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Abstract—This paper investigates the effect of eavesdroppers on
networkconnectivity,usingawiretapmodelandpercolation theory.
The wiretap model captures the effect of eavesdroppers on link se-
curity. A link exists between two nodes only if the secrecy capacity
of that link is positive. Network connectivity is defined in a perco-
lation sense, i.e., connectivity exists if an infinite connected compo-
nent exists in the corresponding secrecy graph. We consider uncer-
tainty in location of eavesdroppers, which ismodeled directly at the
network level as correlated failures in the secrecy graph. Our ap-
proach attempts to bridge the gap between physical layer security
under uncertain channel state information and network level con-
nectivity under secrecy constraints. For square and triangular lat-
tice secrecy graphs, we obtain bounds on the percolation threshold,
which is the critical value of the probability of occurrence of an
eavesdropper, abovewhich network connectivity does not exist. For
Poissonsecrecygraphs,degreedistributionandmeanvalueofupper
and lower bounds on node degree are obtained. Further, inner and
outer bounds on the achievable region for network connectivity are
obtained.Bothanalyticandsimulationresultsshowthatuncertainty
in location of eavesdroppers has a dramatic effect on network con-
nectivity in a secrecy graph.

Index Terms—Connectivity, eavesdropper, lattice, percolation,
physical layer security, Poisson, secrecy graph.

I. INTRODUCTION

I N recent years, there has been growing interest in em-
ploying information theoretic methods to provide secrecy

in wireless networks. In his seminal paper [1], Wyner intro-
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duced the wiretap channel and formalized the rate at which
messages to the intended receiver can be reliably communi-
cated over a discrete memoryless channel while keeping them
confidential from an eavesdropper (wiretapper) that receives
the signals from a degraded channel. Csiszár and Körner in [2]
provided a general secrecy capacity result for the nondegraded
wiretap channel. This framework has been successfully applied
to networks with one hop communication, such as broadcast,
e.g., [3], [4], multiple access, e.g., [5], and two-hop communi-
cation with relays, e.g., [6], [7].
Recently, information theoretic techniques have been used to

provide end-to-end secrecy in large networks. The concept of se-
crecy graph was introduced in [8], which models the communi-
cation network and the effect of eavesdroppers on network secu-
rity. Link connectivity in a secrecy graph is determined using the
wiretapmodel.A link is considered to be connected if the secrecy
capacity of the link is positive. The secrecy graph is analyzed
for network connectivity using tools from percolation theory [8],
[9]. Thus, network connectivity is defined in percolation sense,
i.e., network connectivity exists if an infinite connected compo-
nent exists in the secrecygraph. Scaling laws for secrecy capacity
in large networks have also been investigated in [10] and [11].
In [10], a random network was considered where the legitimate
nodes and eavesdroppers are placed in a square region of area
according to independent Poisson point processes (PPPs). It

was shown that secrecy requirement does not lead to a loss in
throughput, in terms of scaling, if the intensity of eavesdroppers
is while the intensity of the legitimate nodes is 1.
In [11], a similar result was shown for mobile ad-hoc networks
(MANETs) with legitimate nodes and a delay constraint of ,
if the number of eavesdroppers scales as .
In [8]–[11], the channel gains of all the eavesdroppers are

assumed to be known precisely. This assumption may not be
realistic, especially for a passive eavesdropper, since it may not
be possible to ascertain even the presence of such an entity. For
wiretap channel models with a few nodes, the uncertainty of
the eavesdropper channel can be modeled using a compound
channel model [12], [13]. Noise injection techniques [14] can
be used if the channel is unknown in multiple antenna wiretap
models. In [15], it was shown that secrecy is possible even if
the eavesdropper’s channel is arbitrarily varying. In contrast to
these results on small networks, we want to characterize the
effect of uncertainty in location of eavesdroppers on network
level connectivity, for large networks.
In this paper, we present a secrecy graph approach where the

locations of eavesdroppers are uncertain, and this uncertainty re-
sults in node and link failures in a secrecy graph. The main chal-
lenge is that these failures are correlated, and hence, the tech-
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niques from percolation theory must be extended to account for
these correlations. We assume a communication model where a
node is aware of only those legitimate and eavesdropper nodes
that are located within a distance from the node. We consider
square and triangular lattice secrecy graphs which model reg-
ular placement of legitimate nodes. We also consider Poisson
secrecy graphs which model random placement of legitimate
nodes in according to a PPP. We assume uniform node dis-
tribution for analytical tractability [16], since analytical results
are known for only a handful of stochastic network models.
The percolation threshold is the critical value of probability

