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Abstract—An additive white Gaussian noise (AWGN) energy-
harvesting (EH) channel is considered where the transmitter
is equipped with an infinite-sized battery which stores energy
harvested from the environment. The energy arrival process is
modeled as a sequence of independent and identically distributed
(i.i.d.) random variables. The capacity of this channel is known
and is achievable by the so-called best-effort and save-and-
transmit schemes. This paper investigates the best-effort scheme
in the finite blocklength regime and establishes the first non-
asymptotic achievable rate for it. The first-order term of the non-
asymptotic achievable rate equals the capacity, and the second-
order term is proportional to −

√
logn/n where n denotes the

blocklength. The proof technique involves analyzing the escape
probability of a Markov process. In addition, we use this new
proof technique to analyze the save-and-transmit and obtain
a new non-asymptotic achievable rate for it, whose first-order
and second-order terms achieve the capacity and the scaling
−1/
√
n respectively. For all sufficiently large signal-to-noise

ratios (SNRs), our new achievable rate outperforms the existing
ones.

I. INTRODUCTION

In this paper, we consider communication over an energy-
harvesting (EH) channel between a transmitted equipped with
an infinite-capacity battery and a receiver as illustrated in
Figure 1. The transmitter wants to transmit a message to the
receiver through the EH channel, and the channel noise is
modeled as an additive white Gaussian noise (AWGN). At
each discrete time k ∈ {1, 2, . . .}, a random amount of energy
Ek arrives at the battery and the transmitter sends a symbol
Xk ∈ X such that

k∑
`=1

X2
` ≤

k∑
`=1

E` almost surely

where X2
` denote the energy consumed by transmitting X`.

This implies that the total harvested energy
∑k
`=1E` must be

no smaller than the “energy” of the codeword
∑k
`=1X

2
` at ev-

ery discrete time k for transmission to take place successfully.
The receiver observes Yk = Xk+Zk at each time k where Zk
is a standard normal random variable which is independent
of Xk and {Zk}∞k=1 are independent. We assume that {E`}∞`=1

are independent and identically distributed (i.i.d.), where E1 is
a non-negative random variable. To simplify notation, we write
E , E1 if there is no ambiguity. Throughout the paper, we
let P , E[E], the expected value of E, be the signal-to-noise
ratio (SNR) of the channel.

For the AWGN EH channel described above, reference [1]
showed that the capacity equals 1

2 log(1 + P ) and proposed
two capacity-achieving schemes, namely save-and-transmit
and best-effort.

The save-and-transmit scheme consists of an initial saving
phase and a subsequent transmission phase. The transmitter
remains silent in the saving phase so that energy will be
accumulated within the battery. In the transmission phase the
transmitter sends the symbols of a random Gaussian codeword
with variance P−∆ as long as the battery has sufficient energy
where 0 ≤ ∆ < P denotes some small offset from P .

The best-effort scheme can be viewed as a save-and-transmit
scheme without an initial saving phase. Therefore, information
is sent right away and the transmitter uses every opportunity
(as long as it has sufficient energy) to output the symbols of
a random Gaussian codeword with variance P −∆ for some
0 ≤ ∆ < P .

Following reference [1], a number of non-asymptotic
achievable rates for save-and-transmit schemes have been
presented [2]–[4]. By contrast, no non-asymptotic achievable
rate exists for the best-effort scheme except for a special
discrete memoryless EH channel with finite battery studied
in [5] and a special discrete memoryless EH channel with no
battery studied in [6]. Therefore, we are motivated to prove the
first non-asymptotic achievable rates for best-effort schemes
over the AWGN EH channel.

