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The Effect of Eavesdroppers on Network
Connectivity: A Secrecy Graph Approach

Satashu Goel∗, Vaneet Aggarwal, Aylin Yener, and A. Robert Calderbank

Abstract—This paper investigates the effect of eavesdroppers
on network connectivity, using a wiretap model and percolation
theory. The wiretap model captures the effect of eavesdroppers
on link security. A link exists between two nodes only if the
secrecy capacity of that link is positive. Network connectivity is
defined in percolation sense, i.e., connectivity exists if an infinite
connected component exists in the correspondingsecrecy graph.
We consider uncertainty in location of eavesdroppers, which is
modeled directly at the network level as correlated failures in the
secrecy graph. Our approach attempts to bridge the gap between
physical layer security under uncertain channel state information
and network level connectivity under secrecy constraints. For
square and triangular lattice secrecy graphs, we obtain bounds
on the percolation threshold, which is the critical value of
the probability of occurrence of an eavesdropper, above which
network connectivity does not exist. For Poisson secrecy graphs,
degree distribution and mean value of upper and lower bounds
on node degree are obtained. Further, inner and outer bounds on
the achievable region for network connectivity are obtained. Both
analytic and simulation results show that uncertainty in location
of eavesdroppers has a dramatic effect on network connectivity
in a secrecy graph.

EDICS: SEC-NETW (Network security), MOD-SECU (Se-
curity and privacy models), MOD-CHAN (Channel and net-
work models)

I. I NTRODUCTION

In the recent years, there has been growing interest in
employing information theoretic methods to provide secrecy in
wireless networks. In his seminal paper [1], Wyner introduced
the wiretap channel and formalized the rate at which messages
to the intended receiver can be reliably communicated over a
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discrete memoryless channel while keeping them confidential
from an eavesdropper (wiretapper) that receives the signals
from a degraded channel. Csiszár and K̈orner in [2] provided
a general secrecy capacity result for the non-degraded wiretap
channel. This framework has been successfully applied to
networks with one hop communication, such as broadcast, e.g.,
[3, 4], multiple access, e.g., [5], and two-hop communication
with relays, e.g., [6, 7].

Recently, information theoretic techniques have been used
to provide end-to-end secrecy in large networks. The concept
of secrecy graphwas introduced in [8], which models the
communication network and the effect of eavesdroppers on
network security. Link connectivity in a secrecy graph is
determined using the wiretap model. A link is considered to
be connected if the secrecy capacity of the link is positive.The
secrecy graph is analyzed for network connectivity using tools
from percolation theory [8, 9]. Thus, network connectivityis
defined in percolation sense, i.e., network connectivity exists
if an infinite connected component exists in the secrecy graph.
Scaling laws for secrecy capacity in large networks have also
been investigated in [10, 11]. In [10], a random network was
considered where the legitimate nodes and eavesdroppers are
placed in a square region of arean according to independent
Poisson point processes (PPPs). It was shown that secrecy
requirement does not lead to a loss in throughput, in terms of
scaling, if the intensity of eavesdroppers isO((log n)−2) while
the intensity of the legitimate nodes is1. In [11], a similar
result was shown for mobile ad-hoc networks (MANETs) with
n legitimate nodes and a delay constraint ofD, if the number
of eavesdroppers scales aso(

√
nD).

In references [8–11] the channel gains of all the eaves-
droppers are assumed to be known precisely. This assumption
may not be realistic, especially for a passive eavesdropper,
since it may not be possible to ascertain even the presence of
such an entity. For wiretap channel models with a few nodes,
the uncertainty of the eavesdropper channel can be modeled
using a compound channel model [12, 13]. Noise injection
techniques [14] can be used if the channel is unknown
in multiple antenna wiretap models. In [15], it was shown
that secrecy is possible even if the eavesdropper’s channel
is arbitrarily varying. In contrast to these results on small
networks, we want to characterize the effect of uncertainty
in location of eavesdroppers onnetwork level connectivity, for
large networks.

In this paper, we present a secrecy graph approach where the
locations of eavesdroppers are uncertain, and this uncertainty
results in node and link failures in a secrecy graph. The main
challenge is that these failures arecorrelated, and hence,
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the techniques from percolation theory must be extended to
account for these correlations. We assume a communication
model where a node is aware of only those legitimate and
eavesdropper nodes that are located within a distancerv from
the node. We consider square and triangular lattice secrecy
graphs which model regular placement of legitimate nodes.
We also consider Poisson secrecy graphs which model random
placement of legitimate nodes inR2 according to a Poisson
point process. We assume uniform node distribution for ana-
lytical tractability [16], since analytical results are known for
only a handful of stochastic network models.

Percolation threshold is the critical value of probability
of occurrence of an eavesdropper, above which an infinite
connected component does not exist in the secrecy graph,
almost surely. Exact results are not known even for a square
lattice with independent link and node failures. Hence, this
paper provides bounds on percolation threshold for square
and triangular lattices, which provide insight into the effect
of uncertainty in eavesdropper’s location on the percolation
properties of lattice secrecy graphs.

For the Poisson secrecy graph, distributions and mean values
of upper and lower bounds on the degree of a legitimate
node are obtained. Given the intensity of legitimate nodes
and the radius of communicationrv, the pair (λ, rE) of the
intensity of eavesdropper nodes and the radius of uncertainty is
achievable if percolation occurs in the corresponding secrecy
graph. We obtain inner and outer bounds on the achievable
(λ, rE) region. In [17], degree distribution and mean value
of bounds on node degree in a Poisson secrecy graph were
characterized, in the special case whenrv is infinite. In this
paper, we provide a tighter upper bound on the percolation
threshold of the triangular lattice, compared to the resultin
[17]. Both analytical and simulation results demonstrate the
dramatic effect of location uncertainty of eavesdroppers on
network connectivity in a secrecy graph.

The remainder of this paper is organized as follows. In Sec-
tion II, the connectivity problems considered in this paperare
presented formally. In Section III, our results on percolation
in square and triangular lattices are presented. The Poisson
secrecy graph is considered in Section IV. Bounds on the mean
node degree, and inner and outer bounds on the achievable (λ,
rE) region are presented. In Section V, numerical results on
percolation probability in lattice secrecy graphs, and bounds on
mean node degree and achievable (λ, rE) region are presented.
Finally, Section VI concludes the paper.

II. M ODEL AND FORMULATION

We denote the function(x)+ , max(0, x). Let Ĝ = (φ, Ê)
denote a geometric graph inRd, where φ = {xi} ⊂ R

d

is the set of locations of legitimate nodes.Ê is the set of
links over which reliable communication is possible. Link
reliability is modeled using Gilbert’s disk graph model [18].
We assume that the radius of communication, or range of view,
is rv. Two nodes are connected in the geometric graph if the
distance between them is at mostrv. A node is unaware of
the presence of any eavesdropper outside the circle of radius
rv centered at the node. Each eavesdropper is located within

a knownfinite area, however, the precise location is unknown.
Let yi denote the location of the center of the area which
contains eavesdropperi. LetAi denote the corresponding area.
The setψ =

⋃

iAi ⊂ R
d thus describes the area in which

eavesdroppers exist. If the locations of the nodes come froma
stochastic point process, we denote the corresponding random
variables byΦ andΨ.

