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The Effect of Eavesdroppers on Network
Connectivity: A Secrecy Graph Approach

Satashu Goé&| Vaneet Aggarwal, Aylin Yener, and A. Robert Calderbank

Abstract—This paper investigates the effect of eavesdroppers discrete memoryless channel while keeping them confidentia

on network connectivity, using a wiretap model and percolation
theory. The wiretap model captures the effect of eavesdroppe
on link security. A link exists between two nodes only if the
secrecy capacity of that link is positive. Network connectivity is
defined in percolation sense, i.e., connectivity exists if an infinite
connected component exists in the correspondingecrecy graph.
We consider uncertainty in location of eavesdroppers, which is
modeled directly at the network level as correlated failures in the
secrecy graph. Our approach attempts to bridge the gap betwee
physical layer security under uncertain channel state informatia
and network level connectivity under secrecy constraints. For
square and triangular lattice secrecy graphs, we obtain bounds
on the percolation threshold, which is the critical value of
the probability of occurrence of an eavesdropper, above which
network connectivity does not exist. For Poisson secrecy gragh
degree distribution and mean value of upper and lower bounds
on node degree are obtained. Further, inner and outer bounds on
the achievable region for network connectivity are obtained. Bdt
analytic and simulation results show that uncertainty in location
of eavesdroppers has a dramatic effect on network connectivit
in a secrecy graph.

from an eavesdropper (wiretapper) that receives the signal
from a degraded channel. Csiszand Korner in [2] provided

a general secrecy capacity result for the non-degradedapire
channel. This framework has been successfully applied to
networks with one hop communication, such as broadcast, e.g
[3, 4], multiple access, e.g., [5], and two-hop communarati
with relays, e.g., [6, 7].

Recently, information theoretic techniques have been used
to provide end-to-end secrecy in large networks. The cdncep
of secrecy graphwas introduced in [8], which models the
communication network and the effect of eavesdroppers on
network security. Link connectivity in a secrecy graph is
determined using the wiretap model. A link is considered to
be connected if the secrecy capacity of the link is posifivee
secrecy graph is analyzed for network connectivity usimgsto
from percolation theory [8,9]. Thus, network connectivity
defined in percolation sense, i.e., network connectivitgtex
if an infinite connected component exists in the secrecylgrap

EDICS: SEC-NETW (Network security), MOD-SECU (Se-Scaling laws for secrecy capacity in large networks have als
curity and privacy models), MOD-CHAN (Channel and netbeen investigated in [10, 11]. In [10], a random network was

work models)

I. INTRODUCTION

considered where the legitimate nodes and eavesdroppers ar
placed in a square region of areaaccording to independent
Poisson point processes (PPPs). It was shown that secrecy

In the recent years, there has been growing interest rﬁﬂuirement does not lead to a loss in thrOUghpUt, in terms of

employing information theoretic methods to provide segiac

scaling, if the intensity of eavesdroppergig(log n)~2) while

wireless networks. In his seminal paper [1], Wyner intragtuic the intensity of the legitimate nodes Is In [11], a similar
the wiretap channel and formalized the rate at which messag@sult was shown for mobile ad-hoc networks (MANETS) with
to the intended receiver can be reliably communicated ovef:degitimate nodes and a delay constraint/afif the number
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of eavesdroppers scales @s/nD).

In references [8-11] the channel gains of all the eaves-
droppers are assumed to be known precisely. This assumption
may not be realistic, especially for a passive eavesdropper
since it may not be possible to ascertain even the presence of
such an entity. For wiretap channel models with a few nodes,
the uncertainty of the eavesdropper channel can be modeled
using a compound channel model [12,13]. Noise injection
techniques [14] can be used if the channel is unknown
in multiple antenna wiretap models. In [15], it was shown
that secrecy is possible even if the eavesdropper’s channel
is arbitrarily varying. In contrast to these results on dmal
networks, we want to characterize the effect of uncertainty
in location of eavesdroppers oetwork level connectivityor
large networks.

In this paper, we present a secrecy graph approach where the
locations of eavesdroppers are uncertain, and this utegrta
results in node and link failures in a secrecy graph. The main
challenge is that these failures acerrelated and hence,

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.o



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

the techniques from percolation theory must be extended aknownfinite area, however, the precise location is unknown.
account for these correlations. We assume a communicatlet y; denote the location of the center of the area which
model where a node is aware of only those legitimate awdntains eavesdropperLet A; denote the corresponding area.
eavesdropper nodes that are located within a distand®m The sety = J, A; C R? thus describes the area in which
the node. We consider square and triangular lattice secre@wesdroppers exist. If the locations of the nodes come &rom
graphs which model regular placement of legitimate nodestochastic point process, we denote the correspondingmnand
We also consider Poisson secrecy graphs which model randesmiables by® and .
placement of legitimate nodes iR> according to a Poisson We define secrecy graphs (SGs) basedzoand ). A link
point process. We assume uniform node distribution for anexists in the secrecy graph if the link exists in the undedyi
lytical tractability [16], since analytical results aredun for geometric graph and the secrecy capacity of the link is
only a handful of stochastic network models. positive. We assume that the wireless medium introducds pat
Percolation threshold is the critical value of probabilityoss, with exponenty, and that the noise introduced by the
of occurrence of an eavesdropper, above which an infiniteceivers is Additive White Gaussian Noise (AWGN). If a
connected component does not exist in the secrecy grapburce transmits a signal with powd?, to a receiver at
almost surely. Exact results are not known even for a squatistancedr, and the eavesdropper is located at distadge
lattice with independent link and node failures. Hences thithe secrecy capacity is given by [19]
paper provides bounds on percolation threshold for square

+
and triangular lattices, which provide insight into theeeff C, = (log (1 + Ps) — log (1 + P(j)) ) 1)
of uncertainty in eavesdropper’s location on the percofati d d
properties of lattice secrecy graphs. The AWGN power is assumed to be unity for both the