This paper contains two main results. First, we derive the
first non-asymptotic achievable rate for the best-effort scheme.
The derivation involves carefully designing the transmitted
power to be P − O

(√
log n/n

)
so that we can effectively

bound the number of mismatched positions between the de-
sired transmitted codeword and the actual transmitted code-
word for a fixed blocklength. Second, we propose a save-
and-transmit scheme with a similar transmitted power P −
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Fig. 1. The AWGN EH channel

O
(√

log n/n
)

and obtain a new non-asymptotic achievable
rate which outperforms the best existing one for all sufficiently
large SNRs P = E[X] > 0.

Note that the results in this paper cease to hold if the size of
the battery is finite. The channel capacity for the finite battery
case is the subject of recent interest, see [7]–[9].

The rest of the paper is organized as follows. Section II
describes the notation used in this paper. Section III presents
the formulation of the AWGN EH channel. Section IV de-
scribes the best-effort scheme and presents the first main result.
Section V discusses the save-and-transmit scheme and presents
the second main result. Section VI concludes this paper and
discusses the extension of the results to the block energy
arrival model [4], [10].

II. NOTATION

We use O(·), Θ(·), ω(·) and o(·) to denote standard asymp-
totic Bachmann-Landau notations except our convention that
they must be non-negative. The sets of natural numbers, real
numbers and non-negative real numbers are denoted by N,
R and R+ respectively. All logarithms are taken to base e
throughout the paper.

Random variables are denoted by capital letters (e.g., X),
and the realization and the alphabet of a random variable
are denoted by the corresponding small letter (e.g., x) and
calligraphic font (e.g., X ) respectively. We use Xn to denote
a random tuple (X1, X2, . . . , Xn), where all the elements Xk

have the same alphabet X . We let pX and pY |X denote the
probability distribution of X and the conditional probability
distribution of Y given X respectively for random variables X
and Y . We let pXpY |X denote the joint distribution of
(X,Y ). For any function f whose domain contains X , we
use EpX [f(X)] to denote the expectation of f(X) where
X is distributed according to pX . For simplicity, we omit
the subscript of a notation when there is no ambiguity.
The distribution of a Gaussian random variable Z whose
mean and variance are µ and σ2 respectively is denoted by

N (z;µ, σ2) , 1√
2πσ2

e−
(z−µ)2

2σ2 .

III. THE AWGN EH CHANNEL

A. Problem Formulation

The AWGN EH channel, as illustrated in Figure 1, consists
of one transmitter and one receiver. Energy harvesting and
communication occur in n time slots, i.e., channel uses. In
each time slot, a random amount of energy E, E = R+, is
harvested where E[E] > 0 and E[E2] < ∞. The energy-
harvesting process is characterized by n independent copies

of E denoted by E1, E2, . . . , En. Before the n time slots, the
transmitter chooses a message W . For each k ∈ {1, 2, . . . , n},
the transmitter consumes X2

k units of energy to transmit Xk ∈
R based on (W,Ek) and the receiver observes Yk ∈ R in
time slot k. The energy state information Ek is known by the
transmitter at time k before encoding Xk, but the receiver has
no access to Ek. For each k ∈ {1, 2, . . . , n}, we have:

(i) Ek and (W,Ek−1, Xk−1, Y k−1) are independent, i.e.,

pW,Ek,Xk−1,Y k−1 = pEkpW,Ek−1,Xk−1,Y k−1 . (1)

(ii) For w ∈ W and every en ∈ Rn+, a transmitted
codeword Xn should satisfy

P

{
k∑
`=1

X2
` ≤

k∑
`=1

e`

∣∣∣∣∣ W = w,En = en

}
= 1 (2)

for each k ∈ {1, 2, . . . , n}.
After n time slots, the receiver declares Ŵ based on Y n to
be the transmitted W .

B. Standard Definitions

Formally, we define a code as follows:
Definition 1: An (n,M)-code consists of the following:
1) A message setW , {1, 2, . . . ,M}, where W is uniform

on W .
2) A sequence of encoding functions fk : W × Rk+ → R

for each k ∈ {1, 2, . . . , n}, where fk is used by the
transmitter at time slot k for encoding Xk according to
Xk = fk(W,Ek).