of occurrence of an eavesdropper, above which an infinite con-
nected component does not exist in the secrecy graph, almost
surely. Exact results are not known even for a square lattice
with independent link and node failures. Hence, this paper pro-
vides bounds on percolation threshold for square and triangular
lattices, which provide insight into the effect of uncertainty in
eavesdropper’s location on the percolation properties of lattice
secrecy graphs.
For the Poisson secrecy graph, distributions and mean values

of upper and lower bounds on the degree of a legitimate node
are obtained. Given the intensity of legitimate nodes and the
radius of communication , the pair of the intensity
of eavesdropper nodes and the radius of uncertainty is achiev-
able if percolation occurs in the corresponding secrecy graph.
We obtain inner and outer bounds on the achievable re-
gion. In [17], degree distribution and mean value of bounds on
node degree in a Poisson secrecy graph were characterized, in
the special case when is infinite. In this paper, we provide
a tighter upper bound on the percolation threshold of the trian-
gular lattice, compared to the result in [17]. Both analytical and
simulation results demonstrate the dramatic effect of location
uncertainty of eavesdroppers on network connectivity in a se-
crecy graph.
The remainder of this paper is organized as follows. In

Section II, the connectivity problems considered in this paper
are presented formally. In Section III, our results on percolation
in square and triangular lattices are presented. The Poisson
secrecy graph is considered in Section IV. Bounds on the mean
node degree, and inner and outer bounds on the achievable

region are presented. In Section V, numerical results on
percolation probability in lattice secrecy graphs, and bounds on
mean node degree and achievable region are presented.
Finally, Section VI concludes the paper.

II. MODEL AND FORMULATION

We denote the function . Let
denote a geometric graph in , where is the set
of locations of legitimate nodes. is the set of links over which
reliable communication is possible. Link reliability is modeled
using Gilbert’s disk graph model [18]. We assume that the ra-
dius of communication, or range of view, is . Two nodes are
connected in the geometric graph if the distance between them
is at most . A node is unaware of the presence of any eaves-
dropper outside the circle of radius centered at the node. Each
eavesdropper is located within a known finite area, however, the

precise location is unknown. Let denote the location of the
center of the area which contains eavesdropper . Let de-
note the corresponding area. The set thus
describes the area in which eavesdroppers exist. If the locations
of the nodes come from a stochastic point process, we denote
the corresponding random variables by and .
We define secrecy graphs (SGs) based on and . A link

exists in the secrecy graph if the link exists in the underlying
geometric graph and the secrecy capacity of the link is positive.
We assume that the wireless medium introduces path loss, with
exponent , and that the noise introduced by the receivers is
additive white Gaussian noise (AWGN). If a source transmits
a signal with power to a receiver at distance , and the
eavesdropper is located at distance , the secrecy capacity is
given by [19]

(1)

The AWGN power is assumed to be unity for both the channels.
If the destination is closer than the eavesdropper, i.e., ,
the secrecy capacity is positive and it is zero otherwise. It should
be noted that in this paper, we will utilize this link metric for
simplicity. In general, it is difficult to make any claims on the
secrecy capacity region of a sizeable network, given the com-
plex interactions that can take place between the network nodes
to manage and utilize interference for secrecy [5], [20]. How-
ever, since our goal in this paper is to understand and demon-
strate the effect of eavesdroppers on connectivity without the
knowledge of their channels, it is fitting to sacrifice the network
information theoretic rigor, and instead use this metric for the
sake of obtaining a tractable problem. We will employ two se-
crecy graphs in this paper—directed secrecy graph and basic
secrecy graph [8]. In a directed secrecy graph , a link (edge)
exists from to if for all .
In a basic secrecy graph , a link exists between and if a
directed link exists from to and also from to in .

A. Secrecy in Square and Triangular Lattice

We consider square and triangular lattices, shown in Figs. 1
and 3, respectively. A legitimate node is present at each vertex
of the lattice, and each node is connected to its nearest neigh-
bors. We assume that the probability that a square (or a trian-
gular) region contains an eavesdropper is . We assume that
the links bounding each eavesdropper’s location are known.
For example, assume that the square in Fig. 1 contains an
eavesdropper. In the basic secrecy graph, nodes , , , and
will not have any links, and thus, these nodes are considered to
have failed. Notice that the node failures are correlated, since all
nodes of a given square fail together. Thus, we can model the
uncertainty in an eavesdropper’s location at the network level,
by employing a physical layer model for secrecy. This approach
can be extended to include scenarios where each eavesdropper
is located within a finite but arbitrary area. For example, assume
that an eavesdropper is present within the squares , , or ,
in Fig. 1. Then all the nodes marked fail. A similar model is
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Fig. 1. Failures in square lattice.

used for the triangular lattice, where nodes on all the vertices of
a triangle fail if an eavesdropper is present within that triangle.

