow analysis

of text to identify location keywords (e.g., references to speci�c

streets, cities, or landmarks) [13, 18, 29, 35], and cluster tweets

based on locations referred to in the text. In contrast, our approach

is unsupervised and hence does not require classi�er training [19,

27, 37, 41], bootstrapping [4], or signi�cant pre-processing [10, 30].

�is paper thus opens up a new category of event detection meth-

ods that can demultiplex events, without use of location information,

in an entirely unsupervised NLP-free fashion. We demonstrate the

e�ectiveness and e�ciency of our algorithm in the evaluation sec-

tion by comparing with state-of-the-art baselines using four real

Twi�er feeds.

�e rest of this paper is organized as follows. We de�ne our

problem more formally in Section 2. We propose our solution

to unsupervised event detection, demultiplexing, and tracking in

Section 3. �e implementation of the resulting service is described

in Section 4 and its evaluation is presented in Section 5. We discuss

the related work in Section 6 and conclude the paper in Section 7.

2 PROBLEM STATEMENT
�e purpose of StoryLine is to do for Twi�er posts what back-end

aggregation/fusion services do for crowd-sourced sensor data with

the purpose of detecting and tracking physical events in urban

spaces. We envision services like StoryLine complementing more

traditional sensor data fusion services in IoT applications. Towards

that end, StoryLine represents the monitored environment as a set

of event instances, each given by an instance identi�er, a general

class label, and an observation summary that accumulates chrono-

logically sorted posts (namely, Twi�er messages, called tweets)
regarding the event instance. While StoryLine stores the demul-

tiplexed stream of tweets that describes each event instance, this

stream – the story – is not interpreted by the service.

New events may be generated over time and old events are even-

tually removed. Each event has a �nite lifespan during which the

event is said to be ongoing. For the purposes of this paper, an event

instance is broadly de�ned as an incident, independently observable
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by multiple humans within limited time and space. �e term “inde-

pendently observable” suggests that retweets be ignored, as they

do not constitute independent observations. �e term “multiple

humans” suggests that a threshold could be used on the rate of re-

ported observations, below which an event is of no interest for the

purposes of this paper. Finally, “limited time and space” suggests

that an event has a start time, an end time, and a location trajec-

tory. Event locations described by a single point in space constitute

a special case of a trajectory. Hence, vehicular tra�c accidents,

shootings, demonstrations, rallies, funeral processions, insurgent

a�acks, bombings, and sports events, are di�erent examples that

satisfy the de�nition of events used in this paper.

In this paper, we restrict our a�ention to the problem of demul-

tiplexing of di�erent instances of the same (user-speci�ed) event

category, together with related instance detection and instance

tracking algorithms. To do so, we look for co-occurrence surprises;
that is, spikes in keywords that do not commonly co-occur. An

information gain metric is derived to detect such spikes in an un-

supervised fashion. For example, in description of car accidents,

a particular car accident involving a drunk driver who ran over

a dog on a bridge, might be described by tweets containing such

keywords as “drunk” and “dog”. �ese words do not commonly

co-occur in the same microblog post. Hence, if such an uncommon

combination of words spikes today in the context of tweets about

car accidents, it is an indication that a new event instance occurred.

We show in the paper that co-occurrence surprise leads to be�er

demultiplexing of event instances than techniques based on �nding

spikes in semantically related or commonly co-occurring words

(e.g., “car accident”).

In our problem, StoryLine discretizes time into slots, and abstracts

the current state of the monitored environment at any discrete time

instant, k , by a dynamically evolving set of ongoing event instances

E (k ), where an event instance Ei has a detection (or start) time, Si ,
and a �nish time, Fi . We say that Ei ∈ E (k ) for Si ≤ k ≤ Fi . Each

event instance is further associated with a chronologically sorted

list of all timestamped tweets that describe it up to the current time,

called its cumulative observation summary, Summaryi [k].

�e social medium is said to emit a signal. �e signal emi�ed

in slot k (i.e., the slot ending at time instant, k) is the body of text

emi�ed on the social medium in slot k . In the case of Twi�er, this

would be the set of tweets time-stamped in slot k . Our service

uses the Twi�er programming API to collect tweets in real time as

they are emi�ed. �e signal emi�ed on the social medium in slot

k is denoted Siдnal (k ). Given the stream, Siдnal (k ), the problem

addressed in this paper is to determine for each time slot, k , (i)

the set of ongoing event instances, E (k ), and (ii) the observation

summary, Summaryi [k], for each event instance, Ei ∈ E (k ).

3 THE DESIGN OF STORYLINE
In this section, we present informal intuitions, followed by descrip-

tions of our unsupervised detection, demultiplexing and tracking

algorithms. To use StoryLine, the user issues a StoryLine query such

as “tra�c” and “accident”.
2

�is query is like a subscription to a

2
�e query terms are presumably expressed in the user’s language and hence are

language-speci�c. �e point we made earlier, however, is that none of our processing

mechanisms use any language assumptions. Hence, they work regardless of the

language in which the user expresses the query.

newsfeed that �lters content speci�c to the query terms. A process

is started that repeatedly uses Twi�er API to obtain the latest tweets

(subject to Twi�er rate limits) that contain the speci�ed keywords

(i.e., match the �lter). �e resulting real-time stream of arriving

tweets is then demultiplexed to separate descriptions of di�erent

events (e.g., di�erent accidents), which is the focus of the discussion

below. �e process continues inde�nitely until terminated by the

user. At any given time, multiple such queries may be ongoing,

depending on the categories of events that the user is interested

in following. In principle, other work in current literature can be

used to help the user select appropriate keywords for each query

to be�er �lter the desired event category. A substantial amount

of work, for example, exists on topic modeling [39] that can be

leveraged for help with topic-speci�c queries. �is help is outside

the scope of our paper. In this paper, we start at the point where

a query has been formulated and a stream of tweets matching the

query �lter has started arriving, and needs to be demultiplexed.