For the Poisson secrecy graph, distributions and means/alggannels. If the destination is closer than the eavesdrpppe
of upper and lower bounds on the degree of a legitimate., dr < dg, the secrecy capacity is positive and it is zero
node are obtained. Given the intensity of legitimate nodesherwise. It should be noted that in this paper, we willizsil
and the radius of communication, the pair §, rg) of the this link metric for simplicity. In general, it is difficultct
intensity of eavesdropper nodes and the radius of uncgrtiain make any claims on the secrecy capacity region of a sizeable
achievable if percolation occurs in the correspondingesscr network, given the complex interactions that can take place
graph. We obtain inner and outer bounds on the achievabletween the network nodes to manage and utilize interferenc
(A, rg) region. In [17], degree distribution and mean valuéor secrecy [5, 20]. However, since our goal in this paper is
of bounds on node degree in a Poisson secrecy graph wereinderstand and demonstrate the effect of eavesdroppers o
characterized, in the special case whenis infinite. In this connectivity without the knowledge of their channels, it is
paper, we provide a tighter upper bound on the percolatifitting to sacrifice the network information theoretic rigand
threshold of the triangular lattice, compared to the reBult instead use this metric for the sake of obtaining a tractable
[17]. Both analytical and simulation results demonstréte t problem. We will employ two secrecy graphs in this paper
dramatic effect of location uncertainty of eavesdroppens 6 directed secrecy grapland basic secrecy graph8]. In a
network connectivity in a secrecy graph. directed secrecy grap8, a link (edge) exists fromx; to zj

The remainder of this paper is organized as follows. In Sei€-||z; — «;| < ||z; — yx|| for all y, € 9. In a basic secrecy
tion 11, the connectivity problems considered in this papex graphG, a link exists betweern; and z; if a directed link
presented formally. In Section Ill, our results on perdofat exists fromz; to z; and also fromz; to z; in G.
in square and triangular lattices are presented. The Rvisso
secrecy graph is considered in Section V. Bounds on the mean
node degree, and inner and outer bounds on the achievable (°
rg) region are presented. In Section V, numerical results onWe consider square and triangular lattices, shown in Fig.
percolation probability in lattice secrecy graphs, andratsuon 1 and Fig. 3, respectively. A legitimate node is present at
mean node degree and achievabler{z) region are presented.each vertex of the lattice, and each node is connected to its
Finally, Section VI concludes the paper. nearest neighbors. We assume that the probability thatarequ
(or a triangular) region contains an eavesdroppepgs We
assume that the links bounding each eavesdropper’s locatio
are known. For example, assume that the squrén Fig.

We denote the functiof)™ £ max(0,z). Let G = (¢, E) 1 contains an eavesdropper. In the basic secrecy graphs node
denote a geometric graph iR¢, where ¢ = {x;} c R? a, b, c andd will not have any links, and thus, these nodes
is the set of locations of legitimate nodek. is the set of are considered to hafailed. Notice that the node failures are
links over which reliable communication is possible. Linlcorrelated, since all nodes of a given square fail togefrers,
reliability is modeled using Gilbert's disk graph model [18 we can model the uncertainty in an eavesdropper’s location a
We assume that the radius of communication, or range of viele network level by employing a physical layer model for
is r,. Two nodes are connected in the geometric graph if tlsecrecy. This approach can be extended to include scenarios
distance between them is at most A node is unaware of where each eavesdropper is located within a finite but arlitr
the presence of any eavesdropper outside the circle ofgadiwmea. For example, assume that an eavesdropper is present
r, centered at the node. Each eavesdropper is located withiithin the squaress, S3 or Sy, in Fig. 1. Then all the nodes

Secrecy in Square and Triangular Lattice

II. MODEL AND FORMULATION
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Roughly, p$, is the smallest value gig for which an infinite

a b component does not exist in the secrecy graph. In other words
S1 for any pg < p%, the secrecy graph will have an infinite
connected component containing the origin, almost surely.
However, the origin is part of the infinite component with
Sa | S3 probability 6 (pg), and not with probabilityl [28]. In Poisson

S, secrecy graphs, we assume that the intensity of the ledéima
nodes and the radius of communicatigmare fixed, and define
the percolation probability as

0\ re) = P(|C] = o0). (4)

The percolation threshold pairs, %) are defined as

Ae =inf{A: 0(\,r%) =0}, r% >0. (5)

Ill. SQUARE AND TRIANGULAR LATTICES

Fig. 1. Failures in square lattice In this section, we will present bounds on the percola-
tion threshold of square and triangular lattices, where the
. o . . eavesdroppers are known to be located within square and

marked x fail. A similar model is used for the triangularyiangular areas, respectively. We note that the percsiati
lattice, where nodes on all the vertices of a triangle fail tresholds are known precisely only for a few lattices. For

an eavesdropper is present within that triangle. example, for a triangular lattice, where a node appearscit ea
vertexindependentlyvith probability p, the critical probability
B. Secrecy in Poisson graph is p. = 1/2 [29]. However, the corresponding percolation

We assume that the locations of legitimate nodes foIIo'flk/]rGShOkj for a square lattice is not known [28]. Notice that

a Poisson point process (PPR) with intensity 1. Each In the secrecy graphs considered in this paper, failures are

eavesdropper is known to be located within a circle of radi&grrelated and hence, the corresponding problems of deter-
bp mining the percolation threshold are expected to be irdtdet

rg. The radiusrg captures the uncertainty in an eavesdrop|=herefore we focus on obtaining upper and lower bounds
per's location. The center of the circles follow a PPP withn the ércolation threshold that are as tight as possible
intensity \. We denote the directed and basic secrecy grap%% P . L 9 P L
by Gy and G, respectively. he bounds are obta_lm_ed by cons_|der|ng a square Igtuce with
o lE T TE? different link probabilities for horizontal and verticaihks.
The following lemma from [30] is useful in obtaining the
C. Percolation Threshold bounds.

