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Abstract—The metric age of information (AoI) has recently
been widely employed to quantify the freshness of the information
delivered to the destination. This paper investigates long-term
average AoI minimization of an energy harvesting secondary user
(SU) in a cognitive radio network setting. Specifically, the paper
focuses on the impact of imperfect spectrum sensing on AoI
minimization in this setting. The SU makes a decision whether
to sense the presence of a primary user, and if it determines
the spectrum to be unoccupied, may send out a status update.
Sensing and updating both cost energy and the sensing decision
may be incorrect due to imperfect spectrum sensing. This setting
is formulated as an infinite horizon partially observable Markov
decision process (POMDP) to derive the optimal policy that
minimizes the long-term average AoI of the SU. The existence of
the optimal stationary sensing and update policy is proved and
the threshold structure of the policy is shown. Numerical results
are presented to demonstrate the SU’s AoI performance.

I. INTRODUCTION

The concept of age of information (AoI) has been

recently introduced to measure the freshness of information

from the perspective of the destination [1], [2]. AoI is

an especially suitable performance metric in time-sensitive

wireless communications, for instance, data exchange in

vehicular networks [1], where the status of physical processes

have to be updated in a timely manner.

AoI is defined as the time elapsed since the generation of

the latest successfully received information [1], [2]. In [2], AoI

of a point-to-point communication system is characterized in

a linear form, i.e., counting time units in these references, and

minimized by considering the update inter-arrival time, waiting

time in the queue, and transmission/service time over the

channel. Peak age of information is introduced in [3], where

only the peak age of an update is tracked, and packets are

dropped or replaced to decrease age. Reference [4] introduces

an AoI penalty function which generalizes linear and nonlinear

models of age.

For energy harvesting communications, AoI has been first

investigated in [5] by considering an energy harvesting source

that performs status updates using the harvested energy.

It is shown in [5] that subject to the energy causality

constraint, waiting between updates improves AoI as compared

to updating as fast as possible. References [6], [7] consider

instantaneous update generation, transmission, and delivery,

and derive (asymptotically) optimal update policies in offline

and online settings.

Cognitive radio networks (CRN) with energy harvesting

have been studied previously with the throughput as the

main metric [8]–[10]. In [8], [9], the spectrum sensing

and/or accessing decisions are derived by solving partially

observable Markov decision processes (POMDPs). Reference

[10] proposes a fixed fraction power allocation policy to

maximize long-term throughput. In [11], AoI minimization

for a cognitive radio network (CRN) is considered. The AoI

of the primary user is characterized and minimized from a

queuing theoretic perspective. In [12], the AoI of an energy

harvesting secondary user in a CRN is minimized by solving

a finite-horizon sequential decision-making problem subject to

the energy constraint. The optimal sensing and status update

policy is derived in [12] considering perfect spectrum sensing

at the secondary user.

Different from previous works, this paper studies the AoI

of the energy harvesting secondary user (SU) with imperfect

spectrum sensing in cognitive radio. The SU sends status

updates to the destination by opportunistically sensing and

accessing the spectrum. An update is successful if it is sent

over an unoccupied spectrum and fails if a collision with

the primary user (PU) occurs. Thus, the imperfect spectrum

sensing of the SU impacts the status update process and

the AoI evolution in the long run. In order to maintain the

status updates received at the destination as fresh as possible,

the SU has to make spectrum sensing and status update

decisions optimally while satisfying the energy causality

constraint. In particular, the SU may behave conservatively

when the spectrum sensing accuracy is low, or energy is scarce,

or the channel fading condition is poor even if energy is

sufficient. Thus, an optimal sensing and update policy that

minimizes the long-term average AoI of the SU is of interest.

We formulate the sequential decision marking problem as a

partially observable Markov decision process (POMDP) due

to the partial observation of the state of PU. Unlike [12], we

consider an infinite horizon, and we prove that there exists an

optimal stationary policy that solves the average cost POMDP

problem. We further investigate the structure of the optimal

policy and show that it is a threshold policy with respect to the
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Fig. 1. The system model. The secondary user (SU) senses and accesses the
primary user’s spectrum opportunistically to send updates to the secondary
receiver (SR).

energy state. Numerical results show the impact of imperfect

sensing by comparing with the perfect sensing case.