3.1 Design Intuitions
Perhaps the most important contribution of our demultiplexing ap-

proach is its simplicity. It is indeed based on a very simple intuition.

�e intuition underlying the approach lies in a sparsity argument;
speci�cally, we �nd the simplest sparse feature space in which (by

virtue of sparsity) event instances are su�ciently separated. To

illustrate what this means, consider the lexicon of commonly used

words in a language, such as English. Such a domain may contain

around 10, 000 words. We may want to distinguish 1000s of con-

current event instances, each described by multiple characteristic

words. In this case, the set of event instances populate the space of

words rather densely. (�at is to say, there may be partial overlap

between sets of words commonly used in describing di�erent event

instances.) �e same is not true, however, of word pairs (i.e., the

“second power” or Cartesian product of the lexical domain). In

a language of 10, 000 words, there are 100 million possible word

pairs. �is is several orders of magnitude larger than the number

of event instances we might need to demultiplex within any given

time slot. Hence, within a given time slot, the set of word pairs that

characterize ongoing event instances populate very sparsely the

feature space of all possible word pairs. �e probability of overlap

(i.e., di�erent event instances being characterized by the same word

pair) is negligible.
3

Two caveats must be understood regarding our

sparsity observation.

First, the validity of the sparsity observation in the feature

space of keyword pairs hinges on the lack of strong correlations

between keywords used in the chosen pairs. �e probability of

seeing two words, W1 and W2, on the medium is P (W1,W2) =
P (W1)P (W2 |W1). If these words o�en come together as a single

term, such as “Dodgers Stadium” or “Angela Merkel”, the probabil-

ity P (W2 |W1) may be close to 1 and thus, P (W1,W2) ≈ P (W1). In

other words, the term should be considered as a single keyword.

Hence, we remove from consideration keywords pairs, where the

individual keywords co-occur with a much higher probability than

the product of the probabilities of their occurrence individually.

3
In a prior literature [12], an empirical study was conducted analyzing tweets about

car accidents in three major California cities. �e study indeed showed that 2-keyword

signatures tend to uniquely distinguish di�erent car accidents. �e above general

argument presents a signal-sparsity justi�cation of this phenomenon.
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With that simple �ltering, we ensure lack of strong correlations

between keywords in a pair.

Second, sparsity ensures that if two event instances are di�erent,

their discriminative keyword pairs are di�erent with high probabil-

ity. �e inverse is not always true. Given two di�erent discrimina-

tive keyword pairs, they may or may not be of two di�erent event

instances. �is will be the case, for example, if the event instance

has more than two high frequency keywords, allowing for multiple

alternative subsets of two keywords to uniquely characterize the

event. Such subsets would have to be consolidated.

As tweets arrive, new spikes in keyword pairs are detected and

“bins” are associated with spiking pairs, called discriminative pairs.

�erea�er, subsequent tweets are inspected for discriminative key-

word pairs they contain and placed into the corresponding bins.

�e words in the pair may apprear in any order within the tweet

and need not be contiguous. A tweet may be placed in multiple

bins if it contains multiple discriminative keyword pairs. Note that,

identifying discriminative keyword pairs is not a quadratic problem

in the number of words or tweets in a time slot. �is is because the

only candidate pairs are those that occur together somewhere in a

tweet. Hence, the problem is quadratic in the number of words in a

tweet, but linear in the number of tweets in a timeslot. Since tweets

are of short bounded size, the former component can be bounded

by a manageable constant. Accorrdingly, computationally e�cient

solutions (linear in the number of tweets) are possible. Importantly,

no prior training is needed.

Two questions remain. First, how are discriminative keyword

pairs selected? Second, how to consolidate bins pertaining to the

same event instance? (�e la�er is needed because an event instance

may give rise to multiple discriminative keyword pairs.) �ese

questions are addressed below.

3.2 Discriminative Keyword Pair Selection
Information gain is a common measure for detecting discriminative

features that we leverage here. When a new event occurs, keyword

pairs characteristic to that event will be present disproportionately

in the current window compared to the previous one. We thus

compute information gain of a keyword pair in a window as the

amount of information gained in distinguishing this window from

previous windows if we were told whether or not the given key-

word pair occurred in that window. Clearly, pairs that occur more

disproportionately in the current window o�er more information

gain. �ese are pairs of words that do not normally co-occur . Hence,

information gain is a measure of co-occurrence surprise.

Let X j denote the event whether a tweet contains the keyword

pair sj , where X j = 1 means it contains sj and X j = 0 denotes it

does not. For simplicity, we omit the script j when it is clear from

the context. Let Yk denote the event whether a tweet is posted

in the current time slot k , where Yk = 1 means it is posted in the

current time slot, and Yk = 0 means it is posted in the previous

time slot k − 1. Again, we omit the script k for simplicity. �e tuple

(X ,Y ) thus denotes whether a tweet contains the keyword pair sj ,
and whether it is posted in the current time slot k . It can have four

distinct values (0, 0), (0, 1), (1, 0), (1, 1) that have the straighforward

physical meaning respectively.

H (W ) dentoes the entropy of the variableW and is de�ned as:

H (W ) = −
∑

w ∈W

p (w ) logp (w ),

whereW is the value set of variableW .

More speci�cally, let there be wk distinct tweets emi�ed in win-

dow k , and wk−1
distinct tweets emi�ed in window k − 1. Hence,

the probability of a tweet (taken at random from the tweets in

either window) to be present in the current window, k , is p (k ) =
wk/(wk + wk−1

). Similarly, the probability of a tweet (taken at

random from the tweets in either window) to be present in the

previous window, k − 1, is p (k − 1) = wk−1
/(wk +wk−1

).