We define secrecy graphs (SGs) based onĜ andψ. A link
exists in the secrecy graph if the link exists in the underlying
geometric graph and the secrecy capacity of the link is
positive. We assume that the wireless medium introduces path
loss, with exponentα, and that the noise introduced by the
receivers is Additive White Gaussian Noise (AWGN). If a
source transmits a signal with powerPs to a receiver at
distancedR, and the eavesdropper is located at distancedE ,
the secrecy capacity is given by [19]

Cs =

(

log

(

1 +
Ps

dα
R

)

− log

(

1 +
Ps

dα
E

))+

. (1)

The AWGN power is assumed to be unity for both the
channels. If the destination is closer than the eavesdropper,
i.e., dR < dE , the secrecy capacity is positive and it is zero
otherwise. It should be noted that in this paper, we will utilize
this link metric for simplicity. In general, it is difficult to
make any claims on the secrecy capacity region of a sizeable
network, given the complex interactions that can take place
between the network nodes to manage and utilize interference
for secrecy [5, 20]. However, since our goal in this paper is
to understand and demonstrate the effect of eavesdroppers on
connectivity without the knowledge of their channels, it is
fitting to sacrifice the network information theoretic rigor, and
instead use this metric for the sake of obtaining a tractable
problem. We will employ two secrecy graphs in this paper
- directed secrecy graphand basic secrecy graph[8]. In a
directed secrecy graph~G, a link (edge) exists fromxi to xj

if ‖xi − xj‖ < ‖xi − yk‖ for all yk ∈ ψ. In a basic secrecy
graphG, a link exists betweenxi and xj if a directed link
exists fromxi to xj and also fromxj to xi in ~G.

A. Secrecy in Square and Triangular Lattice

We consider square and triangular lattices, shown in Fig.
1 and Fig. 3, respectively. A legitimate node is present at
each vertex of the lattice, and each node is connected to its
nearest neighbors. We assume that the probability that a square
(or a triangular) region contains an eavesdropper ispE . We
assume that the links bounding each eavesdropper’s location
are known. For example, assume that the squareS1 in Fig.
1 contains an eavesdropper. In the basic secrecy graph, nodes
a, b, c and d will not have any links, and thus, these nodes
are considered to havefailed. Notice that the node failures are
correlated, since all nodes of a given square fail together.Thus,
we can model the uncertainty in an eavesdropper’s location at
the network level, by employing a physical layer model for
secrecy. This approach can be extended to include scenarios
where each eavesdropper is located within a finite but arbitrary
area. For example, assume that an eavesdropper is present
within the squaresS2, S3 or S4, in Fig. 1. Then all the nodes
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Fig. 1. Failures in square lattice

marked× fail. A similar model is used for the triangular
lattice, where nodes on all the vertices of a triangle fail if
an eavesdropper is present within that triangle.

B. Secrecy in Poisson graph

We assume that the locations of legitimate nodes follow
a Poisson point process (PPP)Φ with intensity 1. Each
eavesdropper is known to be located within a circle of radius
rE . The radiusrE captures the uncertainty in an eavesdrop-
per’s location. The center of the circles follow a PPP with
intensityλ. We denote the directed and basic secrecy graphs
by ~Gλ,rv,rE

andGλ,rv,rE
, respectively.

C. Percolation Threshold

The concept of percolation was introduced by Broadbent
and Hammersley [21], to model the diffusion process in
materials. Percolation is said to occur if an infinite connected
component exists in the corresponding graph. It was shown
that a phase transition exists, i.e., there exists a critical thresh-
old, below which all connected components are finite, almost
surely, and above which an infinite connected component
exists, almost surely. Similar results exist on connectivity in
random graphs [22]; an area initiated by the work of Erdős
and Ŕeyni [23]. In an Erd̋os-Ŕeyni graph, the probability of
existence of a link between any two nodes is independent
of the spatial positions of the nodes, and hence, it does
not consider network geometry. Therefore,geometricrandom
graphs [24] are used instead, to model wireless networks
[25, 26]; where connectivity is analyzed using tools from
continuum percolation [27].

Let us denote the number of nodes in the connected
component containing the origin by|C|. First, we consider
lattice secrecy graphs where probability of an eavesdropper
occupying a square or triangular region ispE . The percolation
probability θ(pE) and percolation thresholdpc

E are defined as

θ(pE) = P (|C| = ∞) (2)

pc
E = inf{pE : θ(pE) = 0}. (3)

Roughly,pc
E is the smallest value ofpE for which an infinite

component does not exist in the secrecy graph. In other words,
for any pE < pc

E , the secrecy graph will have an infinite
connected component containing the origin, almost surely.
However, the origin is part of the infinite component with
probability θ(pE), and not with probability1 [28]. In Poisson
secrecy graphs, we assume that the intensity of the legitimate
nodes and the radius of communicationrv are fixed, and define
the percolation probability as

θ(λ, rE) = P (|C| = ∞). (4)

The percolation threshold pairs (λc, rc
E) are defined as

λc = inf{λ : θ(λ, rc
E) = 0}, rc

E ≥ 0. (5)

III. SQUARE AND TRIANGULAR LATTICES

In this section, we will present bounds on the percola-
tion threshold of square and triangular lattices, where the
eavesdroppers are known to be located within square and
triangular areas, respectively. We note that the percolation
thresholds are known precisely only for a few lattices. For
example, for a triangular lattice, where a node appears at each
vertexindependentlywith probabilityp, the critical probability
is pc = 1/2 [29]. However, the corresponding percolation
threshold for a square lattice is not known [28]. Notice that
in the secrecy graphs considered in this paper, failures are
correlated, and hence, the corresponding problems of deter-
mining the percolation threshold are expected to be intractable.
Therefore, we focus on obtaining upper and lower bounds
on the percolation threshold that are as tight as possible.
The bounds are obtained by considering a square lattice with
different link probabilities for horizontal and vertical links.
The following lemma from [30] is useful in obtaining the
bounds.

Lemma 1. (Sykes and Essam [30]): For a square lattice with
link probabilitiesp1 and p2 for horizontal and vertical links,
respectively, the critical probability satisfies

p1 + p2 = 1. (6)

Let the distance between the nearest neighbors in a square
or triangular lattice bes. We will assume thatrv > s, since
percolation can occur in square and triangular lattices only if
rv > s.