II. SYSTEM MODEL

We consider a cognitive communications scenario where an

energy harvesting SU sends status updates to its destination by

accessing the PU’s spectrum opportunistically over time slots

t = 0, 1, 2, . . . , as shown in Fig. 1. Without loss of generality,

the length of each slot is normalized. The PU has access rights

to the spectrum. In each time slot, the PU is either in an active

(A) state occupying the spectrum or stays inactive (I) denoted

by qt ∈ {A, I}, which forms a stationary two-state Markov

chain. The transition probabilities are

pii , P(qt+1 = I|qt = I), ∀t, (1)

pai , P(qt+1 = I|qt = A), ∀t, (2)

which are obtained by long-term measurements and known to

the SU.

The SU is slot-synchronized with the PU. At the beginning

of each slot, the SU decides to either sense the channel or not.

If it stays idle, no action is needed. If it decides to sense, it

takes a fixed fraction of one slot to sense the PU’s spectrum

and obtain the channel state information. The SU obtains an

observation of the PU state, denoted by q̂t ∈ {A, I}, which

could be erroneous due to imperfect spectrum sensing. Let pf
and pd denote the probabilities of false alarm and detection:

pf , P(q̂t = A|qt = I), ∀t, (3)

pd , P(q̂t = A|qt = A), ∀t. (4)

The channel state information is obtained causally at each slot

if sensing is conducted. We consider a block fading channel

with channel gain ht, where ht is a random variable with

realization ht = ht, and independently identically distributed

(i.i.d.) over all t.
After sensing, the SU further decides whether to update

status or not during the remainder of the slot. Let xt = (wt, zt)
be the decision for slot t, where wt ∈ {0 (idle), 1 (sense)}
and zt ∈ {0 (not update), 1 (update)} denote the sensing and

update decisions, respectively. We consider that both spectrum

sensing and status updating expend the energy harvested from

ambient energy sources. The amount of the harvested energy

et is a random variable with realization et = et, and i.i.d. over

all t. Each sensing action consumes a fixed amount of energy

σ. The energy consumed for an update, denoted by u(ht),
includes a fixed cost for generating an update data packet and

a varying cost for transmission, where u(ht) is nonincreasing

with respect to the channel gain ht [13]. For a battery of

capacity b̄, the battery state evolves as

bt+1 = min{bt + et − wtσ − ztu(ht), b̄}, ∀t. (5)

The energy causality constraint [10] is given by

wtσ + ztu(ht) ≤ bt. (6)

Note that we adopt a store-then-use model, by which the

harvested energy is first stored in the battery and then used at

the next slot onwards.

We use a linear model for AoI [1], [2], where AoI is

defined as the time elapsed since the time instant when

the most recently received update is generated, denoted by

at at the beginning of slot t. Once the SU decides to

update status, it generates and transmits a data packet. We

consider the generate-at-will scheme [5]–[7], i.e., the data

packet is generated when the update decision is made. The

amount of update data is small enough that it is generated

and transmitted instantaneously when spectrum sensing is

completed and received by the end of the current slot. If

the update is successfully received, the AoI decreases to 1;

otherwise increases by 1. As shown in Fig. 1, the AoI increases

between updates and, at the beginning of a slot, drops to 1
if an update is delivered during the last slot since it takes

one slot to generate and transmit the update. We consider an

error-free channel, i.e., the update can be received successfully

if transmitted over an unoccupied spectrum and update failure

occurs only if the SU collides with the PU. Thus, we have at

the beginning of slot t+ 1, ∀t,

at+1 =

{

1, if xt = (1, 1), q̂t = qt = I,

at + 1, otherwise.
(7)

