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Abstract—This paper studies average age of information
(AoI) minimization in cognitive radio energy harvesting
communications. The secondary user is an energy harvesting
sensor that harvests ambient energy with which it performs
spectrum sensing and status updates. Status-update data is
sent by opportunistically accessing the primary spectrum.
Specifically, the secondary user aims to minimize the average
AoI by adaptively making sensing and update decisions based
on its energy availability and the availability of the primary
spectrum. The sequential decision problem is formulated as
a partially observable Markov decision process and solved by
dynamic programming. The properties of the optimal sensing and
updating policies are investigated and shown to have threshold
structure. Numerical results confirm the analytical findings.

I. INTRODUCTION

The timeliness of data delivery has become critical

in wireless communications for various time-sensitive

applications, for instance, vehicle-to-vehicle networking,

unmanned vehicle tracking, and natural disaster monitoring,

where the status of physical processes have to be updated

in a timely manner. This highlights the issue of maintaining

information fresh. The concept of age of information (AoI) has

been introduced to measure the freshness of information [1],

[2]. More specifically, AoI quantifies the time elapsed since

the generation of the latest successfully received status update.

In early works on AoI, a queueing theoretic perspective has

enabled the analysis and characterization of age [2], [3]. In

[2], M/M/1, M/D/1, D/M/1 models and first-come-first-served

(FCFS) queues are studied. Last-come-first-served (LCFS) is

considered in [3] for an M/M/1 queue.

More recently, AoI has been investigated for energy

harvesting systems, where each update consumes harvested

energy [4]–[7]. Due to the randomness in the energy harvesting

process, the information could become stale in these systems

if energy shortage prevents updates. The main task thus is to

optimally manage energy to keep updates fresh. Reference [4]

considers AoI minimization for point-to-point communication

with energy harvesting constraints, and shows that waiting

before updating improves AoI when considering energy

causality constraint. In [6] and [7], (asymptotically) optimal

update policies for infinite, finite, and unit battery size are

derived, where the optimal policy has a (multi-)threshold

structure.

The existing work on AoI minimization for energy

harvesting communications assumes that the wireless channel

for update transmission is always available. By contrast, in

cognitive-radio-based networks, a secondary user can only

opportunistically access the primary spectrum when it is

not occupied. Energy harvesting cognitive radio networks

(EH-CRN) have been studied previously with the throughput

as the main metric [8]–[11]. In [9], [12], accounting for

the stochastic processes of primary spectrum availability and

energy harvesting, decisions for sensing and/or transmitting

are made by modeling the problem as a partially observable

Markov decision process (POMDP) subject to energy causality

constraints. In [11], a long-term average reward (throughput)

for the secondary user is defined and upper bounded by a

fixed fraction power allocation. While throughput continues

to be a primary metric for energy harvesting communications

at large, e.g., [13], in applications with energy harvesting

cognitive radio sensors that have small data packets but a

critical requirement on the freshness of information, AoI is a

more appropriate metric. In [14], the AoI of the primary user

in a cognitive radio network is characterized and minimized

from a queuing theoretic perspective.

In this paper, we consider a cognitive radio (EH-CR) with

one primary user (PU) and an energy harvesting cognitive

secondary user (SU). We minimize the AoI for the SU, who

monitors the environment and opportunistically sends status

updates to the destination. The harvested energy is expended

on spectrum sensing and statue update transmissions. A

discrete-time system model for a finite horizon is adopted.

Due to the randomness of energy harvesting and channel

fading processes, the SU has to adaptively make sensing and

update decisions in an online fashion. The primary user’s

state is modeled as a stationary two-state Markov chain

whose state transition probabilities are known apriori to the

SU. Considering reliable spectrum sensing, we formulate a

POMDP for sequential decision making to minimize the

average AoI over a fixed time duration. The information state

of the system is represented by the fully observable states

of SU and the belief on the state of PU, based on which

sensing and update policies can be optimally determined using

dynamic programming. We investigate the properties of the

optimal policy, and verify that the SU senses and updates when

the harvested energy is larger than a threshold determined
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by battery and channel states, and the update policy has a

threshold structure with respect to the state of age. Numerical

results are presented that confirm our analytical findings.