Let some keyword pair, sj , be present in w
j
k distinct tweets in

window k , and w
j
k−1

distinct tweets in window k − 1. Hence, the

probability of a tweet that contains the pair sj (taken at random

from those containing that pair in either window) to be from the

current window, k , is pj (k ) = w
j
k/(w

j
k + w

j
k−1

). Similarly, the

probability of a tweet that contains si (taken at random from those

containing that pair in either window) to be from the previous

window, k − 1, is pj (k − 1) = w
j
k−1
/(w

j
k +w

j
k−1

).

Let the entropy of the variable referring to window identity, Y ,

be denoted H (Y ), where Y is either k or k − 1. By de�nition, H (Y )
is given by:

H (Y ) = −p (k )loд2p (k ) − p (k − 1)loд2p (k − 1)

= −
wk

(wk +wk−1
)
loд2

wk
(wk +wk−1

)

−
wk−1

(wk +wk−1
)
loд2

wk−1

(wk +wk−1
)

(1)

Similarly, the conditional entropy ofY , given that we know whether

pair sj occurred, is denoted H (Y |sj ). By de�nition, H (Y |sj ) is given

by:

H (Y |si ) = −pi (k )loд2pi (k ) − pi (k − 1)loд2pi (k − 1)

= −
wi
k

(wi
k +w

i
k−1

)
loд2

wi
k

(wi
k +w

i
k−1

)

−
wi
k−1

(wi
k +w

i
k−1

)
loд2

wi
k−1

(wi
k +w

i
k−1

)
(2)

Finally, the information gain, IG j , associated with pair sj , is given

by:

IG j = H (Y ) − H (Y |sj ) (3)

Equation (3) can be used to compute information gain for each

keyword pair, sj , in each time slot k . In computing information

gain we do not count retweets, since they do not o�er additional

�rst-hand information on events. �is helps remove rumors, opin-

ion tweets and slogans that propagate primarily by retweeting, as

opposed to descriptions of independently observable events. Only

the keyword pairs with information gain greater than a threshold

would be selected as discriminative keyword pairs.

�e above discussion focused on detection of discriminative

keyword pairs; those with high information gain. Remember that

high information gain indicates that the words in the pair do not
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normally co-occur. We show that this insight allows us to �nd new

event instances.

Besides detecting new discriminative pairs in the current win-

dow, the system also continues demultiplexing based on discrimina-

tive pairs found in previous windows. �ose correspond to events

detected earlier. �erefore, in each time slot k , we �rst inherit

all discriminative keyword pairs used in the previous slot whose

clusters were still growing, (i.e., the cumulative number of tweet

containing that pair by time slot k − 1 is greater than that by slot

k − 2). We then augment that inherited set with new keyword pairs

found discriminative in the current window.

3.3 �e Consolidation Algorithm
Events may contain more than one discriminative keyword pair.

�erefore, it is important to be able to consolidate di�erent bins

when their tweets are about the same event. Consider the set of

discriminative keyword pairs used in slot k . Each such pair, sj ,
is associated with a bin of tweets, Cj , in which the pair occurs.

Our approach for consolidating bins referring to the same physical

event lies in detecting similarity between their respective data

clusters. In our drunk driver example, presented earlier, a cluster of

tweets about an accident involving a drunk driver killing a dog on

a bridge might be distinguished by discriminative keyword pairs

(“drunk”, “dog”), (“drunk”, “bridge”) and (“bridge”, “dog”). Each pair

might end-up associated with a bin that contains largely the same

tweets. A distance metric can thus be de�ned between content of

di�erent bins based on the statistical distribution of words in the

bins. �e distance between two bins will decide if they are about

the same event. Four common distance metrics between statistical

distributions of words are compared. Namely, the Jaccard Distance,
the Term Frequency Di�erence Ratio, the Cosine Similarity Distance,
and the KL Divergence. For the detailed de�nitions of the distance

functions, please refer to the appendix.

We observed that Jaccard distance performs consistently the

best among the four, and is also the simplest metric since it is the

only one that does not consider word frequency (this empirical

comparison is shown in the evaluation section). Interestingly, the

metric that depends most heavily on the distribution of words, the

KL divergence metric, performed the worst. �e reason, we believe,

is that the tweet clusters (the individual bins) are small enough that

it is inaccurate to estimate the true probability of each keyword

solely based on its frequency of occurrence in a bin. Hence, the

more we depend on having to know a true probability distribution,

the less accurate is the resulting consolidation.

Another bene�t of applying the Jaccard distance is that the re-

sulting consolidation threshold was found to be largely insensitive

to the di�erent types of events, due to its simplicity and discrete-

ness. Other lexical distance functions do not have this property.

Hence, in our system, we use the Jaccard distance for bin consoli-

dation and pre-con�gure the threshold as a static parameter . New

installations of the system need no further “training”. �e result

of consolidation in slot k is the set of event instances, E (k ), where

each event Ei ∈ E (k ) is associated with a set of tweets.

3.4 Event Tracking
Event tracking extends the consolidation algorithm in a straight-

forward manner by applying bin consolidation across successive

time slots. �at is, a�er consolidating the bins in the current time

slot k , we consolidate the bins between the time slot k and k − 1.

One challenge in event tracking is that the event signature, de�ned

by the corresponding consolidated keywords, might evolve due to

the evolution of the event and thus the way people describe it.

To catch that change, we use an overlapping sliding window. It

smoothes out the changes in the lexical frequency distribution of

fast developing events over time, as illustrated in Figure 2. With

overlapped windows, some part of the event signature remains

the same across the two slots. (Note that, the compared slots are

overlapping here as in Figure 2.) �erefore, by selecting a proper

overlap, we can track the event smoothly and be able to consolidate

relevant clusters properly, even as its signature changes gradually

over time.