The concept of percolation was introduced by Broadbeptmma 1. (Sykes and Essam [30]): For a square lattice with

and Hammersley [21], to model the diffusion process ifhk probabilities p; and p, for horizontal and vertical links,
materials. Percolation is said to occur if an infinite conedc regpectively, the critical probability satisfies

component exists in the corresponding graph. It was shown
that a phase transition exists, i.e., there exists a driicash- p1+p2 =1 (6)

old, below which all connected components are finite, almost ot the distance between the nearest neighbors in a square
surely, and above which an infinite connected componegt triangular lattice bes. We will assume that, > s, since

exists, almost surely. Similar results exist on connetiin o co1ation can occur in square and triangular latticey @nl
random graphs [22]; an area initiated by the work of &&d T

and Reyni [23]. In an Er@s-Reyni graph, the probability of " \ye first consider the square lattice, where the probability

existence of a link between any two nodes is independgl; 5 square region bounded by links in the lattice contains
of the spatial positions of the nodes, and hence, it dogg eayesdropper is. It is known which squares contain an

not consider network geometry. Therefogeometricrandom  o4yesdropper, however, the exact locations of the eayesdro
graphs [24] are used instead, to model wireless networks s yithin the squares are unknown. The following theorem

[25,26]; where connectivity is analyzed using t00ls froMesents hounds on the critical eavesdropper probalibitya
continuum percolation [27]. square lattice.

Let us denote the number of nodes in the connecte
component containing the origin by’|. First, we consider Theorem 1. For a square lattice where nodes are located
lattice secrecy graphs where probability of an eavesdmopg¥ the vertices of the lattice and eavesdroppers are located
occupying a square or triangular regiorpis. The percolation in square regions of the lattice with probabilitys, the
probability (p) and percolation threshold, are defined as Percolation threshold for the basic secrecy graph, dendied

p%., satisfies
0(pe) = P(|C] = o) @) 1 3-5
pg = inf{pg : 6(pr) = 0}. ®) /2 2

()
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For the square lattice, the probability of a node failure is

. " . related topp as
Proof: The existence of critical probability follows from

[28]. The percolation threshold in the given square latige prait = pe(2(1 —pE)(2 — pE + %) +05).  (10)
is denoted byp$,.

For the upper bound on the percolation threshold, assu
that no eavesdroppers are present in the squaie2;) for

We contrast this with the scenario where nodes occur on the
Uttices of a square lattice independently with probabitit

) - ) -~ Let the threshold probability in that case pe In the secrecy

all mfce.gersfz and j, _and eave;@roppers are present in t aph model, adjacent nodes fail together, and hence, ilhe fa
remaining squares with probabilipz. Now assume that eaChures areclustered Intuitively, a larger number of node failures

square(2i + 1,2j + 1) is a node in a new square Iatt'Ce?aan be tolerated in the secrecy graph before connectivity is

So, and the node fails when there is an eavesdropper in 1€t and hence. we expect that,y > (1 — p.). Further, we
corresponding square. Further, the nodesSincorrespond- expect thapy; < (1 — p.), since more than one node failures

Ing to squqres(Qi + 1’.% + 1) _and (20 + 3,2i + 1)_ are may occur due to the presence of one eavesdropper. Numerical
connected if and only if there is no eavesdropper in SQUARESits in Section V will validate this intuition.

(2i + 2,2i + 1). Similarly, the nodes iS5, corresponding to ] ]
squares(2i + 1,2i + 1) and (2i + 1,2i + 3) are connected if Now, consider the placement of nodes on the vertices of the

and only if there is no eavesdropper in squére+ 1,2i +2). triangular lattice and eavesdroppers inside triangulgiores

Thus, in the square lattic,, the probability of existence of g Of the lattice. Suppose that a triangular region contains an
node and a link are denoted s = 1 — py andp; = 1 — pg eavesdropper with probabilityg. The critical eavesdropper

respectively. Notice that the failures & are independent and Probability can be bounded as in the following theorem.

identically distributed (i.i.d.). However, we have a mixgite- . .
. . Theorem 2. For a triangular lattice where nodes are located
bond percolation problem [31], and the percolation thré&sho . .
. : .—on the vertices of the lattice and eavesdroppers are located
for that problem is not known. To obtain a bond percolation ", . . . . "
o : In triangular regions of the lattice with probabilityy, the
problem with independent bond (link) probabilities, we maBercoIation threshold for the basic secrecy graph, dendtgd
a node failure to the failure of the horizontal link connekcte Y grapn,

. L
to that node on the left. Notice that this underestimates th&’ satisfies

number of link failures, since a node failure would actually

result in the failure of all the links connected to it. Thus wl - —— < pf§ < 1.1 i/% - 62 + (’/25 + Vo2l
obtain a new square lattic&; in which node probability is V2 33 2 2

1 and link probabilities for horizontal and vertical linksear (11)
p1 = (1 —pg)? andp, = (1 — pg), respectively. Let the . ) ] .

critical threshold ofpz for the square lattices, and S; be Proof: We denote the given triangular lattice Hy. For

p% andp%”, respectively. For a fixegy, if percolation does the upper boqnd, assume thgt therg are no eavegdroppers in
not occur in the square lattic, it cannot occur in the squareth® triangles(3i + 1,35 +1), (3i+1,3j +2), (3i+2,3j +1),
lattice S, either. Further, removing eavesdroppers from square¥ + 2,37 +2) for all integersi and j and the eavesdroppers
(2i,24) in the square lattice; can only increase the critical &€ Present in the remaining triangles with probabjlity The

threshold. Hence, the percolation thresholds of the ki, indexing of triangles is shown in Fig. 3. Now assume that each
Sy, Sy satisfy triangle (3i,3;) is a node of a new square latticg which

®) fails when there is an eavesdropper in that triangle. Furthe
nodes inS; corresponding to triangleSi, 3:) and(3:i + 3, 37)
The percolation threshold of the square lattiecan be found are connected if and only if there is no eavesdropper in any
using Lemma 1, where link probabilities afé — pz)* and  of the triangles(3i + 1,3i) and (3i + 2, 3i). Similarly, nodes
(1 —pg). This gives the upper bound in the statement of tha S, corresponding to triangleg3i, 3i) and (3i,3i + 3) are
theorem. connected if and only if there is no eavesdropper in any of
For the lower bound, consider a tiling & where each tile the triangles(3i, 3i + 1) and (37, 3i + 2). Thus, in the square
is a square region consisting o6 squares. Adjacent rows of lattice S;, the probability of existence of a node and a link is
tiles are offset by two squares, as shown in Fig. 2(a). Edeh tp,, = 1—pg andp; = (1—pg)? respectively. We obtain a bond
is mapped to a node in a triangular lattice, which fails whe(tink) percolation problem with independent link probitisis
any of the squares in that tile contains an eavesdroppes. Thy mapping a node failure to the failure of the horizontaklin
results in a triangular lattice with node probability— pz)'® connected to the node on the left. Thus, we obtain a new
and link probability 1. Note that we are over-counting thesquare latticeS, with node probabilityl and link probabilities
number of eavesdroppers, and this results in a lower boundfon horizontal and vertical linkg; = (1 — pg)® and py =
the percolation threshold. Percolation occurs in the ¢rigar (1 — pg)?, respectively. Let the critical threshold of; for
lattice if square lattices;, S, andS; bep§,, p% andp;?, respectively.
(1 —pg)'c > pzn (9) For a fixedpg, if percolation does not occur in the square
lattice S, it cannot occur in the square lattic, and in turn
cannot occur in the square latticg. Hence,