B. Secrecy in Poisson Graph

We assume that the locations of legitimate nodes follow a PPP
with intensity 1. Each eavesdropper is known to be located

within a circle of radius . The radius captures the uncer-
tainty in an eavesdropper’s location. The center of the circles
follow a PPP with intensity . We denote the directed and basic
secrecy graphs by and , respectively.

C. Percolation Threshold

The concept of percolation was introduced by Broadbent and
Hammersley [21], to model the diffusion process in materials.
Percolation is said to occur if an infinite connected component
exists in the corresponding graph. It was shown that a phase
transition exists, i.e., there exists a critical threshold, below
which all connected components are finite, almost surely, and
above which an infinite connected component exists, almost
surely. Similar results exist on connectivity in random graphs
[22]; an area initiated by the work of Erdös and Réyni [23]. In
an Erdös–Réyni graph, the probability of existence of a link
between any two nodes is independent of the spatial positions
of the nodes, and hence, it does not consider network geometry.
Therefore, geometric random graphs [24] are used instead,
to model wireless networks [25], [26], where connectivity is
analyzed using tools from continuum percolation [27].
Let us denote the number of nodes in the connected compo-

nent containing the origin by . First, we consider lattice se-
crecy graphs where probability of an eavesdropper occupying
a square or triangular region is . The percolation probability

and percolation threshold are defined as

(2)

(3)

Roughly, is the smallest value of for which an infinite
component does not exist in the secrecy graph. In other words,
for any , the secrecy graph will have an infinite con-
nected component containing the origin, almost surely. How-

ever, the origin is part of the infinite component with proba-
bility , and not with probability 1 [28]. In Poisson secrecy
graphs, we assume that the intensity of the legitimate nodes and
the radius of communication are fixed, and define the perco-
lation probability as

(4)

The percolation threshold pairs are defined as

(5)

III. SQUARE AND TRIANGULAR LATTICES

In this section, we will present bounds on the percolation
threshold of square and triangular lattices, where the eavesdrop-
pers are known to be located within square and triangular areas,
respectively. We note that the percolation thresholds are known
precisely only for a few lattices. For example, for a triangular
lattice, where a node appears at each vertex independently with
probability , the critical probability is [29]. However,
the corresponding percolation threshold for a square lattice is
not known [28]. Notice that in the secrecy graphs considered in
this paper, failures are correlated, and hence, the corresponding
problems of determining the percolation threshold are expected
to be intractable. Therefore, we focus on obtaining upper and
lower bounds on the percolation threshold that are as tight as
possible. The bounds are obtained by considering a square lat-
tice with different link probabilities for horizontal and vertical
links. The following lemma from [30] is useful in obtaining the
bounds.
Lemma 1. (Sykes and Essam [30]): For a square lattice with

link probabilities and for horizontal and vertical links,
respectively, the critical probability satisfies

(6)

Let the distance between the nearest neighbors in a square
or triangular lattice be . We will assume that , since
percolation can occur in square and triangular lattices only if

.
We first consider the square lattice, where the probability

that a square region bounded by links in the lattice contains
an eavesdropper is . It is known which squares contain an
eavesdropper; however, the exact locations of the eavesdrop-
pers within the squares are unknown. The following theorem
presents bounds on the critical eavesdropper probability, for a
square lattice.
Theorem 1: For a square lattice where nodes are located

on the vertices of the lattice and eavesdroppers are located in
square regions of the lattice with probability , the percolation
threshold for the basic secrecy graph, denoted by , satisfies

(7)

Proof: The existence of critical probability follows from
[28]. The percolation threshold in the given square lattice is
denoted by .
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For the upper bound on the percolation threshold, assume
that no eavesdroppers are present in the squares for
all integers and , and eavesdroppers are present in the re-
maining squares with probability . Now assume that each
square is a node in a new square lattice ,
and the node fails when there is an eavesdropper in the cor-
responding square. Further, the nodes in corresponding to
squares and are connected if and
only if there is no eavesdropper in square . Sim-
ilarly, the nodes in corresponding to squares
and are connected if and only if there is no eaves-
dropper in square . Thus, in the square lattice ,
the probability of existence of a node and a link are denoted
as and , respectively. Notice that the
failures in are independent and identically distributed (i.i.d.).
However, we have a mixed site-bond percolation problem [31],
and the percolation threshold for that problem is not known. To
obtain a bond percolation problem with independent bond (link)
probabilities, we map a node failure to the failure of the hori-
zontal link connected to that node on the left. Notice that this
underestimates the number of link failures, since a node failure
would actually result in the failure of all the links connected to
it. Thus, we obtain a new square lattice in which node proba-
bility is 1 and link probabilities for horizontal and vertical links
are and , respectively. Let the crit-
ical threshold of for the square lattices and be and
, respectively. For a fixed , if percolation does not occur

in the square lattice , it cannot occur in the square lattice
either. Further, removing eavesdroppers from squares
in the square lattice can only increase the critical threshold.
Hence, the percolation thresholds of the lattices , , sat-
isfy