3) A decoding function ϕ : Rn → W, for decoding W at
the receiver, i.e., Ŵ = ϕ(Y n).

If the sequence of encoding functions fi satisfies (2), the code
is also called an (n,M)-EH code.

Definition 2: The AWGN EH channel is characterized by
a conditional probability distribution qY |X(y|x) , N (y;x, 1)
such that the following holds for any (n,M)-code: For each
k ∈ {1, 2, . . . , n},

pW,Ek,Xk,Y k = pW,Ek,Xk,Y k−1pYk|Xk

where

pYk|Xk(yk|xk) = qY |X(yk|xk) =
1√
2π

e−
(yk−xk)2

2 (3)

for all xk ∈ X and yk ∈ Y .
For any (n,M)-code defined on the AWGN EH channel, let

pW,En,Xn,Y n,Ŵ be the joint distribution induced by the code.
We can factorize pW,En,Xn,Y n,Ŵ as

pW,En,Xn,Y n,Ŵ = pW

(
n∏
k=1

pEkpXk|W,EkpYk|Xk

)
pŴ |Y n ,

(4)

which follows from the i.i.d. assumption of the EH process
En in (1), the fact by Definition 1 that Xi is a function of
(W,Ei) and the memoryless property of the channel qY |X
described in Definition 2.
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Definition 3: For an (n,M)-code defined on the AWGN
EH channel, we can calculate according to (4) the average
probability of decoding error defined as P

{
Ŵ 6= W

}
. We

call an (n,M)-EH code with average probability of decoding
error no larger than ε an (n,M, ε)-EH code.

Definition 4: Let ε ∈ (0, 1) be a real number. A
rate R is said to be ε-achievable for the EH channel if
there exists a sequence of (n,Mn, ε)-EH codes such that
lim infn→∞

1
n logMn ≥ R.

Definition 5: The ε-capacity of the AWGN EH chan-
nel, denoted by Cε, is defined to be Cε , sup{R :
R is ε-achievable for the EH channel}. The capacity of the
AWGN EH channel is C , infε>0 Cε.

Define the capacity function C(x) , 1
2 log(1 + x) for all

x ≥ 0 and define P , E[E]. It was shown in [2] that Cε =
C = C(P ) for all ε ∈ (0, 1) where P = E[X] can be viewed
as the signal-to-noise ratio (SNR) of the AWGN EH channel.

IV. AN ACHIEVABLE RATE FOR BEST-EFFORT

A. Best-Effort Scheme

Fix a blocklength n. Choose a positive real number Sn <
P = E[E] and let

pX(x) ≡ N (x; 0, Sn) (5)

such that

Sn = EpX [X2]. (6)

The codebook consists of M mutually independent ran-
dom codewords, which are constructed as follows. For
each message w ∈ W , a length-n codeword Xn(w) ,
(X1(w), X2(w), . . . Xn(w)) consisting of n i.i.d. symbols is
constructed where X1(w) ∼ pX . Suppose W = w and
En = en, i.e., the transmitter chooses message w ∈ W
and the realization of En is en ∈ Rn+. Then, the transmitter
uses the following best-effort (n,M)-EH code with encod-
ing functions {f best

k }nk=1 and decoding function ϕbest. Define
f best
1 , f best

2 , . . . , f best
n in a recursive manner where

f best
k (w, ek) ,Xk(w) if

(
Xk(w)

)2 ≤ ek +
k−1∑̀
=1

(
e` −

(
f best
` (w, e`)

)2)
,

0 otherwise.
(7)

For each k ∈ {1, 2, . . . , n}, the transmitter sends

X̃k(W ) , f best
k (W,Ek). (8)

By construction,

P

{
k∑
`=1

(
X̃`(W )

)2 ≤ k∑
`=1

E`

}
= 1. (9)

Upon receiving Ỹ n(W ) , (Ỹ1(W ), Ỹ2(W ), . . . , Ỹn(W ))
where Ỹk(W ) is generated according to