Non-overlapping

Overlapping

Window Len

Slide Len

Figure 2: Illustration of the non-overlapping slidingwindow
and the overlapping sliding window (with 50% overlapping).

4 SYSTEM IMPLEMENTATION
In this section, we present the architecture of our social event track-

ing system as shown in Figure 3. �e targeted social medium of

our system is Twi�er [1]. �e system is implemented in Python27

and integrated into an existing social sensing tool, Apollo
4
, devel-

oped by a subset of the authors. StoryLine provides four interfaces,

Create, Pull, Kill, and Stats. Create enables the user to start

an event-tracking task, and Pull enables the user to get the real-

time event tracking results. �e key parameters of Create are (i)

a list of keywords for crawling tweets, for example [protests,
confrontation], and (3) a user-customized window length (with

default value of 24 hours). A�er the user creates a tracking task,

a task ID is returned, which is used in Pull to get the real-time

tracking results and in Kill to terminate the existing tracking task.

Finally, Stats allows retrieval of a set of statistics about the event

type, such as the frequency of occurrence of event instances over

time.

Once the tracking task is created, the crawling parameters are

passed to the crawler that uses the Twi�er API to crawl tweets that

satisfy the conditions de�ned in the parameters in real time. For the

tweets returned, we �rst �lter out the redundant tweets, such as the

retweets, and then the �ltered tweets are fed to our event detection

module, where the event signature detection and consolidation are

performed. �e text clusters are then passed to the event-tracking

module. When the user calls the Pull function with the task ID,

4
h�p://apollo3.cs.illinois.edu
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Figure 3: Event Tracking System Architecture

the most recent tracking results are returned encoded using the

JSON format. An optional localization module is included (to pin

the events on a map, for example, by Giridhar et al. [13]), but it

is not relevant to this paper. Please note that unless the user calls

Kill, the tracking task keeps working.

5 EVALUATION
In this section, we report the experience of using our tool on event

detection and tracking on four datasets crawled from Twi�er. We

�rst describe the statistical details of the four datasets, and then

discuss the performance of our event signature consolidation for the

selected Jaccard distance metric. Next, we study the performance

of event detection compared with the state-of-the-art baselines.

Finally, we conduct two case studies of Earthquake events and

show the real-time event detection capability and event tracking

performance of our proposed StoryLine system.

5.1 Twitter Datasets
For repeatability, we collected four data sets from Twi�er using the

API described in the previous section. �ese were then replayed as

the feeds used in the subsequent experiments to enable fair com-

parisons across multiple algorithms and conditions. We summarize

data collected by the four tasks we created, labeled by (i) Disaster,
(ii) Protest, (iii) Tra�c, and (iv) Armed Con�ict below.

• Disaster �e dataset is collected with keywords “disaster”,

“humanitarian”, “earthquake”. In this dataset, 1, 800, 952

tweets were collected a�er �ltered out retweets, and the

time span is from Apr. 19th 19:41:08 UTC, 2015 to Feb. 03rd

06:07:15 UTC, 2016.

• Protest �e dataset is collected with keywords “protest”,

“confrontation”. In this dataset, 1, 211, 920 tweets were

collected a�er �ltered out retweets, and the time span is

from Oct. 16th 05:41:02 UTC, 2015 to Feb. 01st 11:15:43

UTC, 2016.

• Chicago Tra�c �e keywords used here include “tra�c”,

“accident”, “chicago”. And all tweets in the Chicago area

were also collected in this dataset. In this dataset, 8, 013, 649

tweets were collected a�er �ltered out retweets, and the

time span is from May. 15th 13:58:09 UTC, 2015 to Feb. 19th

17:33:43 UTC, 2016.

• Armed Con�ict �e keywords used here include “rebels”,

“a�ack”, “bombing”. In this dataset, 2, 739, 363 tweets were

collected a�er �ltered out retweets, and the time span is

from Oct. 16th 05:52:28 UTC, 2015 to Mar. 07th 02:27:03

UTC, 2016.

In the evaluation, each dataset is fed into our StoryLine system

in real-time (i.e., we discretize the time into slots and in each slot

the tool only considers the current data or that of the past slots

but never in the future). Here, each time slot (i.e. window) spans 6

hours, and slides 1 hours in each step.

5.2 Event Signature Consolidation
We test the performance of event signature consolidation based

on each of the four lexical frequency domain distance functions

introduced earlier, namely Jaccard distance (Jaccard), Term Fre-
quency Di�erence Ratio (Tfreq), Cosine Distance (Cosine), and KL
Divergence (KL). �e consolidation error rate is de�ned as the ratio

between the number of incorrectly grouped 2-keyword signature

pairs to the total number of signature pairs. Note that, a 2-keyword

signature pair is said to be incorrectly grouped if two signatures

corresponding to the same event are put into di�erent groups or if

two signatures corresponding to di�erent events are put into the

same group. Ground truth labeling is done manually.

Figure 4 shows the results, from which we observe that the Jac-

card distance function consistently performs the best for all the

four datasets, which corroborates our selection of Jaccard distance

as the lexical frequency domain distance in Section 3.3. �e error
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Figure 4: �e consolidation error rate.

rate of signature consolidation for the Tra�c dataset is the smallest

among the four datasets. �is is because tra�c accidents have a

relatively small social media footprint. O�en a single 2-keyword

signature is associated with the tra�c event, therefore only a very

small amount of consolidation occurs for this speci�c event class.

We expect that urban events of interest to IoT applications will

mostly have small footprints. Examples may be urban �res, shoot-

ings, tra�c accidents, or road closures. It is therefore encouraging

to see that the algorithm is be�er at detecting and demultiplexing

such small-footprint events. �e error rate of consolidation of Jac-

card for the war dataset is less than 4%. For the protest dataset and

the disaster dataset, the error rates are 14% and 20%, respectively.