(8)

The percolation threshold of the square lattice can be found
using Lemma 1, where link probabilities are and

. This gives the upper bound in the statement of the theorem.
For the lower bound, consider a tiling in where each tile

is a square region consisting of 16 squares. Adjacent rows of
tiles are offset by two squares, as shown in Fig. 2(a). Each tile
is mapped to a node in a triangular lattice, which fails when
any of the squares in that tile contains an eavesdropper. This re-
sults in a triangular lattice with node probability and
link probability 1. Note that we are over-counting the number
of eavesdroppers, and this results in a lower bound on the per-
colation threshold. Percolation occurs in the triangular lattice if

(9)

where is the node (site) percolation threshold for
a triangular lattice [29]. Thus, the percolation threshold for the
square lattice must be at least .
For the square lattice, the probability of a node failure is re-

lated to as

(10)

We contrast this with the scenario where nodes occur on the
vertices of a square lattice independently with probability . Let

Fig. 2. (a) Tiling in square lattice for lower bound. (b) Tiling in triangular lattice
for lower bound.

the threshold probability in that case be . In the secrecy graph
model, adjacent nodes fail together, and hence, the failures are
clustered. Intuitively, a larger number of node failures can be
tolerated in the secrecy graph before connectivity is lost, and
hence, we expect that . Further, we expect that

, since more than one node failures may occur
due to the presence of one eavesdropper. Numerical results in
Section V will validate this intuition.
Now, consider the placement of nodes on the vertices of the

triangular lattice and eavesdroppers inside triangular regions of
the lattice. Suppose that a triangular region contains an eaves-
dropper with probability . The critical eavesdropper proba-
bility can be bounded as in the following theorem.
Theorem 2: For a triangular lattice where nodes are located

on the vertices of the lattice and eavesdroppers are located in
triangular regions of the lattice with probability , the perco-
lation threshold for the basic secrecy graph, denoted by , sat-
isfies

(11)
Proof: We denote the given triangular lattice by . For

the upper bound, assume that there are no eavesdroppers in the
triangles , , ,

for all integers and and the eavesdroppers
are present in the remaining triangles with probability . The
indexing of triangles is shown in Fig. 3. Now assume that each
triangle is a node of a new square lattice which fails
when there is an eavesdropper in that triangle. Further, nodes
in corresponding to triangles and are
connected if and only if there is no eavesdropper in any of the
triangles and . Similarly, nodes in cor-
responding to triangles and are connected
if and only if there is no eavesdropper in any of the triangles

and . Thus, in the square lattice , the
probability of existence of a node and a link is and

, respectively. We obtain a bond (link) percola-
tion problem with independent link probabilities by mapping a
node failure to the failure of the horizontal link connected to the
node on the left. Thus, we obtain a new square lattice with
node probability 1 and link probabilities for horizontal and ver-
tical links and , respectively.
Let the critical threshold of for square lattices , , and



716 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 6, NO. 3, SEPTEMBER 2011

Fig. 3. Indices in triangular lattice.

be , , and , respectively. For a fixed , if perco-
lation does not occur in the square lattice , it cannot occur in
the square lattice , and in turn it cannot occur in the square
lattice . Hence,

(12)

The percolation threshold can be found using Lemma 1,
where link probabilities are and .
For the lower bound, consider a tiling in where each

tile consists of 24 triangular regions, as shown in Fig. 2(b).
Each tile is mapped to a node in a triangular lattice, which
fails when any of the triangular regions in that tile contains
an eavesdropper. This results in a triangular model with node
probability and link probability 1. Following the
arguments in the proof of Theorem 1, it can be shown that the
percolation threshold of the triangular lattice must me at
least .