P{Ỹk(W ) = b | X̃k(W ) = a} ≡ qY |X(b|a), (10)

the receiver declares that ϕbest(Ỹ n(W )) = j if j is the unique
integer in W that satisfies

n∑
k=1

log
qY |X(Ỹk(W )|Xk(j))

pY (Ỹk(W ))
≥ log ξ, (11)

where pY is the marginal distribution of pXqY |X and log ξ
is an arbitrary threshold. Otherwise, the receiver chooses
ϕbest(Ỹ n(W )) ∈ W according to the uniform distribution.

The code described above is said to be best-effort because
according to (7) and (18), the transmitter tries its best to output
the desired symbol Xk(W ) whenever the battery contains
enough energy for transmitting Xk(W ).

B. Preliminaries

An important quantity that determines the performance of
the best-effort (n,M)-EH code is

Q(n) ,
{
k ∈ {1, 2, . . . , n}

∣∣∣X̃k(W ) 6= Xk(W )
}
, (12)

which is a random set that specifies the mismatched positions
between X̃n(W ) and Xn(W ). The following lemma concerns
the number of mismatched positions between X̃n(W ) and
Xn(W ).

Lemma 1: Fix any n and any ρn ∈ (0, 1) such that
√

42ρn
21

<

√
1− ρn

2
, (13)

and fix a best-effort (n,M)-EH code with

Sn , P (1− ρn). (14)

Define
αn ,

2ρnP

E[E2] + 3S2
n

(15)

and
βn ,

αn
1 + 63αnSn

. (16)

For any γ ∈ R+, we have

P
{
|Q(n)| ≥ γ + 1

}
≤ e−γ

(
Pβn+

α2
nE[E2]

2

)
. (17)

Remark 1: The proof of Lemma 1 can be found in [11,
Appendix A]. An important step in the proof is analyzing
the escape probability P{τ = ∞} of the Markov process{
E1 +

∑k
`=2

(
E` − X2

`

)}τ
k=2

where τ is the stopping time
when the value of the Markov process hits any negative num-

ber a < 0. In particular, P{τ =∞} ≥ 1− e−
(
Pβn+

α2
nE[E2]

2

)
.

The following lemma [12] is standard for proving achiev-
ability results in the finite blocklength regime and its proof
can be found in [13, Th. 3.8.1].

Lemma 2 (Implied by Shannon’s bound [12]): Let pXn,Y n
be the probability distribution of a pair of random vari-
ables (Xn, Y n). Suppose (Xn(1), Y n(1)) ∼ pXn,Y n and
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(Xn(2), Y n(2)) ∼ pXn,Y n are independent. Then for each
δ > 0 and each M ∈ N, we have

P
{

log
pY n|Xn(Y n(1)|Xn(2))

pY n(Y n(1))
> logM + nδ

}
≤ 1

M
e−nδ.

The following lemma is a modification of the Shannon’s
bound stated in the previous lemma, and its proof can be found
in [11, Appendix B].

Lemma 3: Suppose we are given a best-effort (n,M)-EH
code as described in Section IV-A. Then for each γ ∈ R+,
each δ > 0 and each M ∈ N, we have

P


{

log
pY n|Xn (Ỹ

n(1)|Xn(2))
pY n (Ỹ n(1))

> log(Menδ)
}

∩
{
|Q(n)| < γ + 1

}
≤ (Sn+1)

|γ+1|
2

Menδ
.

C. An Achievable Rate for the Best-Effort Scheme

The following theorem is the first main result of this paper.
The proof relies on Lemma 1 and Lemma 3, and it is contained
in [11, Sec. IV and Appendix B].