We first consider the square lattice, where the probability
that a square region bounded by links in the lattice contains
an eavesdropper ispE . It is known which squares contain an
eavesdropper, however, the exact locations of the eavesdrop-
pers within the squares are unknown. The following theorem
presents bounds on the critical eavesdropper probability,for a
square lattice.

Theorem 1. For a square lattice where nodes are located
on the vertices of the lattice and eavesdroppers are located
in square regions of the lattice with probabilitypE , the
percolation threshold for the basic secrecy graph, denotedby
pc

E , satisfies

1 − 1
16
√

2
≤ pc

E ≤ 3 −
√

5

2
. (7)
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Proof: The existence of critical probability follows from
[28]. The percolation threshold in the given square latticeS1

is denoted bypc
E .

For the upper bound on the percolation threshold, assume
that no eavesdroppers are present in the squares(2i, 2j) for
all integers i and j, and eavesdroppers are present in the
remaining squares with probabilitypE . Now assume that each
square(2i + 1, 2j + 1) is a node in a new square lattice
S2, and the node fails when there is an eavesdropper in the
corresponding square. Further, the nodes inS2 correspond-
ing to squares(2i + 1, 2i + 1) and (2i + 3, 2i + 1) are
connected if and only if there is no eavesdropper in square
(2i + 2, 2i + 1). Similarly, the nodes inS2 corresponding to
squares(2i+ 1, 2i+ 1) and (2i+ 1, 2i+ 3) are connected if
and only if there is no eavesdropper in square(2i+1, 2i+2).
Thus, in the square latticeS2, the probability of existence of a
node and a link are denoted aspn = 1− pE andpl = 1− pE ,
respectively. Notice that the failures inS2 are independent and
identically distributed (i.i.d.). However, we have a mixedsite-
bond percolation problem [31], and the percolation threshold
for that problem is not known. To obtain a bond percolation
problem with independent bond (link) probabilities, we map
a node failure to the failure of the horizontal link connected
to that node on the left. Notice that this underestimates the
number of link failures, since a node failure would actually
result in the failure of all the links connected to it. Thus, we
obtain a new square latticeS3 in which node probability is
1 and link probabilities for horizontal and vertical links are
p1 = (1 − pE)2 and p2 = (1 − pE), respectively. Let the
critical threshold ofpE for the square latticesS2 andS3 be
pS2

E andpS3

E , respectively. For a fixedpE , if percolation does
not occur in the square latticeS3, it cannot occur in the square
latticeS2 either. Further, removing eavesdroppers from squares
(2i, 2j) in the square latticeS1 can only increase the critical
threshold. Hence, the percolation thresholds of the latticesS1,
S2, S3 satisfy

pc
E ≤ pS2

E ≤ pS3

E (8)

The percolation threshold of the square latticeS3 can be found
using Lemma 1, where link probabilities are(1 − pE)2 and
(1 − pE). This gives the upper bound in the statement of the
theorem.

For the lower bound, consider a tiling inR2 where each tile
is a square region consisting of16 squares. Adjacent rows of
tiles are offset by two squares, as shown in Fig. 2(a). Each tile
is mapped to a node in a triangular lattice, which fails when
any of the squares in that tile contains an eavesdropper. This
results in a triangular lattice with node probability(1− pE)16

and link probability 1. Note that we are over-counting the
number of eavesdroppers, and this results in a lower bound on
the percolation threshold. Percolation occurs in the triangular
lattice if

(1 − pE)16 > pT
c,n (9)

wherepT
c,n = 1/2 is the node (site) percolation threshold for a

triangular lattice [29]. Thus, the percolation threshold for the
square latticeS1 must me at least1 − 1/ 16

√
2.

For the square lattice, the probability of a node failure is
related topE as

pfail = pE(2(1 − pE)(2 − pE + p2
E) + p3

E). (10)

We contrast this with the scenario where nodes occur on the
vertices of a square lattice independently with probability p.
Let the threshold probability in that case bepc. In the secrecy
graph model, adjacent nodes fail together, and hence, the fail-
ures areclustered. Intuitively, a larger number of node failures
can be tolerated in the secrecy graph before connectivity is
lost, and hence, we expect thatpfail > (1 − pc). Further, we
expect thatpE < (1 − pc), since more than one node failures
may occur due to the presence of one eavesdropper. Numerical
results in Section V will validate this intuition.

Now, consider the placement of nodes on the vertices of the
triangular lattice and eavesdroppers inside triangular regions
of the lattice. Suppose that a triangular region contains an
eavesdropper with probabilitypE . The critical eavesdropper
probability can be bounded as in the following theorem.

Theorem 2. For a triangular lattice where nodes are located
on the vertices of the lattice and eavesdroppers are located
in triangular regions of the lattice with probabilitypE , the
percolation threshold for the basic secrecy graph, denotedby
pc

E , satisfies

1− 1
24
√

2
≤ pc

E ≤ 4

3
− 1

3





3

√

25 −
√

621

2
+

3

√

25 +
√

621

2



 .

(11)

Proof: We denote the given triangular lattice byT1. For
the upper bound, assume that there are no eavesdroppers in
the triangles(3i+1, 3j+1), (3i+1, 3j+2), (3i+2, 3j+1),
(3i+ 2, 3j + 2) for all integersi andj and the eavesdroppers
are present in the remaining triangles with probabilitypE . The
indexing of triangles is shown in Fig. 3. Now assume that each
triangle (3i, 3j) is a node of a new square latticeS1 which
fails when there is an eavesdropper in that triangle. Further,
nodes inS1 corresponding to triangles(3i, 3i) and(3i+3, 3i)
are connected if and only if there is no eavesdropper in any
of the triangles(3i+ 1, 3i) and (3i+ 2, 3i). Similarly, nodes
in S1 corresponding to triangles(3i, 3i) and (3i, 3i + 3) are
connected if and only if there is no eavesdropper in any of
the triangles(3i, 3i+ 1) and (3i, 3i+ 2). Thus, in the square
latticeS1, the probability of existence of a node and a link is
pn = 1−pE andpl = (1−pE)2 respectively. We obtain a bond
(link) percolation problem with independent link probabilities
by mapping a node failure to the failure of the horizontal link
connected to the node on the left. Thus, we obtain a new
square latticeS2 with node probability1 and link probabilities
for horizontal and vertical linksp1 = (1 − pE)3 and p2 =
(1 − pE)2, respectively. Let the critical threshold ofpE for
square latticesS1, S2 andS3 bepc

E , pS2

E andpS3

E , respectively.
For a fixedpE , if percolation does not occur in the square
latticeS3, it cannot occur in the square latticeS2, and in turn
it cannot occur in the square latticeS1. Hence,

pc
E ≤ pS2

E ≤ pS3

E . (12)
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Fig. 2. (a) Tiling in square lattice for lower bound (b) Tiling in triangular lattice for lower bound
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Fig. 3. Indices in triangular lattice

The percolation thresholdpS3

E can be found using Lemma 1,
where link probabilities are(1 − pE)3 and (1 − pE)2.