Since SU can only partially observe the state of PU

by opportunistically sensing and accessing the spectrum, a

sufficient statistic of the spectrum availability is obtained. That

is, the belief ρt, representing the conditional probability of PU

being inactive, i.e., qt = I, given SU’s action and observation

history. After taking action xt = (wt, zt), the belief is updated

by ρt+1 = Λ(ρt) taking into account the imperfect spectrum

sensing. Specifically, if the SU stays idle without sensing, the

new belief is updated solely based on the underlying Markov

chain of the PU state. That is, for xt = (0, 0),

ρt+1 = Λ0(ρt) = ρtpii + (1− ρt)pai. (8)

If the SU senses but does not update, the belief is updated

based on the sensing result. When the PU is sensed to be

active, the SU does not update, i.e., xt = (1, 0), q̂t = A, the

new belief is

ρt+1 = Λ1A(ρt) = θtpii + (1− θt)pai, where

θt , P(qt = I|q̂t = A) =
ρtpf

ρtpf + (1− ρt)pd
. (9)



When the PU is sensed to be inactive and the SU decides not

to update, i.e., xt = (1, 0), q̂t = I, the new belief is given by

ρt+1 = Λ1I(ρt) = θ̄tpii + (1− θ̄t)pai, where

θ̄t , P(qt=I|q̂t=I) =
ρt(1−pf)

ρt(1−pf)+(1−ρt)(1−pd)
. (10)

If an update is transmitted, the SU receives a feedback signal

from the destination that indicates update success or failure.

If the PU is sensed to be inactive, i.e., q̂t = I, and the SU

updates successfully, the sensing result correctly indicates the

true state of PU, i.e., qt = I. This gives

ρt+1 = ΛI(ρt) = pii. (11)

If the PU is sensed to be inactive, i.e., q̂t = I, and the SU fails

to update, a miss event has occurred in spectrum sensing and

the true state is qt = A. We have

ρt+1 = ΛA(ρt) = pai. (12)

The SU aims to minimize the long-term average AoI in

an infinite horizon by making optimal sensing and update

decisions over time t = 0, 1, 2, . . . . The decisions are made

adaptively based on SU’s system states. Next, we formulate

an infinite horizon POMDP to minimize the long-term average

AoI under imperfect spectrum sensing.

III. PROBLEM FORMULATION

The POMDP is formulated as follows.

Actions: The action taken in each slot is xt = (wt, zt) ∈
X , {(0, 0), (1, 0), (1, 1) : bt ≥ wtσ + ztu(ht)}, where wt ∈
Γw , {0, 1 : bt ≥ wtσ} and zt ∈ Γz , {0, 1 : bt ≥ σ +
ztu(ht)}.

States: The completely observable state consists of AoI

state, battery state, energy harvesting state, and channel state,

denoted by st , (at, bt, et, ht). In particular, the age at is

upper bounded by â such that at ∈ A , {1, 2, . . . , â}. AoI

approaching â indicates that the information received at the

destination is expired so that there is no need for counting.

Without loss of generality, we consider finite sample spaces

for the harvested energy and the channel fading level, so that

et ∈ E and ht ∈ H, ∀t, for finite sets E and H. As a

result, the battery state bt takes finite values between 0 and

b̄. Denote the finite set by B. Note that the state space, i.e.,

S , A × B × E × H, is thus finite. The partially observable

state is the spectrum occupancy, which is represented by the

belief ρt. The belief space I is countably infinite as t → ∞.

The complete system state is denoted by (st, ρt) ∈ S × I.

Transition probabilities: Taking action xt, the transition

probability is denoted by pxt
(st+1|st) for transitioning from

state st = (at, bt, et, ht) to state st+1. Since energy harvesting

and channel fading are i.i.d. each, and independent from one

another, we have

pxt
(st+1|st) = P(at+1|at, xt)P(bt+1|bt, et, ht, xt)·

pE(et+1)pH(ht+1), (13)

where pE(·) and pH(·) are the distribution of the harvested

energy and the channel level, respectively, that are apriori

known at the SU, and P(bt+1|bt, et, ht, xt) = 1 if bt+1 =
min{bt + et − wtσ − ztu(ht), b̄}. Imperfect sensing results

involve in the transition probability of the age. Specifically,

P(at+1|at, xt) =



















1, if zt = 0, at+1 = at + 1,

θ̄t, if zt = 1, at+1 = 1,

1− θ̄t, if zt = 1, at+1 = at + 1,

0, otherwise,

(14)

where θ̄t is given in (10).