Theorem 1: Fix an ε ∈ (0, 1), and fix any ε1 > 0 and ε2 > 0
such that ε1 + ε2 ≤ ε. There exists a constant κ > 0 which
does not depend on n such that for all sufficiently large n,
there exists a best-effort (n,M, ε)-EH code with

ρn ,

√
11(P + 1)(E[E2] + 3P 2) log 1

ε2

P
×
√

log n

n
,

Sn = P (1− ρn) = P −Θ

(√
log n

n

)
and some choice of

log ξ = logM +O(
√
n log n)

where
1

n
logM ≥ 1

2
log(1 + P )

−

√
11(E[E2] + 3P 2) log 1

ε2

P + 1
×
√

log n

n

−

√
P

(P + 1)n
Φ−1(ε1)− κ log n

n
.

In particular, the probability of seeing more than
Θ(
√
n/ log n) mismatch events can be bounded as

P
{
|Q(n)| ≥ γn + 1

}
≤ ε2

where

γn ,
log 1

ε2

Pβn +
α2
nE[E2]

2

= Θ
(√ n

log n

)
.

V. AN ACHIEVABLE RATE FOR SAVE-AND-TRANSMIT

In Section IV-A, we have described the construction of the
codebook of a best-effort scheme. In this section, we would
like to investigate a save-and-transmit strategy that uses a
similar codebook.

A. Save-and-Transmit Scheme

Fix a blocklength n. Choose a positive real number Sn <
P = E[E] and let pX and Sn as defined in (5) and (6) re-
spectively. The codebook consists of M mutually independent
random codewords denoted by {Xn(w) |w ∈ W}, which are
constructed as described in Section IV-A. Suppose W = w and
En = en, i.e., the transmitter chooses message w ∈ W and the
realization of En is en ∈ Rn+. Then, the transmitter uses the
following save-and-transmit (n,M)-EH code with encoding
functions {f save

k }nk=1 and decoding function ϕsave. The save-
and-transmit code consists of an initial saving phase and a
subsequent transmission phase. Define γn to be the number of
time slots in the initial saving phase during which no energy
is consumed and hence no information is conveyed. Define
f save
1 , f save

2 , . . . , f save
n in a recursive manner where

f save
k (w, ek) ,
Xk(w) if k > γn and(

Xk(w)
)2 ≤ ek +

k−1∑̀
=1

(
e` −

(
f save
` (w, e`)

)2)
,

0 otherwise.

For each k ∈ {1, 2, . . . , n}, the transmitter sends

X̃k(W ) , f save
k (W,Ek). (18)

By construction,

P

{
k∑
`=1

(
X̃`(W )

)2 ≤ k∑
`=1

E`

}
= 1. (19)

Upon receiving Ỹ n(W ) , (Ỹ1(W ), Ỹ2(W ), . . . , Ỹn(W ))
where Ỹk(W ) is generated according to (10), the receiver
declares that ϕsave(Ỹ n(W )) = j if j is the unique integer
in W that satisfies

n∑
k=γ+1

log
qY |X(Ỹk(W )|Xk(j))

pY (Ỹk(W ))
≥ log ξ, (20)

where pY is the marginal distribution of pXqY |X and log ξ
is an arbitrary threshold. Otherwise, the receiver chooses
ϕsave(Ỹ n(W )) ∈ W according to the uniform distribution.

The following lemma states an upper bound on the prob-
ability of a mismatch event occurring in the transmission
phase given that the saving phase lasts for γ time slots. The
proof of Lemma 4 is quite similar to the proof of Lemma 1
established for the best-effort scheme, and it can be found in
[11, Appendix E].

Lemma 4: Fix any n and any ρn ∈ (0, 1) such that (13)
holds, and fix a save-and-transmit (n,M)-EH code with Sn,
αn and βn being defined as in (14), (15) and (16) respectively.
For any γ ∈ N, we have

P


n⋃

k=γ+1


k∑
i=1

Ei <
k∑

i=γ+1

X2
i


 ≤ e−γ

(
Pβn+

α2
nE[E2]

2

)
.

