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Abstract—This paper studies a two-hop network with wireless
energy transfer consisting of one source, multiple relays,
and multiple destinations. The relays’ main objective is to
communicate their own messages to their own destinations. The
message of each relay is transmitted to its associated destination
along with the source’s information that is intended for the same
destination. As an incentive for relaying, the source offers wireless
energy transfer to the relays via radio frequency signals. The
relays harvest energy and receive information one by one. The
relays that are further down in the order in which they are
powered incur delay, but are able to harvest from previous time
slots and thus are able to accumulate more energy until it is their
turn to transmit, thus establishing an energy-delay trade-off. We
formulate a multi-leader-follower Stackelberg game to capture the
self-interest and hierarchically competing nature of the nodes. The
relay-destination pairs play as leaders and the source-destination
pairs as followers. We incorporate data rate, energy cost and delay
in the utility functions. The existence and the uniqueness of the
Stackelberg equilibrium (SE) are proved, and two algorithms that
achieve SE in centralized and distributed fashion are provided.
Numerical results verify analytical findings.

I. INTRODUCTION

Wireless energy transfer (WET) is a recently proposed

paradigm for improving energy efficiency and network lifetime

[1]. Wireless energy transfer can be accomplished by sending

radio frequency (RF) signals [1], [2]. As a counterpart of

wireless information transmission (WIT), WET can be viewed

as a new dimension for cooperation among wireless nodes

[3]. Significant research effort has already studied WET

from different perspectives, for instance, the trade-off between

WIT and WET in various systems, practical issues in the

implementation of WET, and so on [1].

One such direction focuses on wireless information and

power transfer (WIPT) in relay networks. A relay network

with WIPT has been studied in [4], where the relay harvests

energy from the received RF signals of the source in either

power splitting or time switching protocol and forwards the

source’s information by the harvested energy. Based on this

model, various extensions have been investigated on systems

of multiple-input-multiple-output (MIMO), full duplex relaying

(FD), relay selection, and other setups [5]–[7]. Another line of

research considers wireless powered communication networks

(WPCN), which was proposed in [8]. WPCN refers to the

This work is sponsored in part by NSF ECCS-1748725.

system that a set of users without energy access harvest

energy from an access point (AP) in downlink and transmit

information to the AP in uplink using the harvested energy.

This model has been extended to the setup with full duplex AP

in [9], and to the setup the AP working as both power beacon

and destination in a relaying cooperative communication

network in [10].

This paper builds on the WIPT model with the primary

consideration of relays’ objective of transmitting information

to destinations. It is also an extension of WPCN model since

the source performing as a power beacon aims at sending

signals to the destinations with the help of relays. In addition

to having relay’s message transmissions as a main objective, a

distinctive feature of our proposed model is that, we provide

opportunities for relay nodes to harvest additional energy from

signals intended for other relay nodes at the expense of delay,

which we term asymmetric WET. We study this system with

a game theory perspective. As related work, several papers

have investigated energy harvesting relay networks by the

framework of game theory [11]–[13]. For example, the amount

of harvested energy at the relay has been considered as an

optimizing objective in a Nash bargaining game in [12]. In

[13], a WIPT relaying system with a single destination is

studied. Vickery auction is employed for relay selection and

a single-leader Stackelberg game is formulated and solved

taking into account the objectives of both the source and

the relay. The present paper builds upon our previous work

[13], but by contrast, considers multi-leader-follower games,

and asymmetric WET, which lead to improved competitive

performance.

We study a general two-hop model with multiple relays and

multiple destinations. A time division multiple access (TDMA)

transmission protocol is adopted in the first hop between the

source and the relays, where each relay harvests energy from

the RF signals of the source in a time switching manner. In

particular, while waiting for source’s data transmission, each

relay harvests energy from the signals for previous relays

who have earlier access to source’s information. Thus, an

asymmetric wireless energy transfer scenario arises, where

relays with longer waiting time have opportunities to harvest

more energy but suffer from a larger delay. Different from

existing work, the relays’ objective of transmitting information
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Fig. 1. (a) The two-hop network model. Solid lines and dash lines
indicate information transmission and energy transfer, respectively. (b) TDMA
transmission protocol in the first hop with asymmetric wireless energy transfer.

to the associated destinations is the principal goal of the system.