For the lower bound, consider a tiling inR2 where each
tile consists of24 triangular regions, as shown in Fig. 2(b).
Each tile is mapped to a node in a triangular lattice, which
fails when any of the triangular regions in that tile contains
an eavesdropper. This results in a triangular model with node
probability (1 − pE)24 and link probability1. Following the
arguments in the proof of Theorem 1, it can be shown that
the percolation threshold of the triangular latticeT must me
at least1 − 1/ 24

√
2.

IV. POISSON SECRECY GRAPH

In this section, we consider a Poisson model whereΦ is a
Poisson point process (PPP) of intensity1 in R

2 ( Intensity of
a point process denotes the density of nodes per unit area.).
The eavesdroppers are located in known circular regions. The
centers of circular regions are located inR

2 according to a
Poisson point processΨ of intensityλ, which is independent
of Φ. The radius of the circular regions is denoted byrE . We

assume that a legitimate node is aware of only those circular
regions containing eavesdroppers whose centers lie withinthe
circle of radiusrv, centered at the node.

For simplicity, we consider the node located at the origin,
denoted byo. LetN denote the number of bi-directional links
of nodeo. An analytic computation ofN is difficult because
it requires characterization of the intersection of two regions
- a circular region which determines the out-degree of node
o, and a polygonal region which determines the in-degree of
node o. The polygonal region is the interior of the region
formed by the intersection of bisectors of the line segments
which join the origin to the eavesdroppers. LetNout denote
the number of directed links out of nodeo. Assume that the
center of a circular region containing an eavesdropper, which
is closest to the origin, is located at a distanceR from it.
Then Nout is the number of legitimate nodes in the circle
C(0, (min(rv, R) − rE)+). Clearly, N ≤ Nout, and thus,
we have an upper bound on the node degree. A lower bound
can be obtained by considering the circleC(0, (min(rv, R)−
rE)+/2), since the origin has a bi-directional link to all the
nodes in this region. Let̃N denote the number of legitimate
nodes inC(0, (min(rv, R) − rE)+/2). Clearly, Ñ ≤ N . In
the following, we will present results on the probability mass
function (p.m.f.) and mean values ofNout andÑ . The p.m.f.
of node degree characterizes the connectivity properties in
a Poisson secrecy graph. In Poisson graphs without secrecy
constraints, the mean degree is sufficient to characterize the
percolation threshold. We will show that a bound on the mean
degree can be used to obtain an outer bound on the achievable
(λ, rE) region.

A. Degree distributions

We now present the degree distributions ofNout andÑ by
computingP (Nout = n) andP (Ñ = n), both of which can
be expressed in terms of the same set of functions{fn(x, y)}.
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Let fn(x, y) be defined for alln ∈ {0, 1, . . .} as follows.

f0(x, y) = 1 − e−xyr2
E + e−xyr2

ve−x(rv−rE)2

+
y

1 + y
e−x y

1+y
r2

E (e−x(1+y)r2
E( y

1+y
)2

−e−x(1+y)(rv−rE/(1+y))2)

+xye−x y

1+y
r2

E
rE

(1 + y)3/2

√

π

x
·

(

− erf

(

√

x(1 + y)rE
y

1 + y

)

+erf

(

√

x(1 + y)

(

rv − rE
1 + y

)))

(13)

fn(x, y) =
y

n!

1

(1 + y)n+1
e−x

r2
E

y

1+y

(

2n+1
∑

k=0

(

2n+ 1
k

)

·
(

Γ

(

k + 1

2
, x(1 + y)

(

rv − rE
1 + y

)2
)

− Γ

(

k + 1

2
, x(1 + y)

(

rE − rE
1 + y

)2
))

·

(

−rEy
√
x√

1 + y

)2n+1−k

+ rE
√

x(1 + y)

2n
∑

k=0

(

2n
k

)

·
(

Γ

(

k + 1

2
, x(1 + y)

(

rv − rE
1 + y

)2
)

− Γ

(

k + 1

2
, x(1 + y)

(

rE − rE
1 + y

)2
))

·

(

−rEy
√
x√

1 + y

)2n−k
)

+ e−xyr2
ve−x(rv−rE)2

xn(rv − rE)2n

n!
for n ≥ 1, (14)

where

erf(x) =
2√
π

∫ x

0

e−t2dt (15)

is the Gauss error function, and

Γ(s, x) =

∫ ∞

x

ts−1e−tdt (16)

is the upper incomplete gamma function.

In the next theorem, we present the p.m.f. ofNout, the
number of out-going links from the node located at the origin.
This p.m.f. characterizes the connectivity properties in the
directed Poisson secrecy graph. The result is obtained for
rv > rE , since if rv ≤ rE , nodes will be unaware of
eavesdroppers that are located arbitrarily close to them, and
no secure communication will be possible in that case.

Theorem 3. In the directed secrecy graph~Gλ,rv,rE
with

radius of uncertainty for an eavesdropper’s locationrE and
radius of communicationrv > rE , the probability mass
function of the number of out-going links at the originNout

is given by

P (Nout = n) = fn(π, λ) (17)

Proof: Assume that the center of the circular region con-
taining an eavesdropper, that is closest to the origin, is located
at a distanceR from it. Then, the origin can securely transmit
to any node within a circle of radius(min(rv, R) − rE)+.
Averaging the probability of havingn legitimate nodes in that
circle overR results in the statement of the theorem. For
details, see Appendix A.

The above result can be specialized to two regimes of
interest. In the first regime, the uncertainty in the location of
eavesdroppers is small, i.e.,rE → 0. In the second regime, the
communication radius is large, i.e.,rv → ∞. It is clear that
when eitherrE → ∞ or rv → 0, no secure communication is
possible.

Corollary 3.1. If the uncertainty in location of the eavesdrop-
pers is small,

lim
rE→0

P (Nout = 0) =
λ

1 + λ
+

1

1 + λ
e−π(1+λ)r2

v . (18)

Clearly, isolation probability decreases as the radius of com-
munication rv increases. IfrE is finite and the radius of
communicationrv is infinite,

lim
rv→∞

P (Nout = 0) = 1 − 1

1 + λ
e−πλr2

E +
πλrE

(1 + λ)3/2

(

1 − erf

(

λrE

√

π

1 + λ

))

. (19)

Notice that (18) which is obtained by lettingrE tend to zero,
is the same expression obtained in [8], where it is assumed
that the locations of the eavesdroppers are known precisely.
In the directed Poisson secrecy graph, the node degree is
characterized by obtaining the p.m.f. ofNout. In the following
theorem, the p.m.f. of̃N is presented, which is a lower bound
on node degree in the basic Poisson secrecy graph.