(21)
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B. An Achievable Rate for the Save-and-Transmit Scheme
The following theorem is the second main result of this

paper. The proof relies on Lemma 4 and Lemma 2, and it is
contained in [11, Sec. VI and Appendix F].

Theorem 2: Fix an ε ∈ (0, 1), and fix any ε1 > 0 and ε2 > 0
such that ε1 + ε2 ≤ ε. There exists a constant κ > 0 which
does not depend on n such that for all sufficiently large n,
there exists a save-and-transmit (n,M, ε)-EH code with

ρn ,

√
(P + 1)(E[E2] + 3P 2) log(1 + P ) log 1

ε2

P
√

2nP
,

Sn = P (1− ρn) = P −Θ(1/
√
n)

and some choice of

log ξ = logM +O(log n)

where
1

n
logM ≥ 1

2
log(1 + P )

−

√
(E[E2] + 3P 2) log(1 + P ) log 1

ε2

2nP (P + 1)

+

√
P

(P + 1)n
Φ−1(ε1)− κ

n3/4
. (22)

In particular, the probability of seeing a mismatch event in the
transmission phase can be bounded as

P


n⋃

k=γn+1


k∑
i=1

Ei <
k∑

i=γn+1

X2
i


 ≤ ε2

where

γn ,

⌈
log 1

ε2

Pβn +
α2
nE[E2]

2

⌉
= Θ(

√
n).

The parameters ρn and γn in Theorem 2 have been opti-
mized to achieve the second-order scaling −O(1/

√
n). Fix any

ε > 0. The best existing lower bound on the second-order term
of 1

n logM was derived in [4, Th. 1], which states that there
exists a save-and-transmit (n,M, ε)-EH code that satisfies

lim inf
n→∞

1√
n

(
logM − n

2
log(1 + P )

)
≥ − log(1 + P )

2P

√
(E[E2] + P 2) log

1

ε2
+

√
P

P + 1
Φ−1(ε1)

(23)

for any ε1 > 0 and ε2 > 0 such that ε1 + ε2 ≤
ε. Note that the second-order term of the best exist-
ing lower bound as stated on the RHS of (23) decays
as − 1

2 log(1 + P )
√

(1 + E[E2]
P 2 ) log 1

ε2
+ Φ−1(ε1) as P tends

to ∞. On the other hand, it follows from (22) in Theorem 2
that the second-order term of our lower bound decays as
−
√

1
2 (3 + E[E2]

P 2 ) log(1 + P ) log 1
ε2

+ Φ−1(ε1) as P tends
to ∞. Consequently, the second-order term achievable by the

save-and-transmit scheme guaranteed by Theorem 2 is strictly
larger (less negative) than the best existing bound for all
sufficiently large P > 0.

VI. CONCLUDING REMARKS

In this work, we prove the first non-asymptotic achievable
rate for the best-effort scheme over the AWGN EH channel.
The second-order scaling of the non-asymptotic rate for best-
effort is −O(

√
log n/n). Then, we use a similar proof tech-

nique and obtain a new non-asymptotic achievable rate for
save-and-transmit over the same channel. The second-order
scaling of the non-asymptotic rate for save-and-transmit is
−O
(
1/
√
n
)
. The achievable rates for best-effort and save-

and-transmit have been extended to the block energy arrival
model in the long version of this paper [11] where the
energy arrives in a block i.i.d. fashion [4], [10]. If the length
of each energy block L grows sublinearly in n, i.e., L =
o(n), we show in [11] that best-effort and save-and-transmit
achieve the second-order scalings −O(

√
max{log n,L}/n)

and −O(
√
L/n). A future direction may improve the second-

order scaling −O
(√

log n/n
)

for L = 1 for best-effort
schemes by possibly proving a sharper probability bound
than (17) in Lemma 1. Another interesting direction is to
explore the finite-battery case and complement existing re-
sults [8], [9] by deriving new non-asymptotic achievable rates
for best-effort and save-and-transmit with finite battery.
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