5.3 Event Demultiplexing
In this subsection, we �rst eliminate geotagging-based demultiplex-

ing techniques based on recall. We then include in the comparison
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those techniques that do not need location information, illustrating

an advantage in precision and purity of demultiplexing (i.e., correct

separation of instances).

Table 1 shows the percentage of tweets in our data sets that

are geo-tagged. We also cluster the tweets into events and show

the number of event clusters that carry zero, one, or more geo-

tagged tweets. We consider �ne-grained events here. For example,

a war event might refer to a cluster of tweets discussing a single

explosion. �e table clearly shows that dependence on location

information can render most of the events invisible, as they contain

no geotagged tweets.

Next, we study the precision of event detection and demultiplex-

ing in our StoryLine system. We compare our StoryLine with the

following baselines:

(1) ET [26]: In this work, an event is detected using common

bi-grams, where the bi-grams are selected from among ad-

jacent pairs of tokens, which is an example of techniques

that do not demultiplex well. �e reason is that in look-

ing for adjacent bi-grams that have a high chance of co-

occurence (for example, “tra�c alert” or “crime scene”)

one o�en ends up with bi-grams characteristic of a whole

category of events. In contrast, in our solution, we look

for unusual (i.e., rarely co-occurring) pairs of keywords.

Results will con�rm that those are more characteristic of

an event instance.

(2) TopicModel [20]: �is work proposes an online variation

of LDA (Latent Dirichlet Allocation) [8], a famous topic

modelling technique. Events are de�ned and detected by a

topic model. �is work is a representative event detection

solution based on training a text coherence metric (around

a topic).

(3) GeoTag: In this baseline, we only consider the geo-tagged

tweets, and cluster them by physical Euclidean distance.

If two tweets are posted within 30 miles, then we clus-

ter them together. A limit is imposed on cluster size to

prevent formation of geographically di�use clusters. �is

baseline is an example of demultiplexing approaches based

on location information.

We randomly selected one week data from our dataset, and compare

the precision of event detection/demultiplexing. Here, precision

is de�ned by the ratio between the number of true events output

by the algorithm and the total number of events output by the

algorithm. Note that, some of the text that the algorithm bins as a

separate event might in fact be a false positive. For example, tweets

such as “Can you recommend anyone for this #job?” or “these

rumors about louis coming to chicago are making me stressed” do

not constitute legitimate (geo-)events as de�ned in this paper.

Table 2 summarizes the precision results of all the algorithms.

From this table, we can observe that our algorithm has the highest

average performance rank of 1.25 (i.e. it ranks �rst in Tra�c, Dis-

aster, and Armed Con�ict datasets and second in Protest dataset),

whereas ET has average performance rank of 2.5, TopicModel has

2.75 and GeoTag has only 3.5. In the Protest dataset, most of the

events are related to some protests. �e number of tweets increases

greatly when the protest starts, and at the same time, the total

number of tweets also increases. �erefore, the increase of the

Chicago tra�c dataset
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Figure 5: �e purity pie charts.

percentage of the event related tweets and the total tweets is not

that signi�cant, thus some true events were not detected by our

information gain based approach. But some noisy events were not

a�ected, thus the precision of our algorithm is not the best. ET

is based on the absolute increase of the number of event related

tweets, therefore, it beats our algorithm. We also notice that geo-

tagging does not perform well. We therefore drop it from further

comparison.

Figure 5 shows the results of purity comparisons for the re-

maining algorithms, for all the datasets. Purity is a measure of

demultiplexing quality into di�erent event instances. Sometimes,

the algorithm will output one event that might contain multiple

instances. For example, three instances of tra�c accidents were

output by the TopicModel algorithm: (1) “I 70 now reporting 2

INJURY ACCIDENTS near OH 37”, (2) “When things go BOOM

on the US 60 @ArizonaDOT #12News”, and (3) “@WKYTTra�c

tracking an ongoing closure along I-75 near the TN stateline.” �e

purity is de�ned by a vector, that is the percentage of output events

that contain only (1) one event instance, (2) two to three instances,

(3) four to �ve instances and (4) greater than �ve instances. Ground

truth is labelled manually by two di�erent people and con�icts are

resolved by a third one.
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Table 1: Prevalnce of Geotags in Tweets and Events

Metric Tra�c Disaster Protest Armed Con�ict

Total tweets 8013649 1800952 1211920 2739363

Geotagged tweets 726663 (9%) 6068 (0.33%) 2323 (0.19%) 6381 (0.23%)

Events with no Geotagged tweet 90.7% 99.4% 99.6% 99.6%

Events with 1 Geotagged tweet 3.9% 0.5% 0.4% 0.4%

Events with multiple Geotagged tweets 5.4% 0.05% 0 0

Table 2: Event Detection Precision Comparison

Algorithm Tra�c Disaster Protest

Armed

Con�ict

StoryLine 72.55% 76.92% 80.95% 88.24%
ET 57.14% 36.36% 86.36% 61.90%

TopicModel 55.10% 60.87% 65.22% 69.57%

GeoTag 66.67% 23.33% 47.37% 41.38%

From the pie charts, we clearly observe that our algorithm has the

highest percentage of output events that only contain one instance,

which shows that our algorithm does be�er at demultiplexing event

instances compared with the baselines.

5.4 Case Study – Real-time Earthquake
Detection

In this subsection, we conduct a case study to evaluate the delay

in event detection. Here, we select Earthquake events because it

is easy to �nd out the exact (ground-truth) time at which they

occurred.