S S
Py <Py < pg’

Wherepzn = 1/2 is the node (site) percolation threshold for
triangular lattice [29]. Thus, the percolation threshaid the
square latticeS; must me at least — 1/ /2. [ ] PS5 < pp? < pRr. (12)
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Fig. 2. (a) Tiling in square lattice for lower bound (b) Tigjrin triangular lattice for lower bound

4,0 4,2 4,4 4,6 assume that a legitimate node is aware of only those circular
4.1 4.3 4.5 4.7 regions containing eavesdroppers whose centers lie witigin
’ ’ ’ ’ circle of radiusr,, centered at the node.

For simplicity, we consider the node located at the origin,

3,1 3,3 3,5 3,7

3,0 3,2 3,4 3,6 denoted by. Let N denote the number of bi-directional links
2.0 9.9 94 2.6 of nodeo. An analytic computation ofV is difficult because
’ ’ ’ ’ it requires characterization of the intersection of twoioag
2,1 2,3 2,5 2,7 - a circular region which determines the out-degree of node
1,1 1,3 1,5 1,7 o, and a polygonal region which determines the in-degree of

node o. The polygonal region is the interior of the region
1,0 1,2 1,4 1,6 formed by the intersection of bisectors of the line segments
0,0 0,2 0,4 0,6 which join the origin to the eavesdroppers. L€t denote
the number of directed links out of node Assume that the
0,1 0,3 0,5 0,7 ; . - .
center of a circular region containing an eavesdropperchvhi
is closest to the origin, is located at a distangefrom it.
Then N°“t is the number of legitimate nodes in the circle
C(0, (min(r,, R) — rg)™). Clearly, N < N°“, and thus,
we have an upper bound on the node degree. A lower bound
The percolation thresholg® can be found using Lemma 1,6an be obtained by considering the cir¢I€0, (min(r,, R) —
where link probabilities arél — p)? and (1 — pp)?. rE)+/2_), since the origin has a bi-directional link to all the
For the lower bound, consider a tiling 2 where each nodes in this region. LeN denote the number of legitimate
tile consists of24 triangular regions, as shown in Fig. 2(b)nodes inC(0, (min(r,, R) — r£)*/2). Clearly, N < N. In
Each tile is mapped to a node in a triangular lattice, whidhe following, we will present results on the probability ssa
fails when any of the triangular regions in that tile congainfunction (p.m.f.) and mean values 8f°** and N. The p.m.f.
an eavesdropper. This results in a triangular model witrenof node degree characterizes the connectivity properties i
probability (1 — pz)24 and link probabilityl. Following the @ Poisson secrecy graph. In Poisson graphs without secrecy
arguments in the proof of Theorem 1, it can be shown the@nstraints, the mean degree is sufficient to charactehize t

the percolation threshold of the triangular lattifemust me Percolation threshold. We will show that a bound on the mean
at leastl — 1/ 3/2. m degree can be used to obtain an outer bound on the achievable

(A, rg) region.

Fig. 3. Indices in triangular lattice

IV. POISSON SECRECY GRAPH

In this section, we consider a Poisson model wheris a
Poisson point process (PPP) of intenditin R? ( Intensity of
a point process denotes the density of nodes per unit ared.).Degree distributions
The eavesdroppers are located in known circular regions. Th
centers of circular regions are located®? according to a  We now present the degree distributions)of“* and N by
Poisson point procesg of intensity A, which is independent computing P(N°** = n) and P(N = n), both of which can
of ®. The radius of the circular regions is denotediigy We be expressed in terms of the same set of functighdz, y)}.
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Let f,(z,y) be defined for all. € {0,1, ...} as follows. Proof: Assume that the center of the circular region con-
B g2 —ayr? —a(ry—r)? taining an eavesdropper, that is closest to the origin,datkd

folz,y) = 1—e™™= fe e at a distanceR from it. Then, the origin can securely transmit
Y_emoryrs (e =(1turk (i)’ to any node within a circle of radiugmin(r,, R) — rg)*.

—Ee
1+y

Averaging the probability of having legitimate nodes in that
_emaHn) (e /(1) ging e p y 8 'eg

circle over R results in the statement of the theorem. For

TR rE I details, see Appendix A. [ ]
+xye TTHE s\ o
(1+y) x The above result can be specialized to two regimes of
Y interest. In the first regime, the uncertainty in the loaatod
—erf [ /(1 . . )
( o ( w1 +y)re 14 y) eavesdroppers is small, i.eg — 0. In the second regime, the
rE communication radius is large, i.e:, — oo. It is clear that
+erf [ Va(l+y) (ro - 1+y (13)  when eitherr — oo or r, — 0, N0 secure communication is
” ossible.
e = ol (35 (1), j
. n! (1 +y)ntt — k Corollary 3.1. If the uncertainty in location of the eavesdrop-
Bl e \2 pers is small,
F 2 7(17(1 + y) Ty — 1 + y 1 P(Nout - 0) - )\ + 1 771’(14»)\)7“2 (18)
: oS T IN T 1C '
2 Clearly, isolation probability decreases as the radius ofre
k +1 TE . . . . .. .
—T|——,2(14vy) (rg — Too : munication r,, increases. Ifrg is finite and the radius of
TY communicatiorr, is infinite,
(_rEy\/E)QnH_k_i_T Y 2n ( 2n ) lim P(N°* —0) — 1 1 —rArd n TATE
Vity " Y P o P - 1+A° (1+ X)3/2
k+1 re \° (1erf <)\r 1/”)) (19)
| ——. z(1 Y, — 2 :
( < 5 +y)<7° 1+y)> 1+
k+1 re 2 Notice that (18) which is obtained by letting; tend to zero,
T ——z(1+y) (TE 1 +y> : is the same expression obtained in [8], where it is assumed
_— that the locations of the eavesdroppers are known precisely
reyvz " —oyr? —a(ro—r5)? In the directed Poisson secrecy graph, the node degree is
/1T Yy te ¢ characterized by obtaining the p.m.f. . In the following
"(ry — )20 theorem, the p.m.f. olV is presented, which is a lower bound
u for n > 1, (14) on node degree in the basic Poisson secrecy graph.
n.
where 9 e Theorem 4. In the basic secrecy grap& ., », with radius
erf(z) = —/ e dt (15) of uncertainty for eavesdropper’s location; and radius of
v Jo communicationr, > rg, the probability mass function a¥,
is the Gauss error function, and which is a lower bound on the number of bi-directional links
o at the origin, is given by
I(s,xz) = / tsletdt (16) ~ -
. P(N =n) = fu (7.0 (20)
is the upper incomplete gamma function.
In the next theorem, we present the p.m.f. §P*¢, the Proof. The proof is similar to that of Theorem 3, but
number of out-going links from the node located at the origimodes within the circle of radiugmin(r,, R) — r5)"/2 are
This p.m.f. characterizes the connectivity properties hie t considered. For details, see Appendix B. ]