Theorem 4. In the basic secrecy graphGλ,rv,rE
with radius

of uncertainty for eavesdropper’s locationrE and radius of
communicationrv > rE , the probability mass function of̃N ,
which is a lower bound on the number of bi-directional links
at the origin, is given by

P (Ñ = n) = fn

(π

4
, 4λ
)

(20)

Proof: The proof is similar to that of Theorem 3, but
nodes within the circle of radius(min(rv, R) − rE)+/2 are
considered. For details, see Appendix B.

Notice that the probability mass functions of̃N andNout

are given by the same set of functions{fn(x, y)}, albeit with
different parameters. This is because the ratio of the areas
considered for obtaining̃N andNout is constant regardless
of the distance to the closest eavesdropper. Once again, we
specialize the results forrE → 0 andrv → ∞ as follows.

Corollary 4.1. If the uncertainty in location of the eavesdrop-
pers is small,

lim
rE→0

P (Ñ = 0) =
4λ

1 + 4λ
+

1

1 + 4λ
e−(π/4)(1+4λ)r2

v . (21)



Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

If rE is finite and the radius of communicationrv is infinite,

lim
rv→∞

P (Ñ = 0) = 1 − 1

1 + 4λ
e−πλr2

E +
πλrE

(1 + 4λ)3/2

(

1 − erf

(

4λrE

√

π/4

1 + 4λ

))

. (22)

Thus, we have characterized̃N andNout by obtaining their
p.m.f.s, which show important trends with respect torv, λ
andrE . The trends are easy to notice in the regimesrE → 0
andrv → ∞. In these regimes, isolation probability increases
with λ and rE and decreases withrv, as expected. Isolation
probability is an important parameter, since it representsthe
proportion of nodes in the secrecy graph that cannot commu-
nicate securely with any other node. To further our intuition,
we next characterizeP (Ñ = 0) andP (Nout = 0) when two
of the parametersλ, rE andrv take extreme values.

Remark 1. For the directed secrecy graph,

lim
rv→∞,rE→0

P (Nout = 0) =
λ

1 + λ
(23)

lim
rv→∞,rE→∞

P (Nout = 0) = 1. (24)

Similarly, for the upper bound on isolation probability,

lim
rv→∞,rE→0

P (Ñ = 0) =
4λ

1 + 4λ
(25)

lim
rv→∞,rE→∞

P (Ñ = 0) = 1. (26)

Thus, in both the cases, none of the nodes have any links,
almost surely, in either the directed or basic secrecy graph, if
the locations of the eavesdroppers are not known at all. For
rE → 0, we obtain the probability of isolation of a node when
locations of all the eavesdroppers are known precisely, which
match the results in [8] whererE = 0 was assumed. Note that
for small values ofλ both limrv→∞,rE→0 P (Nout = 0) and
limrv→∞,rE→0 P (Ñ = 0) increase linearly withλ.

Remark 2. As the eavesdroppers’ intensityλ goes to zero,

lim
rv→∞,λ→0

P (Nout = 0) = 0 (27)

lim
rv→∞,λ→0

P (Ñ = 0) = 0, (28)

meaning that all the nodes have at least one link, almost surely.
As the eavesdroppers’ intensityλ goes to infinity,

lim
rv→∞,λ→∞

P (Nout = 0) = 1 (29)

lim
rv→∞,λ→∞

P (Ñ = 0) = 1, (30)

meaning that none of the nodes have any links, almost surely,
regardless of the radius of uncertainty for eavesdroppersrE
and even if the communication radius is infinite.

B. Mean degree and percolation threshold

We now present results on the mean degree and percolation
threshold for the Poisson secrecy graph. In a Poisson graph
with intensity of nodesλ and communication radiusr, where
no secrecy constraints are imposed, the node degree distribu-
tion, and hence, connectivity properties are characterized by

the terma , λπr2, which is the mean node degree in the
graph. A critical valueac exists such that ifa > ac an infinite
connected component exists in the graph with probability
1. If a < ac, no infinite connected component exists, with
probability 1. In the following theorem, we obtain bounds on
the mean degree in the basic Poisson secrecy graph, and then
obtain necessary and sufficient conditions for percolationto
occur. The necessary condition is obtained in terms of a bound
on the mean degree.

Theorem 5. The mean degree of a node in the basic Poisson
secrecy graph with secure bi-directional links is bounded as,

E[Ñ ] ≤ E[N ] ≤ E[Nout], (31)

where

E[Ñ ] =
1

4λ

(

e−λπr2
E − e−λπr2

v

)

− πrE

4
√
λ

(

erf(
√
λπrv) − erf(

√
λπrE)

)

(32)

E[Nout] = 4E[Ñ ] (33)

Proof: The regions corresponding tõN andNout were
chosen so that̃N ≤ N ≤ Nout. By taking expectation, we
obtain (31). The lower bound is obtained as follows. Let the
center of the circular region containing an eavesdropper, that
is closest to the origin, be located at a distanceR from it. The
lower bound is computed using the law of total expectation
E[Ñ ] = E

R
[E[Ñ |R]]. The upper bound is obtained in a similar

manner. For details, see Appendix C.
Notice that the ratioE[Nout]/E[Ñ ] is constant since the

ratio of areas considered for obtainingNout and Ñ is fixed.
Thus, the bounds are expected to be tight when the mean
degree is small. We now specialize the above result forrE → 0
andrv → ∞.

Corollary 5.1. If the uncertainty in the location of eavesdrop-
pers is small,

lim
rE→0

E[Ñ ] =
1

4λ

(

1 − e−λπr2
v

)

. (34)

As expected, the mean degree increases asrv increases.
Further, for smallλ and rv finite, limrE→0 E[Ñ ] ≈ πr2v/4,
and hence, the mean degree depends only onrv. If rE is finite
and the radius of communicationrv is infinite,

lim
rv→∞

E[Ñ ] =
1

4λ
e−λπr2

E − πrE

4
√
λ

(

1 − erf(
√
λπrE)

)

. (35)

The mean degree decreases exponentially with the termλπr2E .

We now compute the bounds on the mean degree when two
of the parametersλ, rE , rv take extreme values. We expect
the bounds to take large values whenλ, rE are small andrv
is large.

Remark 3. As the radius of uncertainty for eavesdroppers’
locationrE takes limiting values,

lim
rv→∞,rE→0

E[Ñ ] =
1

4λ
(36)

lim
rv→∞,rE→∞

E[Ñ ] = 0. (37)
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Fig. 4. Percolation threshold for square lattice

As expected, if the uncertainty in the eavesdroppers is large, no
secure communication is possible. If the communication radius
is large, and the uncertainty in the location of eavesdroppers
is small, the mean degree has an inverse dependence on
λ. Hence, it is expected that secure communication will be
possible ifλ is sufficiently small.