Table 3: Real-time Earthquake Detection Summary

Earthquake Location Happened Time Detection Time Delay

Midoro, Philippines 10/19/2015 13:50 10/19/2015 18:26 4:16

Vanuatu 10/20/15 21:52 10/21/2015 02:40 4:48

Afghanistan 10/26/15 09:09 10/26/15 10:17 1:08

Molucca islands 01/11/16 16:38 01/11/16, 20:41 4:03

Afghanistan 01/12/16 20:05 01/12/16 22:59 2:54

Alberta, Canada 01/12/16 17:30 01/12/16 22:59 5:29

Urakawa, Japan 01/14/16 03:30 01/14/16 04:09 0:39

Alaska 01/24/16 10:30 01/24/16 11:37 1:07

Morocco 01/25/16 04:22 01/25/16 10:44 6:22

Taiwan 02/06/16 19:57 02/06/16 21:39 1:42

Fiji 02/06/16 01:39 02/06/16 02:41 1:02

Indonesia 02/12/16 10:02 02/12/16 13:28 3:26

Oklahoma 02/13/16 17:07 02/13/16 22:37 5:30

NewZealand 02/14/16 00:13 02/14/16 04:38 4:25

Wasco, CA 02/24/16 00:02 02/24/16 00:37 0:35

Antarctica 02/23/16 18:08 02/24/16 00:37 6:29

Cebu, Phillipine 03/01/16 14:52 03/01/16 17:14 2:22

Sumatra, Indonesia 03/02/16 12:49 03/02/16 14:19 1:30

Table 3 shows a summary of the ground-truth occurrence time

and detection time (in UTC) of recent earthquake event instances.

From the table, we observe that for most of the instances, our

algorithm can detect it within 4 hours. For earthquakes occurring

in regions with large numbers of active Twi�er users, like Japan

and California, we can detect earthquakes within 1 hour. (Note that

our window sliding length is just 1 hour, so 1 hour is the smallest

delay feasible in this con�guration.) �e results con�rm utility of

the system for detection of urban events.

5.5 Case Study – Nepal Earthquake Tracking
Finally, we conduct a case study of the Nepal earthquake to help

the readers intuitively understand the performance of the tracking

functionality of our StoryLine system. �e result is summarized in

Table 4. An earthquake happened on April 24th 2015 that resulted

on the death of more than 8, 000 people in Nepal. �e event was

detected due to the rise of tweets with new high-information-gain

keyword pairs on the social medium. New keyword pairs were

associated with the same event as it evolved. �e table shows

detected keyword pairs and example tweets from their clusters.

From the table, we observe that in the beginning of the earth-

quake, media posts focused more on the earthquake itself using

keywords such as “earthquake” and “death” in tweets. As the earth-

quake developed, people switched their a�ention to relief e�orts,

using keywords such as “donations” and “humanitarian”. Later, the

discussion focused on survivors, using keywords such as “survivor”

and “hospital”. Neither the original occurrence of the event nor

any of the above keyword pairs was known to our algorithms in

advance. �ey were detected automatically and associated with

the same event based on discussed distance metrics. �e example

shows the capability of our algorithm to tracking real-world events

as they evolve.

6 RELATEDWORK
�e idea of using social networks as sensor networks was discussed

in recent literature [33, 34]. While much work focused on analysis

of reliability of crowd-sourced observations, this paper exploits

social media (speci�cally, Twi�er) to build an IoT service for event

detection, demultiplexing, and tracking.

Event detection in social spaces is an active research topic in

information retrieval. Some early work includes Allan et al. [4],

in which they proposed an online event detection and tracking

algorithm. �eir algorithm exploits features based on term fre-

quency (TF) and inverse document frequency (IDF), such that if

the feature score for a new term is above a prede�ned threshold

then a new event or topic is found. Some recent literature exploits

TF-IDF-like features includes Shamma et al. [28] and Benharus et

al. [7]. Shamma et al. [28] proposed a peakiness score to identify

words that are salient in some time window that were used to de-

tect new events. Since unigrams may not always be su�cient to

describe complex events, Benharus et al. [7] proposed a di�erent

normalized frequency metric called the trending score for identify-

ing event related n-grams instead of unigrams. �ese approaches

are good at identifying event categories and topic. However, as

shown in the evaluation, they are less e�cient at separating indi-

vidual event instances. Our work is also related to the text stream

clustering literature [2]. An example is work utilizing optimizations
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Table 4: Nepal Earthquake Tracking Summary

Date New Detected Keywords Sample Tweets

04/25/2015 nepal, earthquake, death

Powerful magnitude-7.8 earthquake that rocked Nepal triggered an avalanche on Mount Everest h�p://t.co/MULEuWhx3Q

h�p://t.co/QeRKg8QgYp

RT @BBCBreaking: At least 876 killed in Nepal #earthquake; deaths also reported in India, Tibet &amp; Bangladesh h�p://t.co/3BTo9l1QZ4

h�p://2̆026

04/26/2015 help, nepalearthquake RT @cnnbrk: At least 2,263 people have died in Nepal from massive #NepalEarthquake and a�ershocks, o�cial says. h�p://t.co/hCyjO7YyS7

Anyone with information about my son Joseph Patrick please help #NepalEarthquake #Pray4Joe h�p://t.co/X2Kn7mOtRO h�p://t.co2̆026

04/27/2015

surges, devastation,

drone, thankyoupm,

donations

Nepal #earthquake: Death toll surges to 3,218; four a�ershocks felt in last 12 hours h�p://t.co/Njvru9k2kQ

@cnni: New drone footage shows the extent of devastation from the #NepalEarthquake: h�p://t.co/7PiPjayQZ1h�ps://t.co/phIGRkYoZQ

#�ankYouPM for massive rescue and relief operation by India in Nepal a�er #earthquake

Nepal Earthquake: Facebook to Match Donations Made for Victims h�p://t.co/aLooadYNxj Free Submission h�p://t.co/J90dT2qnXb

04/28/2015

salute2indianforces,

koirala, sanjay,

humanitarian

�ank you very much Indin Forces for being with us.It means alot…. #Salute2IndianForces