II. SYSTEM MODEL

The SU sends the update by accessing the primary spectrum

opportunistically. Consider a time-slotted system with slots

indexed by t = 0, 1, 2, . . . . The slot length is normalized and

equal to the transmission time of one status-update packet.

The PU is licensed a legitimate spectrum. In each time slot,

the PU either occupies the spectrum in an active (A) state or

stays silent (S). Denote the state by qt ∈ {A, S}. The transition

probabilities of the two-state Markov chain are denoted by pss
and pas for staying in a silent state and transiting from an

active state to silent, respectively. The transition probabilities

are obtained by long-term measurements and known to the

SU.

The SU is slot-synchronized with the PU. At the beginning

of each slot, the SU decides its operation mode: idle or sensing.

If it is staying idle, no action is needed. If it decides to sense,

it further decides whether to update status or not. The SU aims

to minimize the average AoI by making optimal sensing and

update decisions over a finite horizon t = 0, 1, 2, . . . , T − 1.

Let xt = (wt, zt) be the decision for slot t, where wt ∈
{0 (idle), 1 (sense)} and zt ∈ {0 (not update), 1 (update)}
denote the sensing and update decisions, respectively. The

decisions are made adaptively over t = 0, 1, 2, . . . , T−1 based

on SU’s states and its statistical knowledge of the primary

spectrum availability.

1) Belief Model: The SU cannot directly monitor the

availability of primary spectrum, but only partially observe by

opportunistically sensing and accessing. Based on its action

and observation history, a sufficient statistic of the primary

spectrum availability can be obtained, which is the belief.

Specifically, at each slot, if the SU decides to sense, an

observation of PU state can be obtained, denoted by q̂t ∈
{A, S}. For reliable spectrum sensing as we assume in this

paper, q̂t = qt, ∀t. Given action and observation history,

the SU forms a belief ρt, which represents the conditional

probability of the PU being silent, i.e., qt = S.

2) Channel Model: We consider that the SU transmits data

over a block fading channel with channel gain ht for slot t, ∀t.
ht is a discrete random variable with distribution pH(ht = ht)
over a finite sample space H. This is mainly for mathematical

tractability and can be interpreted as quantization of channel

gains. Assume ht is independently and identically distributed

(i.i.d.) over slots. The distribution is known a prior by the SU.

At the beginning of slot t, if the SU senses, it obtains the

channel gain ht causally when the spectrum is unoccupied;

otherwise, it keeps the old channel information, i.e., ht =
ht−1.

3) Energy Harvesting Model: The SU is able to harvest

energy from its ambient environment and store it in the battery

before use. The battery capacity is b̄. The energy harvested

at slot t is a discrete random variable et, whose distribution

pE(et = et) is known apriori and realization is et ∈ E
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Fig. 1. A sample path of AoI.

with E finite. The energy harvesting process is assumed to be

i.i.d. across slots. Energy is mainly consumed on sensing the

spectrum and transmitting the status updates over the wireless

channel. Other operations of the SU is assumed to expend

negligible energy. Let σ be the energy consumption on sensing.

The transmission energy depends on the channel gain, which is

given by u(ht). The function u(·) is nonincreasing and convex,

for instance, u(ht) =
τ

ht

(exp (R/τ)−1) for Gaussian channel

with transmission rate R and time τ . Let et, σ, and u(ht) be

integer multiples of unit energy. We have the battery state

bt ∈ B , {0, 1, . . . , b̄}, which evolves as

bt+1 = min{bt + et − wtσ − ztu(ht), b̄}. (1)

The energy causality constraint has to be satisfied, which is:

wtσ + ztu(ht) ≤ bt. (2)

Note that, here, we harvest the energy first and then use at the

next slot onwards. That is, we have a store-then-use model.