IV. POISSON SECRECY GRAPH

In this section, we consider a Poisson model where is a
PPP of intensity 1 in (intensity of a point process denotes
the density of nodes per unit area). The eavesdroppers are lo-
cated in known circular regions. The centers of circular regions
are located in according to a PPP of intensity , which
is independent of . The radius of the circular regions is de-
noted by . We assume that a legitimate node is aware of only
those circular regions containing eavesdroppers whose centers
lie within the circle of radius , centered at the node.
For simplicity, we consider the node located at the origin, de-

noted by . Let denote the number of bidirectional links of
node . An analytic computation of is difficult because it re-
quires characterization of the intersection of two regions—a cir-
cular region which determines the out-degree of node , and a
polygonal region which determines the in-degree of node . The
polygonal region is the interior of the region formed by the in-
tersection of bisectors of the line segments which join the origin
to the eavesdroppers. Let denote the number of directed
links out of node . Assume that the center of a circular region
containing an eavesdropper, which is closest to the origin, is
located at a distance from it. Then is the number of le-
gitimate nodes in the circle . Clearly,

, and thus, we have an upper bound on the node de-
gree. A lower bound can be obtained by considering the circle

, since the origin has a bidirec-
tional link to all the nodes in this region. Let denote the
number of legitimate nodes in .
Clearly, . In the following, we will present results on
the probability mass function (p.m.f.) and mean values of
and . The p.m.f. of node degree characterizes the connectivity
properties in a Poisson secrecy graph. In Poisson graphs without
secrecy constraints, the mean degree is sufficient to characterize
the percolation threshold. We will show that a bound on the
mean degree can be used to obtain an outer bound on the achiev-
able region.

A. Degree Distributions

We now present the degree distributions of and by
computing and , both of which can be
expressed in terms of the same set of functions . Let

be defined for all as follows:

(13)

(14)



GOEL et al.: EFFECT OF EAVESDROPPERS ON NETWORK CONNECTIVITY 717

where

(15)

is the Gauss error function, and

(16)

is the upper incomplete gamma function.
In the next theorem, we present the p.m.f. of , the

number of out-going links from the node located at the origin.
This p.m.f. characterizes the connectivity properties in the
directed Poisson secrecy graph. The result is obtained for

, since if , nodes will be unaware of eaves-
droppers that are located arbitrarily close to them, and no secure
communication will be possible in that case.
Theorem 3: In the directed secrecy graph with ra-

dius of uncertainty for an eavesdropper’s location and radius
of communication , the probability mass function of the
number of out-going links at the origin is given by

(17)

Proof: Assume that the center of the circular region con-
taining an eavesdropper, that is closest to the origin, is located
at a distance from it. Then, the origin can securely transmit to
any node within a circle of radius . Aver-
aging the probability of having legitimate nodes in that circle
over results in the statement of the theorem. For details, see
Appendix A.
The above result can be specialized to two regimes of interest.

In the first regime, the uncertainty in the location of eavesdrop-
pers is small, i.e., . In the second regime, the communi-
cation radius is large, i.e., . It is clear that when either

or , no secure communication is possible.
Corollary 3.1: If the uncertainty in location of the eavesdrop-

pers is small

(18)

Clearly, isolation probability decreases as the radius of commu-
nication increases. If is finite and the radius of communi-
cation is infinite

(19)

Notice that (18), which is obtained by letting tend to zero,
is the same expression obtained in [8], where it is assumed that
the locations of the eavesdroppers are known precisely. In the
directed Poisson secrecy graph, the node degree is characterized
by obtaining the p.m.f. of . In the following theorem, the
p.m.f. of is presented, which is a lower bound on node degree
in the basic Poisson secrecy graph.

Theorem 4: In the basic secrecy graph with radius
of uncertainty for eavesdropper’s location and radius of com-
munication , the probability mass function of , which
is a lower bound on the number of bidirectional links at the
origin, is given by

(20)

Proof: The proof is similar to that of Theorem 3, but nodes
within the circle of radius are considered.
For details, see Appendix B.
Notice that the probability mass functions of and are

given by the same set of functions , albeit with dif-
ferent parameters. This is because the ratio of the areas con-
sidered for obtaining and is constant regardless of the
distance to the closest eavesdropper. Once again, we specialize
the results for and as follows.
Corollary 4.1: If the uncertainty in location of the eavesdrop-

pers is small

(21)

If is finite and the radius of communication is infinite

(22)

Thus, we have characterized and by obtaining their
p.m.f.s, which show important trends with respect to , , and
. The trends are easy to notice in the regimes and

. In these regimes, isolation probability increases with
and and decreases with , as expected. Isolation proba-

bility is an important parameter, since it represents the propor-
tion of nodes in the secrecy graph that cannot communicate se-
curely with any other node. To further our intuition, we next
characterize and when two of the pa-
rameters , , and take extreme values.
Remark 1: For the directed secrecy graph

(23)

(24)

Similarly, for the upper bound on isolation probability

(25)

(26)

Thus, in both cases, none of the nodes have any links, almost
surely, in either the directed or basic secrecy graph, if the lo-
cations of the eavesdroppers are not known at all. For
, we obtain the probability of isolation of a node when lo-
cations of all the eavesdroppers are known precisely, which
match the results in [8] where was assumed. Note that
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for small values of , both and
increase linearly with .