Cost: The immediate cost C(st) of state st is defined as the

accumulated AoI for slot t, i.e., the area under the age curve

of slot t,

C(st) =
1

2
+ at, ∀t. (15)

Policy: Denote the policy π = {µ0, µ1, . . . }, where µt is a

deterministic decision rule that maps a system state (st, ρt) ∈
S×I into an action xt ∈ X , i.e, xt = µt(st, ρt). For an infinite

horizon, we focus on the set of deterministic stationary policies

Πs, where π = {µ0, µ1, . . . , } ∈ Πs such that µt1 = µt2 when

(st1 , ρt1) = (st2 , ρt2) for any t1, t2. Thus, we omit the time

index in the sequel.

Given initial state (s0, ρ0), the long-term average AoI under

policy π is given by

Jπ(s0, ρ0) = lim sup
T→∞

1

T
E

[

T−1
∑

t=0

C(st)|s0, ρ0

]

. (16)

The goal is to find an optimal stationary sensing and update

policy that solves the long-term average AoI minimization

problem

min
π∈Πs

Jπ(s0, ρ0). (17)

IV. OPTIMAL POLICY

The infinite-horizon POMDP has a countably infinite set of

beliefs I leading to a countably infinite set of system states.

Based on [14, Theorem 4.2], we prove that a solution exists

for the POMDP with average cost formulated in (17).

Theorem 1: There exists (J∗, G(s, ρ)) that satisfies the

Bellman equation

J∗ +G(s, ρ) = min
w∈Γw

Qw(s, ρ), ∀(s, ρ) ∈ S × I, (18)

where J∗ is the optimal average cost which is a constant for all

(s, ρ) ∈ S×I, G(s, ρ) is the relative value function defined in

(22), and Qw(s, ρ) is the Q-function for taking sensing action

w, which is given in (24). The optimal policy π∗ exists and

is obtained by

w∗(s, ρ) ∈ argmin
w∈Γw

Qw(s, ρ), (19)

z∗(s, ρ) ∈ argmin
z∈Γz

Q1z(s, ρ), (20)

where Q1z(s, ρ) is the Q-function for taking action (1, z)
as given in (24). Furthermore, for β ∈ (0, 1), we have



(1− β)Vβ(s, ρ)
β↑1
−→ J∗, where Vβ(s, ρ) is the value function

of the corresponding discounted cost problem with objective

Jπ
β (s0, ρ0) = lim

T→∞
E

[

T−1
∑

t=0

βtC(st)|s0, ρ0

]

, (21)

and Vβ(s, ρ) , min
π∈Πs

Jπ
β (s, ρ).

The proof is provided in Appendix A. The relative value

function is defined as

G(s, ρ) , Ṽ (s, ρ)− Ṽ (s0, ρ0), (22)

where (s0, ρ0) ∈ S×I is a reference system state, and Ṽ (s, ρ)
is computed as

Ṽ (s, ρ) = min
w∈Γw

Qw(s, ρ), (23)

Q0(s, ρ) = C(s) +
∑

s′

p00(s
′|s)G(s′,Λ0(ρ)), (24a)

Q1(s, ρ) = (1−η(ρ))Q1A(s, ρ) + η(ρ)min
z∈Γz

Q1z(s, ρ), (24b)

Q1A(s, ρ) = C(s) +
∑

s′

p10(s
′|s)G(s′,Λ1A(ρ)), (24c)

Q10(s, ρ) = C(s) +
∑

s′

p10(s
′|s)G(s′,Λ1I(ρ)), (24d)

Q11(s, ρ) = C(s) +
∑

s′

p11(s
′, a′ = 1|s)G(s′,ΛI(ρ))

+
∑

s′

p11(s
′, a′ = a+ 1|s)G(s′,ΛA(ρ)), (24e)

where η(ρ) = ρ(1 − pf) + (1 − ρ)(1 − pd) is the probability

of observing PU inactive.

