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Abstract— Degraded K-user broadcast channels (BCs) are
studied when the receivers are facilitated with cache memories.
Lower and upper bounds are derived on the capacity-memory
tradeoff, i.e., on the largest rate of reliable communication
over the BC as a function of the receivers’ cache sizes, and
the bounds are shown to match for interesting special cases.
The lower bounds are achieved by two new coding schemes
that benefit from nonuniform cache assignments. Lower and
upper bounds are also established on the global capacity-memory
tradeoff, i.e., on the largest capacity-memory tradeoff that can
be attained by optimizing the receivers’ cache sizes subject to a
total cache memory budget. The bounds coincide when the total
cache memory budget is sufficiently small or sufficiently large,
where the thresholds depend on the BC statistics. For small
cache memories, it is optimal to assign all the cache memory
to the weakest receiver. In this regime, the global capacity-
memory tradeoff grows by the total cache memory budget
divided by the number of files in the system. In other words,
a perfect global caching gain is achievable in this regime and
the performance corresponds to a system where all the cache
contents in the network are available to all receivers. For large
cache memories, it is optimal to assign a positive cache memory
to every receiver, such that the weaker receivers are assigned
larger cache memories compared to the stronger receivers. In this
regime, the growth rate of the global capacity-memory tradeoff is
further divided by the number of users, which corresponds to a
local caching gain. It is observed numerically that a uniform
assignment of the total cache memory is suboptimal in all
regimes, unless the BC is completely symmetric. For erasure BCs,
this claim is proved analytically in the regime of small cache sizes.

Index Terms— Broadcast channel (BC), caching, capacity-
memory tradeoff, Gaussian channels, joint source-channel
coding.

I. INTRODUCTION

STORING popular contents at or close to the end users
improves the network performance during peak-traffic
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times. The main challenge is that the contents have to be
cached before knowing which files the users will request
in peak-traffic periods. A conventional approach is to store
popular contents in the cache memories of all the users. This
allows the receivers to locally retrieve the contents without
burdening the network and attain the so-called local caching
gain. Maddah-Ali and Niesen [1] have shown that further
caching gains, i.e., the so-called global caching gains, are
achievable if different contents are stored at different users
in a careful manner.

In particular, reference [1] considered a broadcast scenario
with a transmitter that has access to a library of N independent
files and with K receivers that are all equipped with individual
cache memories of the same size. Communication during off-
peak periods, when contents are cached, is assumed error-free
and constrained only by the amount of information that can be
placed in the cache memories at the receivers. This commu-
nication is henceforth called cache placement or placement
phase. The subsequent peak-traffic communication is called
delivery phase. In this phase, each receiver requests a single
file from the library and the transmitter delivers the requested
files by communicating over a common noise-free link to
all K receivers. Reference [1] has proposed to diversify the
placed contents across cache memories so as to allow for
coding opportunities during the delivery phase. These coding
opportunities allow to simultaneously serve multiple receivers
in each transmission, providing gains that scale with the total
size of all cache memories in the network, i.e., global caching
gains. By contrast, the previously reported gains depend only
on individual cache sizes and are thus referred to as local
caching gains.

The performance metric in [1] is the minimum required
delivery rate for given cache sizes, leading to the fundamen-
tal quantity of interest, the delivery rate-memory tradeoff.
Upper and lower bounds on this tradeoff are provided in [1].
Improved upper bounds (achievability results) have subse-
quently been presented in [2]–[8] and improved lower bounds
(converse results) in [9]–[13]. The common noise-free link
model of [1] has also been studied for networks in which
receivers have cache memories of different sizes [14]–[16].
Rate-limited links in delivery have been considered in [17].

In this paper, we relax the assumption that delivery takes
place over a noise-free link. Instead, we model the delivery
phase by a degraded broadcast channel (BC). The class of
degraded broadcast channels is a fairly general class that
includes practical noisy channel models such as broadcast
erasure channels and Gaussian channels. Our model is depicted
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Fig. 1. Noisy broadcast channel with cache memories at the receivers.

in Figure 1. A transmitter communicates with receivers
1, . . . , K, which are equipped with cache memories of sizes
nM1, . . . , nMK when communication is of blocklength n.