CNN’s Dr. Sanjay Gupta performs surgery on girl in Nepal: CNN’s Dr. Sanjay Gupta performed a life-saving… h�p://t.co/4EtmH28EwC

#tcot

Live: Nepal earthquake kills 4,352, PM Sushil Koirala says death toll could reach 10,000: A high-intensity ear… h�p://t.co/A68VtR6hWK

04/29/2015

survivor,hours, hospital,

�eld, miracle

Nepal earthquake survivor drank urine while trapped for 82 hours h�p://t.co/v9DHM5Jhnf #worldnews

�at is amazing, Nepal Army rescued a 4-month kid alive a�er 22 hours! ::h�p://t.co/KzJPJeZDCx h�ps://t.co/HvTkvS0Ba0 via @sharethis

RT @haaretzcom: Nepal earthquake updates / Israeli �eld hospital opens, to treat 200 people per day h�p://t.co/PMwRlRT6YO h�p://t.co/s9i

04/30/2015

pakistan, serves, masala,

teenage, lydia

Pakistan serves ‘beef masala’ to earthquake-hit Nepal via /r/worldnews h�p://t.co/GoFJO09mJP

Teenage boy pulled out of rubble alive �ve days a�er Nepal earthquake h�p://t.co/0kiAigYE7M #telegraph #news

Lydia Ko donating earnings to Nepal relief e�ort: �e 18-year-old Ko, ranked No. 1 in the world, successfully… h�p://t.co/2nquCITqJa

of k-means algorithms to cluster data streams, as proposed by Or-

donez [25] and Zhong [42]. However, theirs need prior knowledge

(such as the k), which is not always available in social streams for

event detection and de-multiplexing. Our approach, in contrast,

depends on detecting co-occurrence surprise; that is to say, new

frequently co-occurring words in tweets that did not previously

co-occur. Moreover, our calculations are conducted based on only

two adjacent time windows, which is much more e�cient than

the TF-IDF approach that needs to consider the whole (or a large

portion of) corpus.

Topic modeling is another common approach for event detec-

tion [17, 20, 43]. Lau et al. [20] proposed an online variation of

Latent Dirichlet Allocation (LDA) [8]. In LDA, each topic is mod-

eled as a multinomial distribution of words in a volcabulary, and

each document is modeled as a multinomial distribution of k topics,

where k is a predi�ned parameter denoting the total amount of

topics. And these two classes of multinomial distributions have two

Dirichlet priors respectively. (Dirichlet prior is chosen due to the

fact that it is the conjugate prior of the multinomial distribution.)

�e idea in Lau et al. [20] is incrementally updating the priors in

each time window based on previous calculated parameters, and

maintaining the one-to-one correpondence of the topics in the cur-

rent time window and the last one. If there is a sudden change

in the topic word distribution, then a new event is supposed to

have occurred, where the distance of the distributions is measured

by the Jensen-Shannon divergence. Hu et al. [17] proposed ET-

LDA (joint Event and Tweets LDA) that exploits a search engine

and aligns tweets with corresponding text of events provided by

traditional media. �ey showed that results are greatly improved.

Zhou et al. [43] further expand LDA with time and location of

the tweets, and proposed a new graphical model called location-

time constrained topic (LTT). In their approach, the tweet content,

timestamps and geo-tags are all considered. As with TF-IDF based

approaches, the topic modeling based approaches also su�er when

multiple event instances occur in parallel. Futhermore, on Twi�er

(which is our focus), reliance on geotags is not su�cient to dis-

tinguish di�erent event instances due to the relative scarcity of

geotagged tweets.

Previous work also exploits the features (metadata) of tweets in

event detection. Chieriche�i et al. [11] proposed an event detection

algorithm that is purely based on communication pa�ern analysis

in the tweet stream. In their solution, events are detected based

only on tweet and retweet counts, via logistic regression. �ey also

provide a model of communication to explain the rationale behind

event detection. Similarly, Aggarwal and Subbian [3] considered

the social network topology and proposed a clustering solution for

event detection. �e rationale behind such techniques is based on

distinguishing shared human interests; namely, clustering text with

similar retweet/communication pa�erns will isolate events with

shared community interest. However, in such approaches, events

that trigger a similar community response (such as di�erent terror

a�acks in nearby locations, or di�erent assaults on police in nearby

towns) cannot be easily demultiplexed.

An entirely di�erent line of event detection and demultiplex-

ing techniques focus on location-based (or more generally, spatio-

temporal) features [9, 22, 31]. �ese approaches use di�erent forms

of clustering by location metadata contained in tweets, which is

indeed an e�ective means of separation of event instances if the

location metadata is su�ciently �ne-grained. Unfortunately, less

than 2% of tweets are geotagged [29, 35]. While location of other

tweets can be estimated from the registered account location of the

source, the account metadata carries only city-level location infor-

mation, which is not su�ciently �ne-grained for demultiplexing

events at sub-city scale, such as tra�c accidents. An interesting

approach in the category of location-based event detection tech-

niques is Geoburst [40]. It �oats a circle of a pre-speci�ed radius

and computes a measure of coherence of tweets originating within

the circle. Coherence measures semantic distances between words

used in these tweets. When coherence spikes (indicating shorter

distances) an event is said to be detected. �e rationale is that event

occurrence focuses the discussion around fewer topics related to
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the event, leading to increased coherence of local tweets. Liang et

al. [23] exploit a noise �ltering approach for event detection and

demultiplexing, where the temporal and spatial frequency of each

token is treated as a signal and a band-pass �lter is applied to �lter

out background noise as well as separate di�erent event signals

within a given locale. In contrast to the above approaches, ours

does not depend on using location metadata.

Finally, like us, some recent papers indeed propose demulti-

plexing schemes that do not use location metadata [13, 18, 29, 35].