4) Age of Information: We adopt a linear model for AoI,

where AoI is defined as the time elapsed since the time

instant when the most recently received update is generated.

Let at denote the AoI of slot t. Once the SU decides to

update status, it generates and transmits a data packet. We

consider the generate-at-will scheme [4]–[7], that the data

packet is generated when update decision is made. Assume

that the data is small such that it is generated and transmitted

instantaneously, and received at the end of the slot, i.e.,

transmission time is one slot. If update is successfully received,

the AoI decreases to 1; otherwise increases by 1. Note that at
is upper bounded by a0+T and at ∈ A , {1, 2, . . . , a0+T}
for a finite T . A sample path of AoI is depicted in Fig. 1

with a0 = 1. Consider an error-free channel over which the

data can be received successfully once transmitted over an

unoccupied spectrum. Therefore, only transmission collision,

i.e., xt = (1, 1) and qt = A, leads to an update failure. The

average AoI is the cumulative AoI (the area under the age

curve) averaged over time. For an interval of T slots, the

average AoI can be represented as the average sum of disjoint

geometric parts of each slot,

J =
1

T

T−1
∑

t=0

(1

2
+ at

)

. (3)
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III. POMDP FORMULATION

The sequential sensing and update decisions for average

AoI minimization is formulated as a POMDP. We describe

the components of the POMDP as follows.

Actions: The SU first makes sensing decision. If the SU

senses and observes PU to be active, then it does not update,

i.e., xt = (1, 0); if the SU senses and observes PU silent,

then it further makes an update decision based on its AoI,

energy availability, and the channel gain. The action for each

slot is xt = (wt, zt) ∈ X , {(0, 0), (1, 0), (1, 1) : bt ≥ wtσ+
ztu(ht)}, where wt ∈ Γw , {0, 1 : bt ≥ wtσ} and zt ∈ Γz ,

{0, 1 : bt ≥ σ + ztu(ht)}.

Observations and beliefs: The observation of the PU’s

state is q̂t ∈ {A, S}. The belief ρt ∈ [0, 1] is a conditional

probability indicating the availability of primary spectrum.

Based on the action and observation history, the belief evolves

over slot by ρt+1 = I(ρt). If the SU stays idle without sensing,

the new belief is updated solely based on the underlying

Markov chain of the PU state. Otherwise, the sensing result

shows the true state. Specifically, we have

ρt+1 =











I0(ρt) = ρtpss+(1−ρt)pas, if wt = 0

IA(ρt) = pas, if wt = 1, q̂t = A

IS(ρt) = pss, if wt = 1, q̂t = S.

(4)

Given initial belief, the number of possible beliefs over T slots

is finite, since from the current belief, the SU can only transit

to three beliefs by (4). Thus, for a finite time T , the belief

space I is a finite set.

States: The completely observable states of each slot

consists of AoI state, battery state, energy harvesting state,

and channel state, denoted by st , (at, bt, et, ht). Note the

state space, i.e., S , A× B × E × H, is finite. In particular,

over an error-free channel, update is always successful when

the sensing result is q̂t = S and update decision is zt = 1.

Thus, for t = 0, . . . , T − 1,

at+1 =

{

1, if xt = (1, 1)

at + 1, otherwise,
(5)

or more compactly, at+1 = (1 − zt)at + 1. Additionally, the

spectrum state is only partially observable and is described by

the sufficient statistic, i.e., belief ρt. We denote the complete

information state by (st, ρt), ∀t. Since S and I are finite,

the SU can only experience a finite number of possible

information states (st, ρt) ∈ S × I.