Next, we investigate the structure of the optimal policy. We

first focus on the discounted cost problem (21) and prove the

properties of its value function Vβ(s, ρ) and the optimal policy

πβ , then relate to the average cost problem (17) by Theorem

1. The value function of the discounted problem (21) satisfies

the following Bellman equation [14, Theorem 2.1]

Vβ(s, ρ) = min
w∈Γw

Qw
β (s, ρ), (25)

Q0
β(s, ρ) = C(s) + β

∑

s′

p00(s
′|s)Vβ(s

′,Λ0(ρ)), (26a)

Q1
β(s, ρ) = (1−η(ρ))Q1A

β (s, ρ) + η(ρ)min
z∈Γz

Q1z
β (s, ρ), (26b)

Q1A
β (s, ρ) = C(s) + β

∑

s′

p10(s
′|s)Vβ(s

′,Λ1A(ρ)), (26c)

Q10
β (s, ρ) = C(s) + β

∑

s′

p10(s
′|s)Vβ(s

′,Λ1I(ρ)), (26d)

Q11
β (s, ρ) = C(s) + β

∑

s′

p11(s
′, a′=1|s)Vβ(s

′,ΛI(ρ))

+β
∑

s′

p11(s
′, a′=a+ 1|s)Vβ(s

′,ΛA(ρ)). (26e)

The discounted problem can be solved by value iteration [15].

We prove the monotonicity of the value function Vβ(s, ρ) as

follows.

Algorithm 1 Relative value iteration algorithm

1: For all (s, ρ) ∈ S × Ĩ, initialize Ṽ0(s, ρ) = 0, choose

(s0, ρ0), set G0(s, ρ) = Ṽ0(s, ρ)− Ṽ0(s
0, ρ0) and k = 0.

2: repeat

3: for (s, ρ) ∈ S × Ĩ do

4: compute Ṽk+1(s, ρ) by (23) and (24) using Gk(s, ρ).
5: Let Gk+1(s, ρ) = Ṽk+1(s, ρ)− Ṽk+1(s

0, ρ0).
6: end for

7: until Gk(s, ρ) → G(s, ρ) for all (s, ρ), otherwise increase

k by 1.

8: J∗ = Ṽ (s0, ρ0), optimal policy is obtained by (19).

Proposition 1: (i) Vβ(s, ρ) is nondecreasing with respect to

the AoI state a. (ii) Vβ(s, ρ) is nonincreasing with respect to

battery state b, energy harvesting state e, and channel state h.

(iii) Vβ(s, ρ) is nonincreasing with respect to belief ρ if the

transition probabilities of the state of PU given in (1), (2) and

the probabilities of false alarm and detection events given in

(3), (4) satisfy pii

pai
≥ pd

pf

> 1.

The proof is provided in Appendix B. The threshold

structures of the optimal sensing and update policy of average

cost problem (17) are proved in the following theorems.

Theorem 2: For the optimal sensing policy, the SU senses,

i.e., w∗(a, b, e, h, ρ) = 1, if e ≥ σ + b̄− b.
The proof of Theorem 2 is provided in Appendix C.

Theorem 3: For the optimal update policy, (i) if e ≥
σ + b̄ − b, and z∗(a, b, e, h, ρ) = 1, then for any b′ ≥ b,
z∗(a, b′, e, h, ρ) = 1; (ii) if e ≥ σ + u(h) + b̄ − b, the SU

updates, i.e., z∗(a, b, e, h, ρ) = 1.

The proof of Theorem 3 is provided in Appendix D.

Theorem 2 and 3 imply that if the harvested energy is larger

than certain thresholds, sensing and update are implemented.