Remark 4. As the intensity of eavesdropper nodesλ takes
limiting values,

lim
rv→∞,λ→0

E[Ñ ] = ∞ (38)

lim
rv→∞,λ→∞

E[Ñ ] = 0. (39)

As the intensity of eavesdroppers (λ) increases, the probability
of existence of link decreases, and thus, the mean degree
decreases. In the limit of large intensity of eavesdroppers, there
is no secure link, almost surely, and thus, the probability that
node degree is zero is 1.

We have characterized the lower and upper bounds to the
mean degree in a basic Poisson secrecy graph. The above
results show that the bounds to mean degree depend crucially
on both the radius of uncertaintyrE and the intensity of
eavesdropper nodesλ. We will now characterize the pair of
values taken by these two parameters for which an infinite
connected component exists in the basic Poisson secrecy
graph. We will show that an outer bound on the (λ, rE) region
is obtained in terms of the upper bound on the mean degree.
We begin by defining the achievable (λ, rE) region.

Definition 1. Consider a Poisson secrecy graph with intensity
of legitimate nodes1, radius of communicationrv. The pair
(λ, rE) of the intensity of eavesdroppers and the radius of
uncertainty in an eavesdropper’s location is achievable if
percolation occurs in the corresponding secrecy graph, i.e.,
if θ(λ, rE) = P (|C| = ∞) > 0.

A complete characterization of the achievable region re-
quires us to determine the critical pairs (λc, rc

E), which is a
difficult problem. In the following theorem, we provide inner
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Fig. 5. Percolation threshold versus area

and outer bounds for the achievable region. The outer bound
is obtained in terms of an upper bound on the mean degree
E[Nout].

Theorem 6. Consider a Poisson secrecy graphGλ,rv,rE
with

density of eavesdroppersλ, radius of uncertainty of the eaves-
droppersrE and radius of communicationrv. Percolation does
not occur in the basic Poisson secrecy graph if

E[Nout] <
6π

2π + 3
√

3
, (40)

whereE[Nout] is given by (33). Further, percolation occurs
if

λ <
1

L2(s∗)2

(

(2L− 1) log(1 − e−(s∗)2) − log(pUB
c )

)

,

(41)
where L = 7. pUB

c is an upper bound on site (node)
percolation threshold for the square lattice.s∗ is chosen as

s∗ = arg max
s≥(3+

√
5)rE/4

(

e−λL2s2

(1 − e−s2

)2L−1
)

, (42)

whereL = 7. It is assumed thatrv >
√

5s∗.

Proof: The outer bound is obtained by iteratively building
the connected component containing the origin and bounding
the number of new nodes added at each step. The inner
bound is obtained by considering a tiling inR2 where each
tile is mapped to a node in a square lattice. The radius of
communication and parameters of the tiling are chosen so
that percolation occurs in the square lattice. For details see
Appendix D.

Thus, we have obtained necessary and sufficient conditions
for percolation to occur in the basic Poisson secrecy graph.
The outer bound shows that percolation does not occur if the
upper bound on the mean degree is smaller than a threshold
(≈ 1.642). The inner bound is obtained by assuming a specific
structure on the underlying graph and then computing the
probability for such a structure to occur. In Section V, the
behavior of the inner and outer bounds is explored through
numerical results.
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Fig. 6. Mean degree versusrE in basic Poisson secrecy graph

V. NUMERICAL RESULTS

In this section, we present numerical results for lattice and
Poisson secrecy graphs. For lattice secrecy graphs, we present
simulation results on the percolation threshold. For Poisson
secrecy graphs, we present numerical results on the mean
degree, and the inner and outer bounds to the achievable (λ,
rE) region.

A. Lattice secrecy graphs

We estimated the percolation probabilityθ(pE) for L × L
square lattice through Monte-Carlo simulations. Eavesdroppers
were placed in the squares randomly and independently, with
the probability of a given square having an eavesdropper being
pE . We estimated the probability that a cluster wraps around
the periodic boundary conditions. Cluster wrapping can be de-
fined in several ways. We considered the probability of cluster
wrapping in the horizontal and vertical directions, denoted by
R

(h)
L (pE) andR(v)

L (pE), respectively [32].105 random lattices
were generated for each estimate. Fig. 4 shows the variation
of percolation probability withpE , for L = 50, 100, 200.
Notice that in Fig. 4, the percolation probability transitions
from a large value (close to1), to a small value (close to0).
This transition is a typical behavior of percolation probability,
and the region of transition becomes narrower as the size of
simulated network increases. The percolation threshold can be
estimated as the point of intersection of the three curves. Thus,
for the square lattice with each eavesdropper located within a
square, the percolation threshold ispc

E ≈ 0.163. ForpE = pc
E ,

we obtainpfail ≈ 0.5 (using (10)) for correlated node failures,
whereas for independent node failures, the critical threshold
is pfail ≈ 0.41. Although, a larger proportion of node failures
can be tolerated (pfail) in the correlated failure scenario, only
16.3% eavesdroppers can be tolerated in that case.

We now show the effect of the uncertainty in the location of
eavesdroppers on the percolation threshold. An eavesdropper
may be located anywhere within certainNS squares.NS cap-
tures the amount of uncertainty in an eavesdropper’s location.
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Fig. 7. Mean degree versusrv in basic Poisson secrecy graph

Fig. 5 shows the variation of percolation probability withpE

for L = 100 andNS = 1, 2, 4, 9. As expected, this probability
reduces asNS increases, where the decrease quantifies the
effect of uncertainty in location on percolation thresholdof
secrecy graphs.

B. Poisson secrecy graphs: Mean degree

We now present numerical results for the Poisson secrecy
graph. Fig. 6 shows the variation of the upper and lower
bounds on the mean degree of the node located at the origin
in the basic secrecy graph withrE , for rv = 1, 10, 100. λ was
chosen as0.1 for which percolation occurs atrE = 0 [8]. For
a fixed value ofrv, the upper and lower bounds both decrease
to zero asrE increases. As expected, the bounds on the mean
degree increase as the radius of communicationrv increases.
The figure shows that the mean degree is severely limited if
rv is small. For the range of values ofrE considered here,
the bounds on the mean degree are the same forrv = 10 and
rv = 100. i.e., for rv ≥ 10, the mean degree is limited by the
secrecy constraint.

Fig. 7 shows the variation of the upper and lower bounds on
the mean degree withrv, for rE = 0, 0.5, 2, andλ = 0.1. As
expected, the bounds on the mean degree increase withrv. The
figure shows that the bounds on the mean degree converge to
the asymptotic value atrv ≈ 4. For rE = 2, the mean degree
is zero forrv < 2. Whenrv > 2, the mean degree increases
asrv increases. The figure shows a dramatic reduction in the
mean degree asrE increases. Further, for small values ofrE ,
the mean degree increases quickly withrv and then saturates.