Transition probabilities: Given current state st =
(at, bt, et, ht) and action xt = (wt, zt), the transition

probability to state st+1 = (at+1, bt+1, et+1, ht+1) is denoted

by pxt
(st+1|st). Due to the independency of energy harvesting

and channel fading and their being i.i.d., we have

pxt
(st+1|st) = P(at+1|at, xt)P(bt+1|bt, et, ht, xt)·

pE(et+1)pH(ht+1), (6)

where P(at+1|at, xt) = 1 if at+1 = (1 − zt)at + 1 and

P(bt+1|bt, et, ht, xt) = 1 if bt+1 = min{bt + et − wtσ −
ztu(ht), b̄}.

Cost: Let C(st) be the immediate cost taken under state st,
which is given by

C(st) =
1

2
+ at, t = 0, . . . , T. (7)

Policy: Denote the policy π = {µ0, . . . , µT−1}, where µt

is a deterministic decision rule that maps an information state

(st, ρt) ∈ S × I into an action xt ∈ X , i.e, xt = µt(st, ρt).
Let Π denotes the set of all deterministic policies.

The POMDP can be reformulated as a perfect state

information problem by adopting the information state (s, ρ)
in S × I [15]. Given SU’s initial state and belief, the

finite-horizon average AoI under policy π is expressed as

Jπ(s0, ρ0) =
1

T
E

[

T−1
∑

t=0

C(st)|s0, ρ0

]

, (8)

where the expectation is taken over policy π. Finding the

optimal sensing and update policy that minimizes the average

AoI corresponds to solve the optimization problem

min
π∈Π

Jπ(s0, ρ0). (9)

For a fixed T , (9) is a finite-state MDP with total cost.

IV. POMDP SOLUTION

We use dynamic programming to solve the finite-horizon

total cost minimization problem in (9) [15]. Let Vt(st, ρt)
denote the value function,

Vt(st, ρt) , min
{xi}

T−1

i=t

E

[

T−1
∑

i=t

C(si)|st, ρt

]

, (10)

which is the minimum expected cost accumulated from

slot t to T − 1 given information state (st, ρt). Then, the

minimum AoI in (9) is J∗ = V0(s0, ρ0)/T for fixed T . Let

Qwt

t (st, ρt) denote the action-value function or Q-function,

which represents the minimum expected cost for taking

sensing action wt in state (st, ρt) that is accumulated since

t. The Q-function consists of two parts: the immediate cost

obtained under current state and the expected sum of value

functions for the next slot. The finite-horizon MDP problem

can be solved via dynamic programming recursion as follows.

For t = 0, 1, . . . , T − 1,

Vt(st, ρt) = min
wt∈Γw

Qwt

t (st, ρt), (11)

where for t = T − 1,

Q0
T−1(sT−1, ρT−1) =C(sT−1) + C(sT ), (12)

Q1
T−1(sT−1, ρT−1) =(1− ρT−1)C(sT−1)+

ρT−1 min
zT−1∈Γz

C(sT−1) + C(sT ), (13)
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and for t = 0, . . . , T − 2,

Q0
t (st,ρt)=C(st)+

∑

st+1

p00(st+1|st)Vt+1(st+1,I0(ρt)), (14)

Q1
t (st,ρt)=(1−ρt)Q

1A
t (st,ρt)+ρt min

zt∈Γz

Q1zt
t (st,ρt), (15)

Q1A
t (st,ρt)=C(st)+

∑

st+1

p10(st+1|st)Vt+1(st+1,IA(ρt)), (16)

Q10
t (st,ρt)=C(st)+

∑

st+1

p10(st+1|st)Vt+1(st+1,IS(ρt)), (17)

Q11
t (st,ρt)=C(st)+

∑

st+1

p11(st+1|st)Vt+1(st+1,IS(ρt)), (18)

In particular, Q1A
t (st, ρt) in (16) denotes the conditional

minimum expected cost given sensing result q̂t = A, i.e.,

adopting action xt = (1, 0). In (17) and (18), given sensing

result q̂t = S, Q10
t (st, ρt) and Q11

t (st, ρt) characterize the

conditional minimum expected costs by adopting update action

zt = 0 and zt = 1, respectively. By recursion in (11)-(18), the

optimal sensing and updating policies are obtained by

w∗
t (st, ρt) ∈ argmin

wt∈Γw

Qwt

t (st, ρt), (19)

z∗t (st, ρt) ∈ argmin
zt∈Γz

Q1zt
t (st, ρt). (20)

Next, we analyze the structure of the optimal policy to

gain insights for optimum sequential decision making in

EH-CR with the objective of AoI minimization. We first show

the monotonicity of the value function with respect to each

component of the information state.