Remark 2: As the eavesdroppers’ intensity goes to zero

(27)

(28)

meaning that all the nodes have at least one link, almost surely.
As the eavesdroppers’ intensity goes to infinity

(29)

(30)

meaning that none of the nodes have any links, almost surely,
regardless of the radius of uncertainty for eavesdroppers and
even if the communication radius is infinite.

B. Mean Degree and Percolation Threshold

We now present results on the mean degree and percolation
threshold for the Poisson secrecy graph. In a Poisson graph with
intensity of nodes and communication radius , where no
secrecy constraints are imposed, the node degree distribution,
and hence, connectivity properties are characterized by the term

, which is the mean node degree in the graph. A crit-
ical value exists such that if , an infinite connected
component exists in the graph with probability 1. If , no
infinite connected component exists, with probability 1. In the
following theorem, we obtain bounds on the mean degree in the
basic Poisson secrecy graph, and then obtain necessary and suf-
ficient conditions for percolation to occur. The necessary con-
dition is obtained in terms of a bound on the mean degree.
Theorem 5: The mean degree of a node in the basic Poisson

secrecy graph with secure bidirectional links is bounded as

(31)

where

(32)

(33)

Proof: The regions corresponding to and were
chosen so that . By taking expectation, we
obtain (31). The lower bound is obtained as follows. Let the
center of the circular region containing an eavesdropper, that is
closest to the origin, be located at a distance from it. The lower
bound is computed using the law of total expectation

. The upper bound is obtained in a similar manner.

For details, see Appendix C.
Notice that the ratio is constant since the ratio

of areas considered for obtaining and is fixed. Thus, the
bounds are expected to be tight when the mean degree is small.
We now specialize the above result for and .

Corollary 5.1: If the uncertainty in the location of eavesdrop-
pers is small

(34)

As expected, the mean degree increases as increases. Further,
for small and finite, , and hence,
themean degree depends only on . If is finite and the radius
of communication is infinite

(35)

The mean degree decreases exponentially with the term .
We now compute the bounds on the mean degree when two

of the parameters , , take extreme values. We expect the
bounds to take large values when , are small and is large.
Remark 3: As the radius of uncertainty for eavesdroppers’

location takes limiting values

(36)

(37)

As expected, if the uncertainty in the eavesdroppers is large, no
secure communication is possible. If the communication radius
is large, and the uncertainty in the location of eavesdroppers is
small, the mean degree has an inverse dependence on . Hence,
it is expected that secure communication will be possible if is
sufficiently small.
Remark 4: As the intensity of eavesdropper nodes takes

limiting values

(38)

(39)

As the intensity of eavesdroppers increases, the probability
of existence of link decreases, and thus, the mean degree de-
creases. In the limit of large intensity of eavesdroppers, there is
no secure link, almost surely, and thus, the probability that node
degree is zero is 1.
We have characterized the lower and upper bounds to the

mean degree in a basic Poisson secrecy graph. The above results
show that the bounds to mean degree depend crucially on both
the radius of uncertainty and the intensity of eavesdropper
nodes . We will now characterize the pair of values taken by
these two parameters for which an infinite connected compo-
nent exists in the basic Poisson secrecy graph. We will show
that an outer bound on the region is obtained in terms of
the upper bound on the mean degree. We begin by defining the
achievable region.
Definition 1: Consider a Poisson secrecy graph with inten-

sity of legitimate nodes 1, radius of communication . The
pair of the intensity of eavesdroppers and the radius
of uncertainty in an eavesdropper’s location is achievable if
percolation occurs in the corresponding secrecy graph, i.e., if

.
A complete characterization of the achievable region requires

us to determine the critical pairs , which is a difficult



GOEL et al.: EFFECT OF EAVESDROPPERS ON NETWORK CONNECTIVITY 719

problem. In the following theorem, we provide inner and outer
bounds for the achievable region. The outer bound is obtained
in terms of an upper bound on the mean degree .
Theorem 6: Consider a Poisson secrecy graph with

density of eavesdroppers , radius of uncertainty of the eaves-
droppers , and radius of communication . Percolation does
not occur in the basic Poisson secrecy graph if

(40)

where is given by (33). Further, percolation occurs if

(41)
where . is an upper bound on site (node) percolation
threshold for the square lattice. is chosen as

(42)

where . It is assumed that .
Proof: The outer bound is obtained by iteratively building

the connected component containing the origin and bounding
the number of new nodes added at each step. The inner bound is
obtained by considering a tiling in where each tile is mapped
to a node in a square lattice. The radius of communication and
parameters of the tiling are chosen so that percolation occurs in
the square lattice. For details see Appendix D.
Thus, we have obtained necessary and sufficient conditions

for percolation to occur in the basic Poisson secrecy graph. The
outer bound shows that percolation does not occur if the upper
bound on the mean degree is smaller than a threshold ( 1.642).
The inner bound is obtained by assuming a specific structure
on the underlying graph and then computing the probability for
such a structure to occur. In Section V, the behavior of the inner
and outer bounds is explored through numerical results.