Furthermore, the trade-off between energy harvesting and data

transmission delay is captured in relays’ payoff functions. We

investigate the resource allocation of power and time in a game

theory setup, where a multi-leader-follower Stackelberg game

is proposed with relay-destination pairs as leaders and the

source-destination pairs as followers. The proposed algorithms

are shown to achieve the unique Stackelberg equilibrium (SE)

in a centralized and a distributed manner. Simulation results

confirm that the system performance significantly improves

as compared to previous approaches adopting this generalized

hierarchical competitive framework.

II. SYSTEM MODEL

We consider the two hop network shown in Fig. 1(a). The

source (S) transmits information to K destinations through

relays. Each destination (D) has one subscribed relay (R)

to help forward signals interference free, i.e., each relay

has an orthogonal channel to its destination provided by

time, frequency or code division. Decode-and-forward (DF)

relaying is adopted. Let K = {1, 2, . . . ,K} denote the set of

destinations and the associated relays. We consider the setup

where direct channels are too weak to be useful and thus

only include the channels of S-R and R-D pairs within the

two-hop model. The channel gains of S-R and R-D are denoted

respectively by hk and gk, ∀k ∈ K, which are normalized by

noise power. The channel state information (CSI) of the first

and second hop is known at the respective transmitters and

receivers1.

The source transmits to R-D pairs in a predefined order

by time division multiple access (TDMA) shown in Fig. 1(b).

Assume that a slot of T units of transmission time is assigned

for each pair. For the kth S-R-D link, the source transmits

to relay k in the kth slot, and then the relay transmits to

1We consider quasi-static channels where a proper transmitting period
enables CSI acquisition at the receivers and feedback to the transmitters.

destination k subsequently in the next slot. In particular, the

relays have no access to energy except that harvested from the

RF signals of the source. Time switching protocol is adopted

at each relay, where the S-R transmission is divided into the

energy transfer subslot of length δkT and the information

transmission subslot of length (1 − δk)T with δk ∈ [0, 1] for

all k ∈ K. The transmit power from the source to relay k
for energy transfer and for information transmission is pk

δk
and

pk

1−δk
, respectively. The source determines the average transmit

power 2pk over T such that pk conforms to the maximum

power constraint Pk. The relays are always in listening mode

throughout the first hop session, meaning each relay harvests

energy constantly while waiting for their turn for source

access, then allocates the harvested energy on transmitting

its own information and forwarding the source’s signals

to the associated destination. Throughout the transmission,

orthogonal channels are used to avoid interference.

In the first phase, the amount of data received at relay k
from the source is

RSk
= (1− δk)T log

(

1 + hk

pk
1− δk

)

. (1)

Relay k harvests energy not only from its dedicated energy

beam radiated by the source in its WET subslot, but also from

the signals intended for relays 1, 2, . . . , k − 1 in sequence at

slots 1, 2, . . . , k−1. Thus, the available energy harvested from

WET for relay k transmitting to destination k is

ERk
= ηkhk

( k−1
∑

j=1

2pj + pk

)

T, (2)

where ηk ∈ (0, 1) represents the fraction of energy that is

available for transmission. The loss of 1 − ηk fraction of the

energy captures the energy transfer efficiency and processing

energy [13]. Then, with the transmit power
ERk

T
, the amount

of data received at destination k from relay k is given by

RRk
= T log

(

1 + gkηkhk

( k−1
∑

j=1

2pj + pk

))

. (3)

We take into account the energy cost of the source and the

delay of information delivery due to the relays. To be more

specific, the energy cost is given by

ESk
= 2µkpkT, ∀k, (4)

where µk denotes the cost per energy unit, which is fixed

for each relay. In order to incorporate the delay impact, we

consider the average payoff over the time duration in which

the S-R-D link completes information transmission. Then, the

utility of S-D pair is expressed as

US−Dk
=

1

kT
(RSk

− ESk
), ∀k. (5)

The principle purpose of the relay is to convey its own message

to the corresponding destination, thus, the utility of relay is

UR−Dk
=

1

kT
(RRk

−RSk
), ∀k. (6)

Next, we formulate the multi-leader-follower Stackelberg

game and investigate the Stackelberg equilibrium (SE).