directed Poisson secrecy graph. The result is obtained forNotice that the probability mass functions 8 and Nou*

rv > rp, Sincé ifr, < rp, nodes will be unaware of 5.6 given by the same set of functiofi, (z, )}, albeit with
eavesdroppers that are located arbitrarily close to them, gjigterent parameters. This is because the ratio of the areas
no secure communication will be possible in that case. considered for obtainingV and N°*“ is constant regardless

of the distance to the closest eavesdropper. Once again, we

Theorem 3. In the directed secrecy graplyy . ,. with =
y Graplo.r, v specialize the results fory — 0 andr, — oo as follows.

radius of uncertainty for an eavesdropper’s locatiep and
radius of communication-, > rg, the probability mass
function of the number of out-going links at the orighr?
is given by

Corollary 4.1. If the uncertainty in location of the eavesdrop-
pers is small,

ou : \/ 4)\ 1 —(m/4)(1+4X r2
P(N** =n) = fu(m, ) 7)) Jim PN =0) = 5= o e YR 21
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If  is finite and the radius of communicatiey is infinite, the terma £ Axr2, which is the mean node degree in the
~ 1 X TAE graph. A critical values.. exists such that it > a. an infinite

rhinoc P(N=0) = 1- 1+4/\e B+ (ES\EE connected component exists in the graph with probability

’ 1. If a < a., NO infinite connected component exists, with

<1 —erf (4)\7"E m/4 >> (22) probability 1. In the following theorem, we obtain bounds on

1+4x the mean degree in the basic Poisson secrecy graph, and then
obtain necessary and sufficient conditions for percolatmn

Thus, we have characterizéd and N"* by obtaining their occyr. The necessary condition is obtained in terms of adoun
p.m.f.s, which show important trends with respectrto A 5 the mean degree.

andrg. The trends are easy to notice in the regimgs— 0

andr, — oco. In these regimes, isolation probability increaseheorem 5. The mean degree of a node in the basic Poisson
with A andrz and decreases with,, as expected. Isolation secrecy graph with secure bi-directional links is boundsd a
probability is an impprtant parameter, since it represéms E[N] < E[N] < E[N°“], (31)
proportion of nodes in the secrecy graph that cannot commu-

nicate securely with any other node. To further our intuitio where

we next characterizé’(N = 0) and P(N°“* = () when two - 1/ 2 e
of the parameters, r andr, take extreme values. E[N] = I (e v-e )
Remark 1. For the directed secrecy graph, 7;””7% (erf(\/)nrfrv) - erf(\/)\7r7'E)) (32)
. A out \7
1 P(N°¥ — () = — 23 E[N =4E[N 33
SR s A=A ~ =
lim P(N°" =0) = 1. (24) Proof: The regions corresponding & and N°** were
Fo™200,TE 00 chosen so thatV < N < N°“, By taking expectation, we
Similarly, for the upper bound on isolation probability, obtain (31). The lower bound is obtained as follows. Let the
~ AN center of the circular region containing an eavesdroppet, t
L lim PN =0)= i (25) is closest to the origin, be located at a distaficom it. The
! 1,’ o PN = 0) = 26 lower bound is computed using the law of total expectation
poodm PN =0)=1. (26) ' E|N) = E[E[N|R]]. The upper bound is obtained in a similar
Thus, in both the cases, none of the nodes have any linR&@nner. For details, see Appendix C. =

almost surely, in either the directed or basic secrecy gréph Notice that the ratidE[N°*/|/E[N] is constant since the
the locations of the eavesdroppers are not known at all. Figiio of areas considered for obtainidg’* and N is fixed.

rg — 0, we obtain the probability of isolation of a node wherf hus, the bounds are expected to be tight when the mean
locations of all the eavesdroppers are known preciselychvhidegree is small. We now specialize the above resultfor- 0
match the results in [8] whenez = 0 was assumed. Note thatandr, — oo.

for small values of\ both lim, s p—0 P(N°** = 0) and

. < . ) ) Corollary 5.1. If the uncertainty in the location of eavesdrop-
lim,, 00 rp—o P(N = 0) increase linearly with\.

pers is small,
Remark 2. As the eavesdroppers’ intensitygoes to zero, . 1 2
lim E[N] = — (1 - e*mv) . (34)
lim P(N°“*=0)=0 (27) rE—0 4N
T"ﬂ?o’kﬁo - As expected, the mean degree increasesrasncreases.
| lim P(N =0) =0, (28)  Further, for small\ and r, finite, lim,, o E[N] ~ mr2/4,

_ ) and hence, the mean degree depends only,off rx is finite
meaning that all the nodes have at least one link, almoslysurgmd the radius of communicatian, is infinite

As the eavesdroppers’ intensitygoes to infinity,

: Ve i —Amrd e _ /
lim P(N=0)=1, (30) The mean degree decreases exponentially with the enr,.