To solve (18) for (J∗, G(s, ρ)) and the optimal policy, we

apply the relative value iteration algorithm [15]. The algorithm

is summarized in Algorithm 1. Since the set of belief states I
is countably infinite, we approximate it by a finite set Ĩ for a

given initial belief ρ0. From the initial belief ρ0, the belief can

be updated to 5 new states in each slot as specified in (8)-(12),

and evolves as a belief tree. As t grows, the newly updated

beliefs deviate little from the previous ones. Thus, we choose

t sufficiently large such that Ĩ can be obtained by including

pii, pai, ρ0 and all the updated beliefs till t.

V. NUMERICAL RESULTS

In this section, we present numerical results of AoI for

imperfect spectrum sensing. The PU has state transition

probabilities pii = 0.8 and pai = 0.2. The probability of

detecting an active PU is pd = 0.8. The energy consumption

for sensing is σ = 1. The energy harvesting process is

i.i.d. Bernoulli with probability pe for harvesting e = 3 and

probability 1− pe for e = 0. For the channel fading level, we

set H = {h1, h2} with ph for h1, where each level corresponds

to an energy cost on update. We set u(h1) = 2 and u(h2) = 4.

We compare the proposed optimal policy with a myopic policy.
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In particular, in a myopic policy, the SU senses the primary

spectrum whenever it has enough energy for sensing. If the

primary spectrum is sensed to be unoccupied, an update takes

place if the residual energy is sufficient for an update.

Fig. 2 presents the average AoI versus the probability

of false alarm. As the probability of false alarm increases,

the average AoI becomes larger since the SU observes the

spectrum to be occupied and decides not to update due to

this sensing error. The optimal policy outperforms the myopic

policy significantly since the myopic policy does not take into

account the statistics of the spectrum occupancy. Fig. 3 shows

the AoI versus the probability of energy arrival. The impact

of imperfect spectrum sensing is illustrated by comparing

with the perfect spectrum sensing scenario. As expected, the

long-term average AoI is larger in imperfect sensing scenario

due to the false alarm and miss detection events.

VI. CONCLUSION

We have considered an energy harvesting cognitive

secondary user with the objective of AoI minimization. An

infinite horizon POMDP is formulated to investigate the

impact of imperfect spectrum sensing on AoI minimization

in the long run. The optimal sensing and update decisions that

minimize the long-term average AoI are derived and solved by

dynamic programming. The threshold structure of the optimal

policy is proved. Numerical results highlight the impact of

spectrum sensing parameters and demonstrate that the optimal

policy significantly outperforms the myopic policy.

APPENDIX A

PROOF OF THEOREM 1

According to [14, Theorem 4.2], it suffices to show that

the following two conditions are satisfied: (i) Λ−1
i (ρ), ∀i ∈

{0, 1A, 1S,A, S} is a countable set; (ii) there is a constant

L ≥ 0 such that |Vβ(s, ρ) − Vβ(s
′, ρ′)| ≤ L, ∀0 < β < 1,

∀(s, ρ), (s′, ρ′) ∈ S × I.

For (i), the condition holds if Λ−1
i (ρ) is an injective map.

Since pii

pai
≥ pd

pf

> 1, the matrices
(

pii 1−pii

pai 1−pai

)

and
(

pd 1−pd

pf 1−pf

)

are nonsingular. Thus, Λ−1
i (ρ) is an injective map based on

[14, Lemma 4.2]. For (ii), consider a system state (s̄, ρ̄) =
(â, 0, 0, hmin, 0), where â is the upper bound of AoI and

hmin ∈ H is the worst channel level. Due to the monotonicity

of Vβ(s, ρ) as proved below, 0 ≤ Vβ(s, ρ) ≤ Vβ(s̄, ρ̄) for any

(s, ρ) ∈ S × I. Then, it suffices to show that Vβ(s̄, ρ̄) is no

larger than a constant L. For imperfect sensing, Λ0(0) = pai,
then by (26a), Q0

β(s̄, ρ̄) = C(â) + β
∑

s′ p00(s
′|s)Vβ(s

′, pai).
Thus, Vβ(s̄, ρ̄) ≤ Q0

β(s̄, ρ̄) ≤ C(â)+βVβ(s̄, ρ̄), which results

in Vβ(s̄, ρ̄) ≤ C(â)/(1 − β) ≤ ( 12 + â)/(1 − β). Then,

L = ( 12 + â)/(1− β).