III. MULTI-LEADER-FOLLOWER STACKELBERG GAME

We adopt the framework of Stackelberg games to model the

selfish nature of each node and the hierarchical competition

between S-D pairs and R-D pairs. In general, a multi-leader

Stackelberg game consists of multiple leaders, each of which

anticipates the followers’ strategies and competes with other

leaders by optimizing its own strategy, and multiple followers,

that compete with each other and choose their strategies in

response to the leaders’ strategies. Thus, an outer game among

the leaders and an inner game [14] among the followers are

formed. In our relay-centric system, we have the R-D pairs

as leaders and the S-D pairs as followers. For simplicity, we

denote δ , (δ1, . . . , δK) the strategies of leaders, δ−k ,

(δ1, . . . , δk−1, δk+1, . . . , δK) the strategies of leaders except

leader k, p , (p1, . . . , pK) the strategies of followers,

and p−k , (p1, . . . , pk−1, pk+1, . . . , pK) the strategies of

followers except follower k. Leader k chooses its strategy δk
by solving the following optimization problem.

max
δk

UR−Dk
(δk, δ−k,p) (7a)

s.t 0 ≤ δk ≤ 1. (7b)

The optimization problem for the follower k is given by

max
pk

US−Dk
(pk,p−k, δ) (8a)

s.t 0 ≤ pk ≤ Pk. (8b)

The Stackelberg equilibrium (SE) is defined as follows.

Definition 1: Let δ∗k and p∗k be the optimal solutions for the

leader’s and the follower’s problems in (7) and (8), respectively.

Then, (δ∗,p∗) is a SE for the proposed multi-leader-follower

Stackelberg game if for any feasible (δ,p)

UR−Dk
(δ∗k, δ

∗
−k,p

∗) ≥ UR−Dk
(δk, δ

∗
−k,p

∗), ∀k ∈ K, (9)

US−Dk
(p∗k,p

∗
−k, δ

∗) ≥ US−Dk
(pk,p

∗
−k, δ

∗), ∀k ∈ K. (10)

We analyze the game by backward induction. In the

followers’ game, problem (8) is convex with respect to pk for

given δ. Applying the first-order optimality condition on the

unconstrained objective function (8a) yields

∂US−Dk

∂pk
=

1− δk
k

hk

1− δk + hkpk
−

2µk

k
= 0. (11)

Solving pk in (11) and projecting to constraint (8b), we have

pk =

{

(1− δk)φk, if δk ∈ [δ̄k, 1],

Pk, if δk ∈ [0, δ̄k],
(12)

where φk , max
{

0, 1
2µk

− 1
hk

}

and δ̄k , 1−min
{

Pk

φk

, 1
}

.

Next, we consider the leaders’ game by substituting pk into

(7). For δk ∈ [0, δ̄k], we have

UR−Dk
(δk, δ−k) =

1

k

[

log

(

1 + gkηkhk

( k−1
∑

j=1

2pj + Pk

))

− (1− δk) log

(

1 + hk

Pk

1− δk

)

]

. (13)

Observe that UR−Dk
(δk, δ−k) increases on δk given δ−k.