Ty —00,A— 00

meaning that none of the nodes have any links, almost surel}/yve now compute the bounds on the mean degree when two
the parameters, rg, r, take extreme values. We expect

. . 0
regardless of the radius of uncertainty for eavesdroppgrs
and even if the communication radius is infinite. the bounds to take large values whenrg are small and-,

is large.

B. Mean degree and percolation threshold Remark 3. As the radius of uncertainty for eavesdroppers’
We now present results on the mean degree and percolaliesationrz takes limiting values,
threshold for the Poisson secrecy graph. In a Poisson graph

with intensity of nodes\ and communication radius where . clénﬁ OE[N] = (36)
no secrecy constraints are imposed, the node degree distrib v -
tion, and hence, connectivity properties are characterine ,.,U_)Olclf,n.E_,ooE[N] =0. @37)
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Fig. 5. Percolation threshold versus area

Fig. 4. Percolation threshold for square lattice

and outer bounds for the achievable region. The outer bound
As expected, if the uncertainty in the eavesdroppers i®Jarg is obtained in terms of an upper bound on the mean degree
secure communication is possible. If the communicatioiusad E[Nou].

is large, and the uncertainty in the location of eavesdrappe

is small, the mean degree has an inverse dependence'BROrem 6. Consider a Poisson secrecy graph ., With
. Hence, it is expected that secure communication will €nsity of eavesdroppess radius of uncertainty of the eaves-
possible if\ is sufficiently small. droppersrg and radius of communication,. Percolation does

not occur in the basic Poisson secrecy graph if

Remark 4. As the intensity of eavesdropper nodegakes 6
limiting values, EN <« ——— 40
9 ) INT] < o 373 (40)
TU_};OI?AéOE[N} =0 (38) where E[N°“!] is given by (33). Further, percolation occurs
lim E[N]=0. @39)
e et (2~ 1)1og(1 — ") ~1og(o{'®))
As the intensity of eavesdroppers (ncreases, the probability L2(s*)2 8 8\Pc ’
of existence of link decreases, and thus, the mean degree (42)
decreases. In the limit of large intensity of eavesdroppibese where L = 7. pU® is an upper bound on site (node)
is no secure link, almost surely, and thus, the probabiligt t percolation threshold for the square latticeg’ is chosen as
node degree is zero is 1.
9 s = argmax (e‘ALzsz(l - 6_32)2L—1) . (42)

We have characterized the lower and upper bounds to the s>(3+VB)rp/4
mean degree in a basic Poisson secrecy graph. The ab . ”
results sh%w that the bounds to mean deg)r/eg deppend cruci\;%;%rGL =1T. It is assumed that, > v/5s".
on both the radius of uncertaintyy and the intensity of Proof: The outer bound is obtained by iteratively building
eavesdropper nodes We will now characterize the pair of the connected component containing the origin and bounding
values taken by these two parameters for which an infinitke number of new nodes added at each step. The inner
connected component exists in the basic Poisson secréoynd is obtained by considering a tiling i®? where each
graph. We will show that an outer bound on the «x) region tile is mapped to a node in a square lattice. The radius of
is obtained in terms of the upper bound on the mean degreemmunication and parameters of the tiling are chosen so
We begin by defining the achievablg, (") region. that percolation occurs in the square lattice. For detaks s
ppendix D. [ ]
Thus, we have obtained necessary and sufficient conditions
%f;r percolation to occur in the basic Poisson secrecy graph.
uncertainty in an eavesdropper’'s location is achievable i he outer bound shows that percolgtlon does not occur if the
percolation occurs in the corresponding secrecy graph, i.&/PPer bound on the mean .degre(.a is smaller the_m a threshpld
: _ B (=~ 1.642). The inner bound is obtained by assuming a specific
if 6(\,rg) = P(|C| = c0) > 0. . .

structure on the underlying graph and then computing the

A complete characterization of the achievable region rerobability for such a structure to occur. In Section V, the
quires us to determine the critical pairs.{ %), which is a behavior of the inner and outer bounds is explored through
difficult problem. In the following theorem, we provide irme numerical results.

Definition 1. Consider a Poisson secrecy graph with intensit@
of legitimate noded, radius of communicatiom,. The pair
(\, rg) of the intensity of eavesdroppers and the radius
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V. NUMERICAL RESULTS Fig. 5 shows the variation of percolation probability wjtl
In this section, we present numerical results for latticd arf1or L =100 andNs = 1,2,4, 9. As expected, this probability
. ' P . reduces asNg increases, where the decrease quantifies the
Poisson secrecy graphs. For lattice secrecy graphs, wentres o . )
. . X .__effect of uncertainty in location on percolation threshold
simulation results on the percolation threshold. For Rwiss
. secrecy graphs.
secrecy graphs, we present numerical results on the mean
degree, and the inner and outer bounds to the achievable (
region. .

rE) reg B. Poisson secrecy graphs: Mean degree

A. Lattice secrecy graphs We now present numerical results for the Poisson secrecy
We estimated the percolation probabilitypz) for L x L graph. Fig. 6 shows the variation of the upper and lower
square lattice through Monte-Carlo simulations. Eavesgeess  bounds on the mean degree of the node located at the origin