APPENDIX B

PROOF OF PROPOSITION 1

For clarity of exposition, we omit the notation for irrelevant

state components in the sequel. Subscript k denotes the

iteration index in value iteration.

(i) Nondecreasing in a: We show Vβ(a
′) ≥ Vβ(a) for

a′ ≥ a by induction over value iteration. For k = 0,

Vβ,0(a
′) = Vβ,0(a) = 0. Suppose Vβ,k(a

′) ≥ Vβ,k(a)
for some k. From (26a), Q0

β,k(a
′) ≥ Q0

β,k(a) holds as

C(a′) ≥ C(a) and Vβ,k(a
′) ≥ Vβ,k(a). Similarly, we have

Q1A
β,k(a

′) ≥ Q1A
β,k(a), Q10

β,k(a
′) ≥ Q10

β,k(a) and Q11
β,k(a

′) ≥
Q11

β,k(a). Then, Q1
β,k(a

′) ≥ Q1
β,k(a). By value iteration for

(25), Vβ,k+1(a
′) ≥ Vβ,k+1(a). Thus, Vβ,k(a

′) ≥ Vβ,k(a) for

all k, and Vβ,k(a
′) → Vβ(a) as k goes large. Therefore, we

conclude Vβ(a
′) ≥ Vβ(a) for a′ ≥ a.

(ii) Nonincreasing in b, e, and h: The induction in (i) applies

here to show that the value function is nonincreasing b. For

energy harvesting state, a larger e′ results in a larger battery

state in the next slot, which implies a lower value function.

Similarly, a better channel state h′ leads to a smaller update

cost u(h′), due to the fact that u(·) is nonincreasing in h′,

thus, results in a lower value function.

(iii) Nonincreasing in ρ: For k = 0, Vβ,0(ρ
′) = Vβ,0(ρ) = 0.

Suppose Vβ,k(ρ
′) ≤ Vβ,k(ρ) for ρ′ ≥ ρ. From (8), Λ0(ρ)

is nondecreasing in ρ as pii > pai. Then, Vβ,k(Λ0(ρ
′)) ≤

Vβ,k(Λ0(ρ)) by assumption. This implies Q0
β,k(ρ

′) ≤ Q0
β,k(ρ)



according to (26a). Similarly, it can be easily verified from (9)

and (10) that Λ1A(ρ) and Λ1I(ρ) are nondecreasing in ρ, as

well as Λ1I(ρ) ≥ Λ1A(ρ) due to pii

pai
≥ pd

pf

> 1 > 1−pii

1−pai
. Then

from (26c)-(26e), Q1A
β,k(ρ

′) ≤ Q1A
β,k(ρ), Q

10
β,k(ρ

′) ≤ Q10
β,k(ρ),

and Q11
β,k(ρ

′) ≤ Q11
β,k(ρ). Then, for Q1

β,k(ρ
′) given in (26b),

Q1
β,k(ρ

′) ≤ (1− ρ′)Q1A
β,k(ρ) + ρ′ min

zt∈Γz

{

Q10
β,k(ρ), Q

11
β,k(ρ)

}

= Q1A
β,k(ρ) + ρ′∆Qβ,k(ρ), (27)

∆Qβ,k(ρ) , min
zt∈Γz

{

Q10
β,k(ρ), Q

11
β,k(ρ)

}

−Q1A
β,k(ρ)

≤ Q10
β,k(ρ)−Q1A

β,k(ρ) ≤ 0 (28)

The nonpositivity is by (26d) and (26c), where Vβ,k(ΛI(ρ)) ≤
Vβ,k(ΛA(ρ)) holds by assumption for ΛI(ρ) = pii >
ΛA(ρ) = pai. Therefore, Q1

β,k(ρ
′) ≤ Q1A

β,k(ρ)+ρ′∆Qβ,k(ρ) ≤

Q1A
β,k(ρ)+ρ∆Qβ,k(ρ) = Q1

β,k(ρ). By value iteration for (25),

we have Vβ,k+1(ρ
′) ≤ Vβ,k+1(ρ).