Proposition 1: For t = 0, . . . , T − 1,

1) Vt(st, ρt) is nondecreasing with respect to the AoI state

at.
2) Vt(st, ρt) is nonincreasing with respect to battery state

bt, energy harvesting state et, and channel state ht.

3) Vt(st, ρt) is nonincreasing with respect to belief ρt if

pss ≥ pas.

Proof: See Appendix A.

In [16], it is proved that for a finite and fixed time horizon

POMDP, the value function is piecewise linear and convex

with respect to the belief state for a reward maximization

problem. Applying the theory developed there, we can verify

that Vt(st, ρt) of our total cost minimization problem is

piecewise linear and concave with respect to belief ρt, ∀t. The

monotonicity and concavity of the value function establish the

basis for the following analysis on the solution structure of the

optimal policy, which holds for all t, (we will be omitting the

time index without loss of generality).

Theorem 1: For the optimal sensing policy, the SU senses,

i.e., w∗(a, b, e, h, ρ) = 1, if e ≥ σ + b̄− b.
Proof: See Appendix B.

Theorem 2: For the optimal update policy, if e ≥ σ +
b̄ − b, and z∗(a, b, e, h, ρ) = 1, then for any b′ ≥ b,
z∗(a, b′, e, h, ρ) = 1; if e ≥ σ+u(h)+ b̄− b, the SU updates,

i.e., z∗(a, b, e, h, ρ) = 1.

Proof: See Appendix C.
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Fig. 2. Two sample paths of AoI by the optimal policy for b̄ = 5, pe = 0.3,
ph = 0.5.

Theorem 3: The optimal update policy has a threshold

structure with respect to the AoI state: if z∗(a, b, e, h, ρ) = 1,

then for any a′ ≥ a, z∗(a′, b, e, h, ρ) = 1.

Proof: See Appendix D.

Theorem 1 implies if the harvested energy is large enough

such that the battery is full at the beginning of the next slot,

then the SU always decides to sense. A similar result can be

concluded for the update policy from Theorem 2, that if the

harvested energy is large enough such that the battery can be

fully charged taking account the sensing and update cost, then

the SU always decides to sense and update, i.e., x∗ = (1, 1).
Furthermore, if the update is transmitted at battery state b, then

update is also decided for any larger battery b′ as stated in

Theorem 2. Similar threshold structure for the optimal update

policy with respect to AoI state is stated in Theorem 3. The

computation of value iteration can be reduced by exploiting

the threshold structure of the optimal policy.

V. NUMERICAL RESULTS

In this section, we present numerical results to verify our

findings. The PU has state transition probabilities pss = 0.8
and psa = pas = 0.2. The initial belief is set to be ρ0 = pss.
The energy consumption for sensing is σ = 1. The energy

harvesting process is i.i.d. Bernoulli with probability pe for

harvesting e = 3 and probability 1 − pe for e = 0. For the

channel fading level, we set H = {h1, h2} with ph for h1,

where each level corresponds to an energy cost on update. Set

u(h1) = 2 and u(h2) = 4. We compare the proposed optimal

policy with a myopic policy. In particular, in a myopic policy,

the SU senses the primary spectrum whenever it has enough

energy for sensing. If the primary spectrum is sensed to be

unoccupied, the update takes place if the residual energy is

sufficient for an update.