Fig. 8 shows the variation of the upper and lower bounds
on the mean degree withλ, for rE = 0, 0.5, 2, andrv = 10.
As expected, for fixed values ofrv andrE , the bounds on the
mean degree decrease with an increase inλ. The figure shows
that for the range of values ofrE considered here, the mean
degree decreases sharply asλ increases from0 to 0.5, and the
decrease is moderate whenλ > 0.5.
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C. Poisson secrecy graphs: Inner and Outer bounds on
achievable (λ, rE) region

The inner and outer bounds on the achievable (λ, rE) region
are shown in Fig. 9. The result in Fig. 9 indicates that perfect
secrecy can be attained to the left of the lower bound while
cannot be attained to the right of the upper bound. Inner and
outer bounds are presented forrv = 2, 5, 10. The outer bound
reduces dramatically asrv is reduced from10 to 2, showing
the need for a large communication radiusrv. Notice that for
rv = 10 and smallλ, the inner and outer bounds follow a
similar trend, although there is a significant gap between the
two. The large gap suggests that at least one of the bounds is
not tight. The inner bound shows that percolation will occur
for large values ofrE as long asλ is sufficiently small. As
rE becomes small, the lower bound remains to the left of
λ = 2×10−3. This is because of the specific structure assumed
for deriving the inner bound.

VI. CONCLUSION

We considered a secrecy graph approach to investigate the
effect of eavesdroppers with uncertain locations on network
connectivity, which was defined in percolation sense. The
communication network and the impact of eavesdroppers on
network connectivity were modeled via a secrecy graph. The
uncertainty in the location of the eavesdroppers was modeled
directly at the network level as correlated failures in the
secrecy graph. Bounds on percolation thresholds of square
and triangular lattice secrecy graphs were presented. For the
Poisson secrecy graph, the degree distribution and mean value
of upper and lower bounds on the mean node degree were
presented. Inner and outer bounds on the achievable region of
pairs of the intensity of eavesdropper nodes and the radius of
uncertainty for eavesdroppers locations were obtained. Both
analytic and numerical results showed that uncertainty in
the location of the eavesdroppers effects connectivity in a
secrecy graph dramatically. Future directions include investi-
gating information theoretic secrecy based methods to mitigate
the effect of uncertainty in location (CSI) of eavesdroppers,
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Fig. 9. Inner and outer bounds on achievable(λ, rE) region

using the secrecy graph approach developed in this paper. In
addition, exploring percolation threshold for a fading based
model is an important open problem.

APPENDIX A
PROOF OFTHEOREM 3

Probability that the node at origin hasn outgoing edges is
given by

P (Nout = n) =

∫ rv

r=0

P (Nout = n|R = r)fR(r)dr

+P (R ≥ rv)P (Nout = n|R = rv),

where

P (Nout = n|R = r)

=

{

1{n=0} if r ≤ rE ,

e−π(r−rE)2 πn(r−rE)2n

n! if r > rE .
(43)

andfR(r) = 2πλre−πλr2

.

Thus, forrv > rE ,

P (Nout = n)

=

∫ rv

r=0

P (Nout = n|R = r)fR(r)dr

+e−πλr2
ve−π(rv−rE)2 π

n(rv − rE)2n

n!
. (44)

The first expression is given by
∫ rv

r=0

P (Nout = n|R = r)fR(r)dr

= 2πλ1{n=0}

∫ rE

r=0

re−πλr2

dr +
2πλπn

n!
×

∫ rv

r=rE

e−π(r−rE)2re−πλr2

(r − rE)2ndr (45)
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The second term is given by
∫ rv

r=rE

P (Nout = n|R = r)fR(r)dr

=
2πn+1λ

n!

∫ rv

r=rE

r exp (−(1 + λ)π

[

(

r − rE
1 + λ

)2

+
r2Eλ

(1 + λ)2

])

(r − rE)2ndr

=
2πn+1λ

n!
e−π

r2
E

λ

1+λ

∫ rv

r=rE

r exp

(

−(1 + λ)π

(

r − rE
1 + λ

)2
)

(r − rE)2ndr (46)

Definet , π(1+λ)(r− rE

1+λ )2, tL , t(rE), tU , t(rv). Then
the above integral is given by

∫ rv

r=rE

P (Nout = n|R = r)fR(r)dr

=
2πn+1λ

n!
e−π

r2
E

λ

1+λ

∫ tU

t=tL

(

rE
1 + λ

+

√

t

π(1 + λ)

)

e−t

(
√

t
π(1+λ) −

rEλ
1+λ

)2n

2π(1 + λ)
√

t
π(1+λ)

dt

=
λ

n!

1

(1 + λ)n+1
e−π

r2
E

λ

1+λ

∫ tU

t=tL

(

rE
√
π√

1 + λ
+
√
t

)

e−t

(

−rEλ
√
π√

1 + λ
+

√
t

)2n

/
√
tdt

=
λ

n!

1

(1 + λ)n+1
e−π

r2
E

λ

1+λ

∫ tU

t=tL

(

e−t

(

−rEλ
√
π√

1 + λ
+
√
t

)2n+1

/
√
t

+rE
√

π(1 + λ)e−t

(

−rEλ
√
π√

1 + λ
+
√
t

)2n

/
√
t

)

dt

=
λ

n!

1

(1 + λ)n+1
e−π

r2
E

λ

1+λ

∫ tU

t=tL

(

e−t
2n+1
∑

k=0

(

2n+ 1
k

)

t(k−1)/2

(

−rEλ
√
π√

1 + λ

)2n+1−k

+rE
√

π(1 + λ)e−t
2n
∑

k=0

(

2n
k

)

t(k−1)/2

(

−rEλ
√
π√

1 + λ

)2n−k
)

dt

=
λ

n!

1

(1 + λ)n+1
e−π

r2
E

λ

1+λ

{

2n+1
∑

k=0

(

2n+ 1
k

)

(

Γ

(

k + 1

2
, π(1 + λ)

(

rv − rE
1 + λ

)2
)

− Γ

(

k + 1

2
, π(1 + λ)

(

rE − rE
1 + λ

)2
))

(

−rEλ
√
π√

1 + λ

)2n+1−k

+ rE
√

π(1 + λ)

2n
∑

k=0

(

2n
k

)

(

Γ

(

k + 1

2
, π(1 + λ)

(

rv − rE
1 + λ

)2
)

−Γ

(

k + 1

2
, π(1 + λ)

(

rE − rE
1 + λ

)2
))

(

−rEλ
√
π√

1 + λ

)2n−k
}

(47)

The result forn ≥ 1 is obtained by combining equations (44),
(45) and (47). Whenn = 0, equations (44) and (45) yield

P (Nout = 0)

= e−πλr2
ve−π(rv−rE)2 + 1 − e−πλr2

E

+2πλe−π λ
1+λ

r2
E

∫ rv

r=rE

re−π(1+λ)(r− rE
1+λ

)2dr (48)

The integral in (48) can be computed as
∫ rv

r=rE

re−π(1+λ)(r− rE
1+λ

)2dr

=
1

π(1 + λ)

(

e−π(1+λ)(
λrE
1+λ

)2 − e−π(1+λ)(rv− rE
1+λ

)2
)

+
π

1 + λ

1

2
√

1 + λ
·
(

erf

(

√

π(1 + λ)
λ

1 + λ
rE

)

− erf

(

√

π(1 + λ)

(

rv − rE
1 + λ

)))

(49)

which yields the result forn = 0.