V. NUMERICAL RESULTS

In this section, we present numerical results for lattice and
Poisson secrecy graphs. For lattice secrecy graphs, we present
simulation results on the percolation threshold. For Poisson se-
crecy graphs, we present numerical results on the mean degree,
and the inner and outer bounds to the achievable region.

A. Lattice Secrecy Graphs

We estimated the percolation probability for
square lattice through Monte Carlo simulations. Eavesdroppers
were placed in the squares randomly and independently, with
the probability of a given square having an eavesdropper being
. We estimated the probability that a cluster wraps around

the periodic boundary conditions. Cluster wrapping can be de-
fined in several ways. We considered the probability of cluster
wrapping in the horizontal and vertical directions, denoted by

and , respectively [32]. random lattices
were generated for each estimate. Fig. 4 shows the variation of
percolation probability with , for . No-
tice that in Fig. 4, the percolation probability transitions from

Fig. 4. Percolation threshold for square lattice.

Fig. 5. Percolation threshold versus area.

a large value (close to 1) to a small value (close to 0). This
transition is a typical behavior of percolation probability, and
the region of transition becomes narrower as the size of sim-
ulated network increases. The percolation threshold can be es-
timated as the point of intersection of the three curves. Thus,
for the square lattice with each eavesdropper located within a
square, the percolation threshold is . For ,
we obtain [using (10)] for correlated node failures,
whereas for independent node failures, the critical threshold is

. Although, a larger proportion of node failures can
be tolerated in the correlated failure scenario, only 16.3%
eavesdroppers can be tolerated in that case.
We now show the effect of the uncertainty in the location of

eavesdroppers on the percolation threshold. An eavesdropper
may be located anywhere within certain squares. cap-
tures the amount of uncertainty in an eavesdropper’s location.
Fig. 5 shows the variation of percolation probability with for

and . As expected, this probability re-
duces as increases, where the decrease quantifies the effect
of uncertainty in location on percolation threshold of secrecy
graphs.

B. Poisson Secrecy Graphs: Mean Degree

We now present numerical results for the Poisson secrecy
graph. Fig. 6 shows the variation of the upper and lower bounds
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Fig. 6. Mean degree versus in basic Poisson secrecy graph.

Fig. 7. Mean degree versus in basic Poisson secrecy graph.

on the mean degree of the node located at the origin in the basic
secrecy graph with , for . was chosen as
0.1 for which percolation occurs at [8]. For a fixed value
of , the upper and lower bounds both decrease to zero as
increases. As expected, the bounds on the mean degree increase
as the radius of communication increases. The figure shows
that the mean degree is severely limited if is small. For the
range of values of considered here, the bounds on the mean
degree are the same for and ; i.e., for ,
the mean degree is limited by the secrecy constraint.
Fig. 7 shows the variation of the upper and lower bounds on

the mean degree with , for , and . As
expected, the bounds on the mean degree increase with . The
figure shows that the bounds on the mean degree converge to
the asymptotic value at . For , the mean degree
is zero for . When , the mean degree increases
as increases. The figure shows a dramatic reduction in the
mean degree as increases. Further, for small values of ,
the mean degree increases quickly with and then saturates.
Fig. 8 shows the variation of the upper and lower bounds on

the mean degree with , for , and . As
expected, for fixed values of and , the bounds on the mean
degree decrease with an increase in . The figure shows that
for the range of values of considered here, the mean degree

Fig. 8. Mean degree versus in basic Poisson secrecy graph.

Fig. 9. Inner and outer bounds on achievable region.

decreases sharply as increases from 0 to 0.5, and the decrease
is moderate when .

C. Poisson Secrecy Graphs: Inner and Outer Bounds on
Achievable Region

The inner and outer bounds on the achievable region
are shown in Fig. 9. The result in Fig. 9 indicates that perfect
secrecy can be attained to the left of the lower bound while it
cannot be attained to the right of the upper bound. Inner and outer
bounds are presented for . The outer bound reduces
dramatically as is reduced from 10 to 2, showing the need for a
large communication radius .Notice that for and small
, theinnerandouterboundsfollowasimilar trend,althoughthere
is a significant gap between the two. The large gap suggests that
at least one of the bounds is not tight. The inner bound shows
that percolation will occur for large values of as long as is
sufficientlysmall.As becomessmall, the lowerboundremains
to the leftof .This isbecauseof thespecificstructure
assumed for deriving the inner bound.