APPENDIX C

PROOF OF THEOREM 2

Here, we show Q1
β(b, ρ) ≤ Q0

β(b, ρ). Then, by Theorem 1,

Q1(b, ρ) ≤ Q0(b, ρ) holds by letting β → 1, thus the statement

in Theorem 2 follows. Since e ≥ σ + b̄ − b, the new battery

state becomes b′ = min{b + e − σ, b̄} = b̄ if sensing, and

b′′ = min{b+ e, b̄} = b̄ if not sensing.

Q1
β(b, ρ) ≤ (1− η(ρ))Q1A

β (b, ρ) + η(ρ)Q10
β (b, ρ)

(1)

≤ C + β
∑

s′ p10(s
′|s)Vβ

(

b̄, (1−η(ρ))Λ1A(ρ)+η(ρ)Λ1I(ρ)
)

(2)
= C + β

∑

s′ p10(s
′|s)Vβ(b̄,Λ0(ρ))

= C + β
∑

s′′ p00(s
′′|s)Vβ(b

′′,Λ0(ρ)) = Q0
β(b, ρ), (29)

where C is short for the immediate cost C(s), (1) is by

the concavity of Vβ(s, ρ) with respect to ρ, proved in [14,

Theorem 2.1] and references therein, and (2) is from the belief

update equations in (8)-(10).

APPENDIX D

PROOF OF THEOREM 3

(i) Similarly, we need to show that Q11
β (b′, ρ) ≤ Q10

β (b′, ρ).

The new battery state is b̃ = min{b−σ+ e, b̄} = b̄. Let b′11 =
min{b̄, b′−σ−u(h)+e} and b11 = min{b̄, b−σ−u(h)+e}.

Then, b′11 ≥ b11. By (26e),

Q11
β (b′, ρ) = C + β

∑

s̃′ p11(s̃
′, ã′=1|s)Vβ(b

′
11,ΛI(ρ))

+ β
∑

s̃′ p11(s̃
′, ã′=a+ 1|s)Vβ(b

′
11,ΛA(ρ))

(1)

≤ C + β
∑

s̃ p11(s̃, ã=1|s)Vβ(b11,ΛI(ρ))

+ β
∑

s̃ p11(s̃, ã=a+ 1|s)Vβ(b11,ΛA(ρ))

(2)

≤ C + β
∑

s̃ p10(s̃|s)Vβ(b̃,ΛI(ρ))

= Q10
β (b′, ρ), (30)

where (1) is by the monotonicity of value function with respect

to the battery state, and (2) is due to z∗(a, b, e, h, ρ) = 1
implying Q11

β (b, ρ) ≤ Q10
β (b, ρ).

(ii) By Theorem 2, sensing action is taken. Thus, we only

need to show Q10
β (a, b, e, h, ρ) ≥ Q11

β (a, b, e, h, ρ). The new

battery state is b′ = b̄ if update is transmitted. By (26e),

Q11
β (a, b, e, h, ρ)

= C + β
∑

e′,h′ pE(e
′)pH(h′)

[

θ̄Vβ(1, b̄, e
′, h′,ΛI(ρ))

+ (1− θ̄)Vβ(a+ 1, b̄, e′, h′,ΛA(ρ))
]

(31)

≤ C + β
∑

e′,h′ pE(e
′)pH(h′)

[

θ̄Vβ(a+ 1, b̄, e′, h′,ΛI(ρ))

+ (1− θ̄)Vβ(a+ 1, b̄, e′, h′,ΛA(ρ))
]

(32)

≤ C+β
∑

e′,h′ pE(e
′)pH(h′)Vβ(a+1, b̄, e′, h′,Λ1I(ρ)) (33)

= Q10
β (a, b, e, h, ρ), (34)

where (32) follows the nondecreasing of value function in AoI

state, (33) is due to the concavity of value function, and belief

update equations (10)-(12).
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