were placed in the squares randomly and independently, withthe basic secrecy graph with, for r, = 1,10,100. A was
the probability of a given square having an eavesdroppeigbeichosen a$.1 for which percolation occurs atz = 0 [8]. For
pe. We estimated the probability that a cluster wraps arourdfixed value ofr,, the upper and lower bounds both decrease
the periodic boundary conditions. Cluster wrapping cande 0 zero as-g increases. As expected, the bounds on the mean
fined in several ways. We considered the probability of elustdegree increase as the radius of communicatioincreases.
wrapping in the horizontal and vertical directions, deddbg The figure shows that the mean degree is severely limited if
R(Lh)(pE) andR(L”)(pE), respectively [32]10° random lattices 7» iS small. For the range of values of; considered here,
were generated for each estimate. Fig. 4 shows the variatifg bounds on the mean degree are the same,fer 10 and
of percolation probability withpg, for L = 50,100,200. 7 = 100. ie., fo.rn, > 10, the mean degree is limited by the
Notice that in Fig. 4, the percolation probability transits Secrecy constraint.
from a large value (close tb), to a small value (close t6). Fig. 7 shows the variation of the upper and lower bounds on
This transition is a typical behavior of percolation protigh the mean degree with,, for rg = 0,0.5,2, andA = 0.1. As
and the region of transition becomes narrower as the sizeéypected, the bounds on the mean degree increase itthe
simulated network increases. The percolation threshaicbea figure shows that the bounds on the mean degree converge to
estimated as the point of intersection of the three curvessT the asymptotic value at, ~ 4. Forrg = 2, the mean degree
for the square lattice with each eavesdropper located mihi is zero forr, < 2. Whenr, > 2, the mean degree increases
square, the percolation thresholdis ~ 0.163. Forpg = p%, asr, increases. The figure shows a dramatic reduction in the
we obtainp.;; = 0.5 (using (10)) for correlated node failures mean degree ass increases. Further, for small valuesof,
whereas for independent node failures, the critical trokesh the mean degree increases quickly withand then saturates.
iS prair = 0.41. Although, a larger proportion of node failures Fig. 8 shows the variation of the upper and lower bounds
can be toleratedp§.,;) in the correlated failure scenario, onlyon the mean degree with, for rp = 0,0.5,2, andr, = 10.
16.3% eavesdroppers can be tolerated in that case. As expected, for fixed values of, andrg, the bounds on the
We now show the effect of the uncertainty in the location ahean degree decrease with an increask ifihe figure shows
eavesdroppers on the percolation threshold. An eavesdropinat for the range of values aofz considered here, the mean
may be located anywhere within certaWy squaresNg cap- degree decreases sharply)ascreases frond to 0.5, and the
tures the amount of uncertainty in an eavesdropper’s locati decrease is moderate whar> 0.5.
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Fig. 9. Inner and outer bounds on achievablerg) region

C. Poisson secrecy graphs: Inner and Outer bounds on

achievable §, rz) region using the secrecy graph approach developed in this paper. In
The inner and outer bounds on the achievahle £) region ;dodété??s’, :ﬁﬂﬁggﬂaﬁrggf:%’:ot;]reerﬁhmd for a fading duas

are shown in Fig. 9. The result in Fig. 9 indicates that perfec '

secrecy can be attained to the left of the lower bound while

cannot be attained to the right of the upper bound. Inner and

outer bounds are presented fgr= 2,5, 10. The outer bound

reduces dramatically as, is reduced fromli0 to 2, showing APPENDIXA

the need for a large communication radiys Notice that for PROOF OFTHEOREM 3

r, = 10 and small), the inner and outer bounds follow a

similar trend, although there is a significant gap between th Probability that the node at origin hasoutgoing edges is

two. The large gap suggests that at least one of the boundg;izn, by

not tight. The inner bound shows that percolation will occur

for large values of as long as\ is sufficiently small. As  p(yout — ) — " P(N°" = n|R = ) fr(r)dr
rp becomes small, the lower bound remains to the left of r=0
A = 2x1073. This is because of the specific structure assumed +P(R>r,)P(N°** =n|R =r,),
for deriving the inner bound.
where
V1. CONCLUSION P(N*"" =n|R =)

We considered a secrecy graph approach to investigate the = L{n=0y y m on it r<rp, (43)
effect of eavesdroppers with uncertain locations on networ e rre) IO T i g s
connectivity, which was defined in percolation sense. The a2
communication network and the impact of eavesdroppers 8Hd fr(r) = 2mAre '
network connectivity were modeled via a secrecy graph. TheThus, forr, > rg,
uncertainty in the location of the eavesdroppers was mddele P(N°" = p)
directly at the network level as correlated failures in the o
secrecy graph. Bounds on percolation thresholds of square = / P(N°"" = n|R =r)fg(r)dr
and triangular lattice secrecy graphs were presented. Heor t r=0 . on
Poisson secrecy graph, the degree distribution and meaa val te— ™AL o= (ro—re)? T (rv —7E) . (44)
of upper and lower bounds on the mean node degree were n!

presented. Inner and outer bounds on the achievable region orhe first expression is given by
pairs of the intensity of eavesdropper nodes and the radius o
uncertainty for eavesdroppers locations were obtainedh Bo

/ P(N°“ = n|R = r)fr(r)dr
analytic and numerical results showed that uncertainty in r=0

the location of the eavesdroppers effects connectivity in a — ALy /rE re=™ g 4 2w AT

secrecy graph dramatically. Future directions includesétiv =0 n!

gating information theoretic secrecy based methods t@atdi T n(r—rp)?, —mAr? m

the effect of uncertainty in location (CSI) of eavesdrogper — € re (r—rp)™dr  (45)
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T=TE

2wt
n!

[(r_

2L N
e Tifx

P(N°"" =n|R = r)fr(r)dr

/ ) rexp(—(1+ \)w
) (r —rg)*dr

rE TQE)\
1+ A (IT+A)?

I
(e (o

TE

Definet £ m(1+\)(r — ££&)?, tr = t(rg), tv = t(r,). Then
the above integral is given by

/T’u
T=TE

T exp
n!

TE
1+ A

2
) ) (r— rE)Q”dr (46)

P(N°"* = n|R =7) fr(r)dr

but has not been fully edited. Content may change prior to final publication.
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2n

( TEM)Q"“ mmg( )
(r (5 men (- 125) )
F(k"gl m(1+A) <7"E_1T+E)\> ))

(55"}

1+>\)

(47)

The result forn > 1 is obtained by combining equations (44),
(45) and (47). Whem = 0, equations (44) and (45) yield

P(Nout — 0)
6*7")‘7"12; efﬂ‘(’l"vf’l“E)z +1—¢

Ty
A 2
+2mrAe TTHXTE /

T=TE

2
—TATE

re” TIN5 gy (48)