APPENDIX B
PROOF OFTHEOREM 4

Probability that the node at origin hasn outgoing edges is
given by

P (Ñ = n) =

∫ rv

r=0

P (Ñ = n|R = r)fR(r)dr

+P (R ≥ rv)P (Ñ = n|R = rv), (50)

where

P (Ñ = n|R = r)

=

{

1{n=0} if r ≤ rE ,

e−
π
4
(r−rE)2πn (r−rE)2n

4nn! if r > rE
(51)

andfR(r) = 2πλre−πλr2

.
Note that all the terms in the expression are obtained from

the expression ofP (Nout = n) by replacingπ with π/4 and
λ with 4λ and hence the statement of the Theorem holds.

APPENDIX C
PROOF OFTHEOREM 5

Assume that the center of a circular region containing an
eavesdropper, which is closest to the origin, is located at a
distanceR from it. Using the law of total expectation, we
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obtain

E[Ñ ] = E
R

[E[Ñ |R]] (52)

a
= E

R
[π((min(rv, R) − rE)+/2)2], (53)

where (a) holds because for a fixedR, the mean number of
legitimate nodes in the circleC(0, (min(rv, R) − rE)+/2)
areπ((min(rv, R)− rE)+/2)2 (the intensity of the legitimate
nodes is assumed to be1). The distribution ofR is fR(r) =
2πλre−πλr2

. Thus,

E[Ñ ] =
π

4

(∫ rv

rE

(r − rE)2fR(r)dr

+

∫ ∞

rv

(rv − rE)2fR(r)dr

)

=
π

4

(

−(rv − rE)2e−λπr2
v

+
1

λπ

(

e−λπr2
E − e−λπr2

v

)

−2rE

∫ rv

rE

e−λπr2

dr + (rv − rE)2e−λπr2
v

)

=
1

4λ

(

e−λπr2
E − e−λπr2

v

)

− πrE

4
√
λ

(

erf(
√
λπrv) − erf(

√
λπrE)

)

. (54)

For the upper bound, we consider all the nodes in the circle
C(0, (min(rv, R) − rE)+). Therefore,

E[Nout] = E
R

[E[Nout|R]] (55)

= E
R

[π((min(rv, R) − rE)+)2] (56)

= 4 E[Ñ ] (57)

APPENDIX D
PROOF OFTHEOREM 6

First consider the outer bound. We obtain a necessary
condition for percolation in the directed Poisson secrecy graph.
If percolation does not occur in this graph, it cannot occur in
the basic Poisson secrecy graph either, and hence, an outer
bound on the achievable (λ, rE) region is obtained. The proof
for the outer bound closely follows the analysis in [33]. Let
C0 denote the component containing the origin. Consider a
sequence of pair of sets(Dt, Lt). At step t, Dt is the set of
points that belong toC0, such that all neighbors of points in
Dt also belong toC0. Lt is the set of points which belong
to C0 but whose neighbors have not been explored. We start
with the origin, and initializeD0 = {φ} andL0 = {0}. The
process terminates at stept if Lt = {φ}, otherwise a point
Xt ∈ Lt is chosen and we set

Dt+1 = Dt ∪Xt (58)

Lt+1 = Nt ∪ Lt (59)

where Nt is the set of neighbors ofXt that are not the
neighbors of any points inDt. SinceNt new nodes are added
to the setDt−1 at time t, the size of setDt can be upper

bounded as

|Dt| − 1 ≤
t−2
∑

i=0

|Ni| (60)

The new nodes belong to a region of area at most
(

π

3
+

√
3

2

)

((min(rv, Rt−1) − rE)+)2 (61)

where Rt−1 is the distance to the eavesdropper closest to
Xt−1. Let Z0, Z1, . . . be independent Poisson random vari-
ables with mean

E[Z0] = πE[((min(rv, Rt−1) − rE)+)2] (62)

E[Zi] =

(

π

3
+

√
3

2

)

E[((min(rv, Rt−1) − rE)+)2]

=

(

1

3
+

√
3

2π

)

E[Nout]
.
= b (63)

The probability thatC0 contains at leastk elements can be
upper bounded as

P (|C0| ≥ k) ≤ P (

k−2
∑

i=0

Zi ≥ k − 1) (64)

Percolation does not occur iflimk→∞ P (|C0| ≥ k) = 0 which
occurs ifb < 1, i.e.,

E[Nout] <
6π

2π + 3
√

3
(65)

For the lower bound, consider a tiling inR2 using square
tiles where edge length of each tile iss. A frame consists of
L×L tiles. We map each frame to a node in a square lattice.
Consider tiles A and B marked in Fig. 10. The maximum
distance between a node in tile A and a node in tile B is

√
5s.

Therefore, any node in tile A can communicate securely with
any node in tile B if there is no eavesdropper within(L−1)/2
tiles on each side, withL ≥ 7. We chooseL = 7 to define the
frames. Assume that the center of a circular region containing
an eavesdropper is present at the boundary of a frame. A node
in the center tile of the frame can communicate securely with
a node in a neighboring tile only if

s ≥
(

3 +
√

5

4

)

rE . (66)

Now, consider the square lattice obtained by mapping each
frame to a node in the lattice. A node exists in the lattice if
the corresponding frame has no eavesdropper and a legitimate
node is present in each of the shaded tiles in Fig. 10. Thus,
the site probability for the square lattice is given by

p = e−λL2s2

(1 − e−s2

)2L−1. (67)

We maximizep by choosing the optimal value ofs,

s∗ = arg max
s≥(3+

√
5)rE/4

(

e−λL2s2

(1 − e−s2

)2L−1
)

. (68)

and denote the optimal value ofp by p∗. Percolation occurs
in the square lattice, and hence, in the Poisson secrecy graph,
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s

Frame

A B

Ls

Tile

Fig. 10. Tiling in R
2 for achievable(λ, rE) region

if p∗ > pUB
c , where pUB

c = 0.679492 is an upper bound
on the percolation threshold for the square lattice [33]. Thus,
percolation occurs in the Poisson secrecy graph if

λ <
1

L2(s∗)2

(

(2L− 1) log(1 − e−(s∗)2) − log(pUB
c )

)

.

(69)
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