In Fig. 2, we plot a sample path of AoI by the optimal policy

for battery capacity b̄ = 5. Table I provides the corresponding

information states and actions. By comparing the states of t =
1, 2 in the first sample path, we can observe that when the

harvested energy is large enough to make the battery full at the
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TABLE I
TWO SAMPLE PATHS OF AOI BY THE OPTIMAL POLICY

Time t a b e u(h) ρ Action x

1 5 3 3 4 0.5389 (1, 0)
2 6 5 3 2 0.8 (1, 1)
3 1 5 0 4 0.8 (0, 0)
5 3 5 0 2 0.6080 (1, 1)
9 4 5 0 2 0.5648 (1, 1)

3 4 3 3 4 0.5648 (1, 0)
4 5 5 3 4 0.8 (1, 1)
5 1 3 3 4 0.8 (1, 0)
6 2 5 3 4 0.8 (1, 1)
7 1 3 0 4 0.8 (0, 0)
8 2 3 3 2 0.68 (1, 0)
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Fig. 3. Average AoI versus the probability of energy harvesting pe for T =
50, ph = 0.5, a0 = 1.

beginning of next slot, sensing and update are implemented. At

t = 5, 9, the threshold structure of the optimal update policy

in terms of AoI state is shown. Similar results can be observed

in the second sample path at the sensing instants t = 3, 5 and

the update instants t = 4, 6.

Fig. 3 shows the average AoI versus the probability of

energy harvesting pe for T = 50. It can be observed that the

average AoI decreases as the probability of energy harvesting

grows. The optimal policy performs better than myopic policy,

especially when energy is scarce since the optimal policy

mitigates the randomness of energy harvesting by decisions.

The same reason is for the performance of cases with small

and large battery capacities, i.e, b̄ = 5, 10. When a larger

battery is present, the average AoI is lower.

VI. CONCLUSION

In this paper, we have investigated an energy harvesting

cognitive secondary user sensor with the aim of AoI

minimization. For the energy harvesting cognitive radio who

needs to keep the information at its destination as fresh as

possible, optimal sensing and update decisions that minimize

the average AoI over a finite horizon are considered. Taking

into account the partially observable state of the primary user,

POMDP is adopted to formulate the total cost minimization

problem subject to the energy causality constraint. The

POMDP is formulated as a perfect state information problem,

which is solved by dynamic programming. The monotonicity

of the value function and a threshold structure for the optimal

policy are shown. The numerical results illustrate the policy

structures and the impact of system parameters. Future work

includes the AoI minimization for the secondary user with

imperfect spectrum sensing as well as the infinite horizon

problem.

APPENDIX A

PROOF OF PROPOSITION 1

For the ease of notation, we omit the notation for irrelevant

state components in the sequel.

(1) Nondecreasing in a: We show that Vt(a
′
t) ≥ Vt(at) for

a′t ≥ at by induction according to the recursion in (11)-(18).

For t = T − 1, by (12) and (13), Q
wT−1

T−1 (a′
T−1) ≥

C(a′
T−1) + C(a′

T
) = C(a′

T−1) + C((1− zT−1)a
′
T−1 + 1) ≥

Q
wT−1

T−1 (aT−1) for a′
T−1 ≥ aT−1. Since min preserves the

monotonicity, VT−1(a
′
T−1) ≥ VT−1(aT−1) from (11).

Suppose Vt+1(a
′
t+1) ≥ Vt+1(at+1) for some t, we next

show Vt(a
′
t) ≥ Vt(at). From (14), Q0

t (a
′
t) ≥ Q0

t (at) holds as

C(a′t) ≥ C(at) and Vt+1(a
′
t+1) ≥ Vt+1(at+1). Similarly, we

have Q1A
t (a′t) ≥ Q1A

t (at), Q
10
t (a′t) ≥ Q10

t (at) and Q11
t (a′t) ≥

Q11
t (at). Then, Q1

t (a
′
t) ≥ Q1

t (at) from (15). Consequently,

Vt(a
′
t) ≥ Vt(at) from (11).