VI. CONCLUSION

We considered a secrecy graph approach to investigate the ef-
fect of eavesdroppers with uncertain locations on network con-
nectivity, which was defined in the percolation sense. The com-
munication network and the impact of eavesdroppers on network
connectivity were modeled via a secrecy graph. The uncertainty
in the location of the eavesdroppers was modeled directly at the
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network level as correlated failures in the secrecy graph. Bounds
on percolation thresholds of square and triangular lattice secrecy
graphswere presented. For the Poisson secrecy graph, the degree
distribution and mean value of upper and lower bounds on the
mean node degree were presented. Inner and outer bounds on the
achievable region of pairs of the intensity of eavesdropper nodes
and the radius of uncertainty for eavesdropper locationswere ob-
tained. Both analytic and numerical results showed that uncer-
tainty in the location of the eavesdroppers effects connectivity in
a secrecy graph dramatically. Future directions include investi-
gating information theoretic secrecy-based methods to mitigate
the effect of uncertainty in location (CSI) of eavesdroppers, using
the secrecy graph approach developed in this paper. In addition,
exploring percolation threshold for a fading-based model is an
important open problem.

APPENDIX A
PROOF OF THEOREM 3

Probability that the node at origin has outgoing edges is
given by

where

if

if
(43)

and .
Thus, for

(44)

The first expression is given by

(45)

The second term is given by

(46)

Define , ,
. Then the above integral is given by
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(47)

The result for is obtained by combining (44), (45), and
(47). When , (44) and (45) yield

(48)

The integral in (48) can be computed as

(49)

which yields the result for .

APPENDIX B
PROOF OF THEOREM 4

Probability that the node at origin has outgoing edges is
given by

(50)

where

if

if
(51)

and .
Note that all the terms in the expression are obtained from

the expression of by replacing with and
with and hence the statement of the Theorem holds.

APPENDIX C
PROOF OF THEOREM 5

Assume that the center of a circular region containing an
eavesdropper, which is closest to the origin, is located at a dis-
tance from it. Using the law of total expectation, we obtain

(52)

(53)

where holds because for a fixed , the mean number of
legitimate nodes in the circle
are (the intensity of the legit-
imate nodes is assumed to be 1). The distribution of is

. Thus,

(54)

For the upper bound, we consider all the nodes in the circle
. Therefore,

(55)

(56)

(57)

APPENDIX D
PROOF OF THEOREM 6

First consider the outer bound. We obtain a necessary condi-
tion for percolation in the directed Poisson secrecy graph. If per-
colation does not occur in this graph, it cannot occur in the basic
Poisson secrecy graph either, and hence, an outer bound on the
achievable region is obtained. The proof for the outer
bound closely follows the analysis in [33]. Let denote the
component containing the origin. Consider a sequence of pair
of sets . At step , is the set of points that belong to
, such that all neighbors of points in also belong to .
is the set of points which belong to but whose neighbors

have not been explored. We start with the origin, and initialize
and . The process terminates at step if
, otherwise a point is chosen and we set

(58)

(59)
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Fig. 10. Tiling in for achievable region.

where is the set of neighbors of that are not the neighbors
of any points in . Since new nodes are added to the set

at time , the size of set can be upper bounded as

(60)

The new nodes belong to a region of area at most

(61)

where is the distance to the eavesdropper closest to .
Let be independent Poisson random variables with
mean

(62)

(63)

The probability that contains at least elements can be upper
bounded as

(64)

Percolation does not occur if which
occurs if , i.e.,

(65)

For the lower bound, consider a tiling in using square tiles
where the edge length of each tile is . A frame consists of
tiles. We map each frame to a node in a square lattice. Consider
tiles A and Bmarked in Fig. 10. Themaximum distance between
a node in tile A and a node in tile B is s. Therefore, any node
in tile A can communicate securely with any node in tile B if
there is no eavesdropper within tiles on each side,
with . We choose to define the frames. Assume
that the center of a circular region containing an eavesdropper
is present at the boundary of a frame. A node in the center tile
of the frame can communicate securely with a node in a neigh-
boring tile only if

(66)

Now, consider the square lattice obtained by mapping each
frame to a node in the lattice. A node exists in the lattice if
the corresponding frame has no eavesdropper and a legitimate
node is present in each of the shaded tiles in Fig. 10. Thus, the
site probability for the square lattice is given by

(67)

We maximize by choosing the optimal value of

(68)

and denote the optimal value of by . Percolation occurs in
the square lattice, and hence, in the Poisson secrecy graph, if

, where is an upper bound on the
percolation threshold for the square lattice [33]. Thus, percola-
tion occurs in the Poisson secrecy graph if

(69)
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