This implies that the optimal δk that maximizes the objective

function falls into the range [δ̄k, 1]. Thus, it suffices to focus on

δk ∈ [δ̄k, 1]. We can rewrite the leaders’ optimization problem

by substituting pk = (1− δk)φk into (7) as follows.

max
δk

UR−Dk
(δk, δ−k) =

1

k

[

− (1− δk)βk+

log

(

1 + αk

( k−1
∑

j=1

2φj(1−δj) + φk(1−δk)

))

]

(14a)

s.t δ̄k ≤ δk ≤ 1, (14b)

where αk , gkηkhk and βk , log(1 + hkφk). It can be

observed that by optimizing δk, UR−Dk
is nonnegative, which

guarantees the relaying of the source’s data. Note that when

φk = 0, the source has zero utility on R-D pair k, and the relay

k becomes a free rider that can transmit its own information

by the harvested energy without forwarding any signal from

the source. To avoid this case, we only consider φk > 0, ∀k,

in the sequel.

Let U , (UR−D1
, . . . , UR−DK

). And denote the strategy

set of the leaders’ game by Q , Q1 × · · · × QK , where

Qk , {δk ∈ R : δ̄k ≤ δk ≤ 1} and × denotes the

Cartesian product. Then, the leaders’ game G is given by the

triple (K, δ,U), which is a noncooperative game. The SE of

the multi-leader-follower Stackelberg game can be obtained by

solving the Nash equilibrium (NE) of the noncooperative game

G. The existence of NE can be guaranteed since UR−Dk
is

continuous and concave with respect to δk and the strategy set

Qk is nonempty, convex, and compact. Next, we discuss the

uniqueness of the NE of G.

Theorem 1: The game G has an unique NE, thus, the SE of

the proposed multi-leader-follower Stackelberg game is unique.

Proof: Define

G ,
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. (15)

Then, for the game G with Qk convex and compact and

UR−Dk
continuous and concave with respect to δk, a sufficient

condition of the uniqueness of NE is that G+GT is negative

definite [15]. Note that G is a lower triangular matrix since

the k-jth element [G]kj = 0 for j > k. The diagonal element

[G]kk is calculated as

[G]kk =
−(αkφk)

2

k

[

1 + αk

(

k−1
∑

j=1

2φj(1−δj) + φk(1−δk)

)]2 . (16)

Since [G]kk < 0, the eigenvalues of G, which are those

diagonal elements, are negative. This implies that G is negative

definite. So is GT . Hence, G+GT is indeed negative definite.

This completes the proof of the uniqueness of the NE.

Based on the existence and uniqueness of SE, we propose a

centralized algorithm, which achieves the SE analytically, and



also a distributed iterative algorithm.

A. Centralized Algorithm

We first define a set of auxiliary variables as follows.

φ̃k =
k−1
∑

j=1

2φj + φk, δ̃k =
1

φ̃k

( k−1
∑

j=1

2φjδj + φkδk

)

. (17)

Then, note that
∑k−1

j=1 2φj(1− δj)+φk(1− δk) = φ̃k(1− δ̃k).
In particular, we apply a linear transformation of variables such

that δ̃ = Φδ, where δ̃ , (δ̃1, . . . , δ̃K) and matrix Φ is lower

triangular with the diagonal elements [Φ]kk = φk/φ̃k and off

diagonal elements [Φ]kj = 2φj/φ̃k for j < k, and [Φ]kj = 0
for j > k, ∀k. We see that Φ is invertible as φk > 0, ∀k.

Denote the inverse matrix of Φ by Φ−1. Note that the diagonal

elements of Φ−1 is the reciprocal of the diagonal elements of

Φ since Φ is lower triangular, i.e., [Φ−1]kk = [Φ]−1
kk , ∀k. The

leader problem (14) can be transformed into an equivalent form

expressed in terms of δ̃.

max
δ̃k

UR−Dk
(δ̃k, δ̃−k) =

1

k

[

log
(

1 + αkφ̃k(1−δ̃k)
)

− βk

K
∑

j=1

(1−δ̃j)[Φ
−1]kj

]

(18a)

s.t
¯̃
δk ≤ δ̃k ≤ 1, (18b)

where
¯̃
δk = 1

φ̃k

(
∑k−1

j=1 2φj δ̄j + φk δ̄k
)