(2) Nonincreasing in b, e, and h: Same induction procedure

as for state a follows for verifying the nonincreasing in b. Note

that if b′t ≥ bt for any t = 0, . . . , T − 1 with other states the

same, the SU with b′t can sense and update no less times from

slot t to the end than with bt, which leads to no larger cost.

Considering energy harvesting state et, a larger e′t results in

battery state b′t+1 no less than bt+1, which implies a lower

value function. Similarly, a higher channel state h′
t leads to

a smaller transmission cost u(h′
t) due to the nonincreasing

function u(·), thus, more residual energy can be kept in the

battery to provide a lower value function.

(3) Nonincreasing in ρ: We show that Vt(ρ
′
t) ≤ Vt(ρt) for

ρ′t ≥ ρt by induction according to the recursion in (11)-(18).

For t = T − 1, if the secondary user stays idle, we have

Q0
T−1(ρ

′
T−1) = Q0

T−1(ρT−1) from (12). If sensing, from (13),

Q1
T−1(ρ

′
T−1)=

{

C(aT−1)+C(aT−1+1), if zT−1 = 0

C(aT−1)+C(1), if zT−1 = 1.
(21)

Since the update policy does not depend on the belief,

Q1
T−1(ρ

′
T−1) ≤ Q1

T−1(ρT−1). Thus, VT−1(ρ
′
T−1) ≤

VT−1(ρT−1) by (11).

Suppose Vt+1(ρ
′
t+1) ≤ Vt+1(ρt+1) for some t, we next

show Vt(ρ
′
t) ≤ Vt(ρt). From (4), I0(ρt) is nondecreasing in ρt

as pss ≥ pas. Then, Vt+1(I0(ρ
′
t)) ≤ Vt+1(I0(ρt)) for ρ′t ≥ ρt

by assumption. This implies Q0
t (ρ

′
t) ≤ Q0

t (ρt) according to

(14). By similar argument, it can be verified that Q1A
t (ρ′t) ≤
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Q1A
t (ρt), Q

10
t (ρ′t) ≤ Q10

t (ρt), and Q11
t (ρ′t) ≤ Q11

t (ρt). Then,

for Q1
t (ρ

′
t) given in (15),

Q1
t (ρ

′
t) ≤ (1− ρ′t)Q

1A
t (ρt) + ρ′t min

zt∈Γz

{

Q10
t (ρt), Q

11
t (ρt)

}

= Q1A
t (ρt) + ρ′t∆Qt(ρt), (22)

where ∆Qt(ρt) , min
zt∈Γz

{

Q10
t (ρt), Q

11
t (ρt)

}

− Q1A
t (ρt) ≤

Q10
t (ρt)−Q1A

t (ρt) ≤ 0. The nonpositivity is by (17) and (16),

where Vt+1(IS(ρt)) ≤ Vt+1(IA(ρt)) holds by assumption for

IS(ρt) = pss ≥ IA(ρt) = pas. Therefore, from (22) Q1
t (ρ

′
t) ≤

Q1A
t (ρt)+ρ′t∆Qt(ρt) ≤ Q1A

t (ρt)+ρt∆Qt(ρt) = Q1
t (ρt). By

(11), we conclude Vt(ρ
′
t) ≤ Vt(ρt).