The integral in (48) can be computed as

_ 27rn+1)\ 771'"1'%2 v TE t —t Ty N )
a nl t=t, \ 1+ A * T(1+ M) ‘ / re” TIN5 gy
on T=TE
_t ___re) - 1 —m(14A)( 'E)2 —w(1+A)(r1,—l)2
( 7(1+A) 1+/\) gt = 771_(1 T )\) (e 1 T+ x )
2r(1+ XNy / =i 1 A
( ) ) TR S— (erf ( (14 A) T’E)
A 1 _ﬂT%A/U <TEf+\[> 1+A2/14+ A\ 1+ A
= —_— e +A
n! (1 + A)n+t ¢ VvV1I4+A —erf( (1 4+ X) <7"v— 17:5/\>)> (49)
2n
TEAﬁ
(_ VIt T \/i) /Vtdt which yields the result for, = 0.
oA 1 L
! (1+ ) APPENDIX B
tu A et PROOF OFTHEOREM 4
L CRE)
=t + Probability that the node at origin hasoutgoing edges is
2n i
given by
+rp/m(l+ N) (— rEl)“/j - \f) /\/z?> dt
* _— P(N=n / P(N =n|R =) fr(r)dr
S AL /tU "5 (2”“ ) PR > 1) P(F = n|R 50
(1+)\) t=t, = k ( = 7“1)) ( = Tl| —T1))7 (50)
oy TE)\\/%)ank where )
14+ A P(N=n|R=r)
2n .
—t 2n (k:—l)/Q _ 1{7120} ) If r S TE, 51
Freviee kZ:o ( k ) ' e~ 5(r=re)*pn (T:l:i?zn if r>rg D
AT ek dt and fz(r) = 2rAre ™",
V1I+A Note that all the terms in the expression are obtained from

the expression of?(N°“t = n) by replacingr with =/4 and
X with 4\ and hence the statement of the Theorem holds.

APPENDIXC
PROOF OFTHEOREM5

Assume that the center of a circular region containing an
eavesdropper, which is closest to the origin, is located at a
distance R from it. Using the law of total expectation, we
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obtain bounded as s
E[N] = E[E[N|R]] (52) [De = 1<) ING| (60)
1=0
a ; A /9)2
= E[r((min(ry, R) =re)"/2)°], (53) 116 new nodes belong to a region of area at most
where @) holds because for a fixe®, the mean number of r V3
legitimate nodes in the circl€ (0, (min(r,, R) — rg)T/2) <3 + 2) ((min(ry, Ry—1) —rg)*)? (61)
aren((min(r,, R) —rg)*/2)? (the intensity of the legitimate
nodes is aQSsumed to ¢. The distribution ofR is fr(r) = where R,_; is the distance to the eavesdropper closest to
2 Are~™ ", Thus, X;_1. Let Zy, Zy,... be independent Poisson random vari-
[~} . < rv( )2 - ables with mean
E[N] = - / r—rg) fr(r)dr
4 \Jrp E[Z)) = ~E[(min(ry,Ri_1) —7r£)")? (62)
2
+/m, (ro=re) fR(T)dr) E[z] = (7:; M ?) E[((min(ry, Ri—1) = r5)")’]
o 2
_ = _(,,,D_TE)26—/\WT,U
! (1 2 : - (1 " ﬁ) BIN] = b (63)
4+ (e—)\ﬂ'rE _ e—>\71'7’,v) 3 2w
)\Tr _ye .
T S The probability thatCy contains at leask elements can be
_QTE/ e dr+ (ro —rg)"e ) upper bounded as
.
_ i 7>\7T7‘2E . 7)\7r'r3 k=2
- o\ ¢ P(ICo| 2 k) < P(Y_ Zi =k —1) (64)
_Te (erf(\/ ATry) — erf(V Aﬂ'rE)) . (54) _ ) =0 _
4v/X Percolation does not occurlifn_.., P(|Co| > k) = 0 which

For the upper bound, we consider all the nodes in the cirgdecurs ifb < 1, i.e.,

C(0, (min(ry, R) — rg)*). Therefore,
(0, (min(r,, R) — rz)") O )
E[N"] = E[E[N"|R] (55) 2m +3V/3
= %[ﬂ((min(rv,R) —rp)")’] (56) For the lower bound, consider a tiling R? using square
4 E[N] (57) tiles where edge length of each tile 4sA frame consists of

L x L tiles. We map each frame to a node in a square lattice.
Consider tiles A and B marked in Fig. 10. The maximum
distance between a node in tile A and a node in tile B/f.
APPENDIXD Therefore, any node in tile A can communicate securely with
PROOF OFTHEOREM6 any node in tile B if there is no eavesdropper within—1) /2
tiles on each side, witlh, > 7. We choosd., = 7 to define the
First consider the outer bound. We obtain a necessdrames. Assume that the center of a circular region comtgini
condition for percolation in the directed Poisson secreeply. an eavesdropper is present at the boundary of a frame. A node
If percolation does not occur in this graph, it cannot oceur in the center tile of the frame can communicate securely with
the basic Poisson secrecy graph either, and hence, an oateéode in a neighboring tile only if

bound on the achievable (rg) region is obtained. The proof 34 V5
for the outer bound closely follows the analysis in [33]. Let > < + ) rEg. (66)
Cy denote the component containing the origin. Consider a 4

sequence of pair of setd;, ;). At stept, D; is the set of now, consider the square lattice obtained by mapping each
points that belong td, such that all neighbors of points iNframe 1o a node in the lattice. A node exists in the lattice if

D, also belong toC. L, is the set of points which belong e corresponding frame has no eavesdropper and a legitimat
to Cp but whose neighbors have not been explored. We stafiqe is present in each of the shaded tiles in Fig. 10. Thus,

with the origin, and initializeDy = {¢} and Lo = {0}. The hq site probability for the square lattice is given by
process terminates at stepf L, = {¢}, otherwise a point

X, € L, is chosen and we set p=e M1 = eyt (67)
Dy =D, UX, (58) We maximizep by choosing the optimal value af
Lt+1 = Nt U Lt (59) st = arg max (67/\L252(1 o 6782)2L71> ) (68)
where N, is the set of neighbors of(, that are not the s2(3+V5)re/4

neighbors of any points i®,. Since N; hew nodes are addedand denote the optimal value pfby p*. Percolation occurs
to the setD;_; at timet, the size of setD, can be upper in the square lattice, and hence, in the Poisson secrecy,grap
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Fig. 10. Tiling inR? for achievable(\, rg) region

. . 21
if p* > pVB, where pl/? = 0.679492 is an upper bound (1]

on the percolation threshold for the square lattice [33us;h

percolation occurs in the Poisson secrecy graph if Eg}
1 12
A< ——— ((2L —1)log(1 — e~ ") —log(pV B
< o (QE = Dlosl =) — o).
(69)
[25]
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