. Due to the concavity

of the objective function (18a) on δ̃k, the optimal δ̃k can

be analytically solved by applying the first-order optimality

condition on the unconstrained objective function (18a) and

projecting to the feasible set in (18b). We obtain that

δ̃k = min

{

1,max

{

¯̃
δk, 1−

[Φ]kk
βk

+
1

αkφ̃k

}}

. (19)

As a result, original variable δk can be solved by forward

substitution involving (17) and (19), and then mapping to the

original feasible range in (14b), which gives

δ∗k = min

{

1,max

{

δ̄k,
1

φk

(

δ̃kφ̃k −

k−1
∑

j=1

2φjδ
∗
j

)

}}

. (20)

Notice that φk, for all k, has to be known to calculate the

leaders’ strategy δ. Specifically, the centralized algorithm can

be executed at a node that is aware of the global CSI of

the system, for instance, the base station where all nodes are

connecting with. We summarize the centralized algorithm in

Algorithm 1.

B. Distributed Iterative Algorithm

To reduce system overhead, we propose a distributed

algorithm which can be executed iteratively at each relay, i.e.,

with parameters available at each node (including CSI). We

notice that (14) is a convex optimization problem with respect

to δk for given δ−k. Thus, δk can be solved similarly as for δ̃k
in Sec. III-A. By taking the derivative of (14a) with respective

to δk and equating to zero, we obtain

δk = 1−
1

βk

+
1 + αk

∑k−1
j=1 2φj(1− δj)

αkφk

. (21)

Algorithm 1 Centralized algorithm

1: Let K̃ = K\I, I , {i : φi = 0, i ∈ K}.
2: for k ∈ K̃ do

3: calculate the strategy of R-D pair δk as in (19) and (20).

4: end for

5: Compute the strategies of S-D pairs p as in (12).

Algorithm 2 Distributed iterative algorithm

1: Let K̃ = K\I, I , {i : φi = 0, i ∈ K}.

2: Choose an initial strategy δ(0) = (δ
(0)
k )k∈K̃

, set n = 0.

3: repeat

4: for k ∈ K̃ do

5: compute δ
(n+1)
k as in (21) and (22) for given δ

(n)
−k .

6: end for

7: set δ(n+1) = (δ
(n+1)
k )k∈K̃

and n← n+ 1.

8: until δ(n+1) satisfies a suitable termination criterion.

9: Compute the strategies of S-D pairs p as in (12).

Then, mapping δk to constraint (14b) results in

δ∗k = min
{

1,max
{

δ̄k, δk
}}

, (22)

where δk is given in (21). The SE of the game can be achieved

by iteratively solving the strategy δk at relay k, ∀k, with the

knowledge of local CSI and the CSI of previous relays, which

can be obtained from the source. Due to the uniqueness of the

SE, the convergence of iterations is guaranteed. The distributed

iterative algorithm is summarized in Algorithm 2.

IV. SIMULATION RESULTS

We present simulation results of the proposed algorithms in

this section. We set the carrier frequency to be 900 MHz and

the bandwidth is 1 MHz. The noise power spectrum density

is 10−19 W/Hz. We simulate a Rayleigh fading channel with

average power −3 dB for multi-path fading. For large-scale

fading, the free space path loss model is used with path loss

exponent 2 and reference distance 1 meter. The antenna gain

is given as 6 dBi. The destinations are 100 meters away from

the source and the relays are uniformly located in between

with average 50 meters from the source. Set T = 1 second

and ηk = 0.8 for all k. For simplicity, we set µk = µ
(bits/Hz/J) and Pk = P (W) for all k. In the following figures,

we use ’Cen’ and ’Dis’ to notate the proposed centralized

and distributed algorithms, respectively. For comparison, we

consider the protocol proposed in [13], where the relay with

best channel state is selected by Vickery auction (VA) and

a single-leader Stackelberg game considering the source as

leader and the selected relay as follower is solved. We provide

extensive comparisons with [13] since it provides a valid

benchmark, meaning more naive protocols that do not fully

address the competitive nature perform worse. We vary the

values of µ and P to investigate the impact of parameters.