APPENDIX B

PROOF OF THEOREM 1

Let C denote C(s) if a is not changed. To prove w(b, ρ) =
1, we need to show that Q0(b, ρ) ≥ Q1(b, ρ). Since e ≥ σ +
b̄−b, the new battery state becomes b′ = min{b+e−σ, b̄} = b̄
if sensing, and b′′ = min{b+e, b̄} = b̄ if not sensing. By (15),

Q1(b, ρ) ≤ (1− ρ)Q1A(b, ρ) + ρQ10(b, ρ)

= (1− ρ)
[

C +
∑

s′
p10(s

′|s)V (b′, IA(ρ))
]

+ ρ
[

C +
∑

s′
p10(s

′|s)V (b′, IS(ρ))
]

(1)

≤ C +
∑

s′
p10(s

′|s)V (b̄, (1− ρ)IA(ρ) + IS(ρ))

(2)
= C +

∑

s′
p10(s

′|s)V (b̄, I0(ρ))

= C +
∑

s′′
p00(s

′′|s)V (b′′, I0(ρ)) = Q0(b, ρ) (23)

where (1) is by the concavity of value function with respect

to the belief, and (2) is from the belief update equation in (4).

APPENDIX C

PROOF OF THEOREM 2

First we show that when e ≥ σ+ b̄−b, for any larger battery

state b′ ≥ b, if z∗(a, b, e, h, ρ) = 1, then z∗(a, b′, e, h, ρ) = 1.

We need to show that Q11(b′, ρ) ≤ Q10(b′, ρ). Since e ≥ σ+
b̄−b, the new battery state becomes b̃ = min{b−σ+e, b̄} = b̄
if solely sensing. By (18),

Q11(b′, ρ)=C+
∑

s̃′
p11(s̃

′|s)V (min{b′−σ−u(h)+e,b̄},IS(ρ))

(1)

≤ C+
∑

s̃
p11(s̃|s)V (min{b−σ−u(h)+e,b̄},IS(ρ))

(2)

≤ C+
∑

s̃
p10(s̃|s)V (b̃, IS(ρ))=Q10(b′, ρ), (24)

where (1) is by the monotonicity of value function with respect

to the battery state, and (2) is due to z∗(a, b, e, h, ρ) = 1
implying Q11(b) ≤ Q10(b).

Next, we prove that if the battery state satisfies e ≥ σ +
u(h) + b̄ − b, z∗(a, b, e, h, ρ) = 1. By Theorem 1, sensing

is carried out, i.e., w∗(a, b, e, h, ρ) = 1. Thus, we only need

to show Q10(a, b, e, h, ρ) ≥ Q11(a, b, e, h, ρ). Since e ≥ σ +
u(h) + b̄− b, the new battery state becomes b′ = b̄ if update

is transmitted. By (18),

Q11(a, b, e, h, ρ) = C+
∑

s′
p11(s

′|s)V (1, b̄, e′, h′, IS(ρ))

≤ C+
∑

s′′
p10(s

′′|s)V (a+1, b̄, e′, h′, IS(ρ))

= Q10(a, b, e, h, ρ), (25)

where the inequality is due to the monotonicity of the value

function with respect to the AoI state.

APPENDIX D

PROOF OF THEOREM 3

To prove z(a′, b, e, h, ρ) = 1, all need to show

is Q10(a′, b, e, h, ρ) ≥ Q11(a′, b, e, h, ρ). By (20),

z(a, b, e, h, ρ) = 1 implies that Q11(a, b, e, h, ρ) ≤
Q10(a, b, e, h, ρ). That is, by (17) and (18),

C+
∑

s̃
p11(s̃|s)V (1, b11, ẽ, h̃, IS(ρ))

≤C+
∑

s̃
p10(s̃|s)V (a+1, b10, ẽ, h̃, IS(ρ)), (26)

where b11 = min{b−σ−u(h)+e, b̄}, b10 = min{b−σ+e, b̄},

ẽ and h̃ are the energy harvesting and channel states of the next

slot. Thus, V (1, b11, ẽ, h̃, IS(ρ)) ≤ V (a+1, b10, ẽ, h̃, IS(ρ)) ≤
V (a′ + 1, b10, ẽ, h̃, IS(ρ)), where the last inequality is due to

the monotonicity of value function with respect to AoI state.

Then, Q11(a′, b, e, h, ρ) ≤ Q10(a′, b, e, h, ρ) again by (17) and

(18).
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