Instead, they use language-speci�c features to distinguish events.

A common example of such processing is isolation of location key-
words within the text of the tweets [13, 29, 35], then clustering by

the extracted location information. To appreciate the disadvantage

of these techniques, the reader is invited to extract the location

information from each of the sentences in Figure 6. Our point is:

an approach that does not depend on having language-speci�c ex-

traction rules is much easier to port across languages, which is a

big advantage when considering an international medium, such as

Twi�er.
A Multilingual Approach

 Το γαλλικό πλήρωμα αναγκάστηκε σε προσγείωση 
στην Αθήνα, στην πορεία τους προς τη Μόσχα

 フランスの乗組員は、モスクワへ向かう途中、アテ
ネの緊急着陸を余儀なくされた

 واضطر الطاقم الفرنسیة إلى الھبوط اضطراریا في أثینا في طریقھا إلى
موسكو

 l�� च चालक दल मा�ो के िलए अपने रा�े पर एथ�स म� एक
आपात ल�िडंग करने के िलए मजबूर िकया गया

Figure 6: Tweets with Location Information.

Our technique, in fact, o�en �nds location keywords automati-

cally as part of the detected signature keyword pairs. Imortantly,

however, it does so based on statistical analysis alone, and not lin-

guistic analysis of data. Unlike other event detection techniques

that rely on clustering [3, 16, 21, 26, 28, 36], ours looks for frequent

pairs that did not usually co-occur. In contrast, much of the prior

work looks for burstiness of keywords that are semantically related
or frequently co-occur is some context, as a way of detecting events

that feature the indicated semantics or context. �is distinction, as

we have shown, makes our solution be�er at event demultiplexing,

which is the main contribution of the paper.

Finally, target detection and tracking with physical sensors have

been extensively studied in other communities such as sensor net-

works [15, 24, 38]. A particularly relevant sensor model is that of

binary sensors [5], since it closely corresponds to twi�er posts that

either indicate an event or not. We hope that such literature will

inform event detection and demultiplexing algorithms on Twi�er.

7 CONCLUSIONS
In this paper, we presented a novel service for IoT applications that

augments physical sensor data aggregation and fusion with social

media data processing for purposes of physical event detection and

demultiplexing. We argued that the social modality of sensing is

not unlike other sensing modalities, such as magnetic, acoustic, or

seismic. In each case, a useful practice is to transform the signal

received from the environment into an appropriate feature domain,

and then perform signal processing on that domain. �is paper

described an exercise in applying the above approach to Twi�er

text. A speci�c contribution was the development of an event de-

multiplexing algorithm that allows separation of (text pertaining

to) di�erent instances of a given user-de�ned category of urban

events (e.g., car accidents) in a manner that (i) is entirely unsuper-

vised and (ii) needs no location information. In turn, this separation

allows computing various statistics about the events in question,

such as their frequency over time. Evaluation results show that the

approach is successful at detecting, demultiplexing, and tracking

physical events. �e success of the approach is analytically a�rib-

uted to a sparsity argument that enables one to use a very simple

feature space to demultiplex instances of events.

�e paper is an example of IoT services that go beyond physical

sensing. Indeed, in future applications, such as smart cities, data

from physical sensors will be fused with data from social media

in order to be�er understand events in the city. Such physical

and social fusion o�ers interesting directions for future work. �e

paper is a �rst step towards the envisioned novel cyber-physical

architectures. �e authors are in the process of investigating follow-

up ideas that jointly exploit combinations of physical sensors and

social media.
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APPENDIX: DISTANCE FUNCTIONS IN EVENT
SIGNATURE CONSOLIDATION
Let Si be the set of key words of the tweet clusterCi . For each word,

w ∈ Si , let fi (w ) denote its frequency. For notation simplicity, if

w < Si , we de�ne fi (w ) = 0. We investigate four broadly applied

distance metrics described below for de�ning the lexical frequency

domain distance between clusters.

• Jaccard Distance: �e Jaccard similarity (JS) between

clusters Ci and Cj is de�ned by

JS (i, j ) = |Si ∩ Sj |/|Si ∪ Sj |,

where |S | denotes the cardinality of the set S . �e Jaccard

distance is de�ned by 1 − JS (i, j ).
• Term Frequency Di�erence Ratio: �e term frequency

di�erence (FD) between clusters Ci and Cj is de�ned by:

FD (i, j ) =
∑

w ∈Si∪Sj

| fi (w ) − fj (w ) |,

where abs (X ) denotes the absolute value of X . �e term

frequency di�erence ratio is the normalized term frequency

di�erence, i.e.
FD (i, j )∑

w∈Si fi (w )+
∑
w∈Sj fj (w ) .

• Cosine Distance: Cosine Similarity (CS) is de�ned by

CS (i, j ) =

∑
w ∈Si∩Sj fi (w ) × fj (w )√∑

w ∈Si ( fi (w ))2 ×
√∑

w ∈Sj ( fj (w ))2
.

CS measures the cosine of the angle between two vectors

whose elements are fi and fj . �e more similar the two

vectors, the smaller the angle between them. �e Cosine

distance is de�ned by 1 −CS (i, j ).
• KLDivergence: �e KL divergence,KL, is a non-symmetric

measure of the di�erence between two probability distri-

butions, de�ned as follows in our case:

KL(i, j ) =
∑

w ∈Si∪Sj

pi (w ) ln

pi (w )

pj (w )
,

pi (w ) =
fi (w )∑

w ∈Si∪Sj fi (w )
,pj (w ) =

fj (w )∑
w ∈Si∪Sj fj (w )

.

Note that, when fi (w ) = 0 or fj (w ) = 0, KL(i, j ) is mal-

formed. To avoid this problem, we add 1 to fi (w ) and to

fj (w ) for all w .
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