In Figs. 2-6, the simulation results confirm that the

centralized and the distributed iterative algorithms are

consistent, both of which achieve the SE. In particular, we

illustrate system performance in terms of sum utility of
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R-D pairs, sum utility of S-D pairs, system utility, and

system throughput in Figs. 2-4. System utility is defined as
∑

k∈K

1
kT

(RR−Dk
−ESk

). And system throughput is given by
∑

k∈K
RR−Dk

. We see that the overall system performance is

improved as the number of relays increases.

Fig. 2 shows that the proposed algorithms improve the utility

of R-D pairs significantly as compared to [13], while the

utility of S-D pairs is lower than that achieved by [13]. This

is because in the proposed relay-centric algorithms, the R-D

pairs as leaders have the priority to determine their strategies

in the first place and the S-D pairs respond secondly. Relays

benefit from anticipating source’s strategy and obtain higher

utilities. In [13], the source is at an advantage and thus obtains

higher utility. Fig. 3 and Fig. 4 demonstrate system throughput

and system utility, respectively. Our proposed algorithms

achieve a significant enhancement on both performance metrics

compared to the baseline in [13]. It is also notable that

the superiority of the proposed algorithms becomes more

significant when there are a large number of relays. This is

again in contrast to the baseline in [13], where both system
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throughput and utility have diminishing returns as the number

of relays grows since only one relay is selected from the

VA. We can also observe from the experiments that higher

maximum transmit power P provides larger throughput and

utility by comparing the curves of µ = 0.01, P = 0.01
and µ = 0.01, P = 0.05. On contrast, from curves of

µ = 0.01, P = 0.05 and µ = 0.05, P = 0.05, we see that

higher µ causes a decrease on the performance due to the higher

energy cost.

Fig. 5 shows the average energy consumption per R-D pair

versus the number of relays. As the number of relays increases,

the average energy consumed per R-D pair decreases in the

proposed algorithms. This implies that the system is more

energy efficient for larger K. While, in the baseline [13], only

one relay is selected, thus, the energy consumption per relay

converges to 2P . In particular, when µ is large, the energy

consumption decreases which is consistent with the solution of

the source’s strategy in Sec. III. Fig. 6 presents the sum utility

of R-D pairs versus the distance between the source and the

relays for different number of relays. When relays are located

either close to the source or close to the destinations, higher
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utility is achieved, because the relays have either good channels

for energy harvesting from the source or for data transmission

to the destinations. Therefore, the lowest utility appears when

the relays are in the middle point. Furthermore, for K = 1,

the proposed algorithms give consistent results as the baseline

[13] since the only relay is selected. As K becomes large, the

advantage of the proposed algorithms gets more remarkable

compared to the baseline. Fig. 7 shows the number of iterations

until convergence for the distributed algorithm averaged over

channel variations. We observe that the convergence is fast.

V. CONCLUSION

In this paper, we have studied a relay-centric two-hop

network with signal and energy cooperation. Considering the

primary objective of transmitting relays’ data to destinations,

we have adopted the framework of multi-leader-follower

Stackelberg game to model the competition between the R-D

pairs, the leaders, and the S-D pairs, the followers. We have

adopted the model where the source transmits information and

provides WET to the relays via RF signals one by one. We have

further allowed the relays to harvest energy from the signals

intended for previous relays while waiting their turn and thus

considered an asymmetric energy harvesting scenario. We have

modeled the data rate, energy cost, and delay in the utility

functions. The existence and uniqueness of the equilibrium of

the game have been proved. We have provided a centralized

algorithm that can be easily executed with global CSI. We

have also considered a distributed iterative algorithm. The

simulation results have confirmed both algorithms achieve the

SE and outperform the baseline protocol significantly. Future

work includes considering joint optimization of resources;

relay powering durations and order; powering groups of relays

for systems with wireless energy transfer; and the impact of

imperfect energy and channel state information.
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