Noisy broadcast channels with caching receivers have been
studied in different settings [18]–[30]. For example, refer-
ences [18]–[20] explore the benefits of coded caching for
Gaussian or slow fading BCs when all users have the same
cache sizes. References [26]–[30] study the interplay between
coded caching with spatial multiplexing, channel state infor-
mation (CSI), or feedback. Most related to the current work
are [21]–[24], which focus on erasure BCs with a set of weak
receivers that are equipped with cache memories of equal size
and a set of strong receivers without cache memories or with
smaller cache memories. In accordance with multi-user infor-
mation theory metrics, performance in these works is measured
in terms of the capacity-memory tradeoff, i.e., the largest
message rate for which receivers can decode their requested
messages reliably as a function of the cache sizes. Lower
bounds (achievability results) and upper bounds (converse
results) are presented on the capacity-memory tradeoff. The
lower bounds are based on joint cache-channel coding schemes
where encoders and decoders exploit both the knowledge of
the channel statistics and the cache contents. This is in contrast
to previous works, e.g., [18], which adopt a separate cache-
channel coding architecture. In separate cache-channel coding,
the encoders (resp. decoders) consist of (i) a cache encoder
(resp. decoder) that only exploits the cache contents and (ii) a
channel encoder (resp. decoder) that only exploits the channel
statistics; see Figure 2. As the results in [21], [22] show, when
receivers have different channel statistics and weaker receivers
have larger cache sizes, then adopting a joint cache-channel
coding architecture can significantly improve performance.
Moreover, [21] illustrates that it is beneficial to assign larger
cache memories to weaker receivers than to stronger receivers.

Joint cache-channel coding schemes1 have also been
employed for transmission over noisy BCs with caching
receivers when the files to be sent are correlated [31],
[32] or when receivers have different fidelity constraints
[24], [25], [33]. In these applications, improvements are

1Joint cache-channel coding schemes are also referred to as joint source
channel coding schemes because once the cache contents are fixed, they can
be recast as realizations of sources that contribute side-information to the
receivers.

Fig. 2. Separate cache-channel coding architecture.

possible even when users have perfectly symmetric channels
and cache sizes.

In this work, we consider the problem of efficient cache
assignment in degraded broadcast channels and how to code
under these assignments. We quantify new caching gains
obtained through such assignments and appropriate coding.

A. A Motivating Example

Consider an erasure BC with K = 10 users where
receiver 1 has erasure probability δ1 = 0.4 and all other
receivers 2, . . . , K have erasure probability δ2 = . . . =
δK = 0.1. Assuming no cache memories, denote the point
to point channel capacity of user k by C{k}, and the
symmetric capacity of the K-user broadcast channel by
C{1,...,K} (see Section III for definitions). Now suppose that
the communication blocklength is n and we are given a total
cache size of nM to be distributed across the receivers (with
any desired assignment), hence nM = n(M1 + . . . + MK).
We seek cache assignments, as well as coding schemes, that
achieve high message rate. In particular, we are interested in
the global capacity-memory tradeoff which we define as the
largest rate achievable given the total cache budget M.

The traditional approach assigns the same cache size n M
K

to each receiver. We assign cache memories according to the
channel strengths. For example, when the total cache rate M
is small, we assign all the cache rate to the weak receiver,
so M1 = M. For large total cache rate, in the example at hand,
we propose to assign a larger portion to the weak receiver
and to distribute the rest uniformly over all strong receivers.
The meaning of small and large cache sizes are made precise
in Corollary 11 in Section VI. Tables I and II compare
the rates that are achievable for this example by the cache
assignments and coding schemes of this paper as well as
traditional uniform cache assignments and standard (separate
cache-channel) codes. Table I treats the regime of small
cache memories and Table II treats the regime of large cache
memories. In both tables, the first column presents an upper
bound on the capacity-memory tradeoff C

(M
K , . . . , M

K

)
under

uniform cache assignment (i.e., when the total cache memory
M is assigned uniformly over the K users). The second column
shows the rate that is achievable using the cache assignments
and coding schemes proposed in this paper. We will show
that these rates equal the global capacity-memory tradeoff
C�(M) in the regimes of small and large cache sizes. The third
column considers the same cache assignment as in column 2,
but presents the achievable rate R using standard (separate
cache-channel) codes. More specifically, in the regime of small
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TABLE I

COMPARISON OF TRADITIONAL SCHEMES WITH THE ONES PROPOSED IN THIS PAPER IN THE REGIME OF “SMALL” TOTAL CACHE SIZES M

TABLE II

COMPARISON OF TRADITIONAL SCHEMES WITH THE ONES PROPOSED IN THIS PAPER IN THE REGIME OF “LARGE” TOTAL CACHE SIZES M

cache sizes, a standard BC code is used to communicate to
each receiver the part of its requested file that is not in its
cache memory. Since in this example only the weak receiver
has a cache memory, coded caching (multicasting) is not
possible. Under the cache assignment in Table II (large cache
memories), the rate achieved with separate source-channel
coding is sufficiently small so that the weak receiver 1 can
store all files in its cache memory, thus precluding delivery
communication to this receiver. The optimal separation-based
strategy is then to perform coded caching with parameter
K − 2 (designed for the strong receivers) followed by a
standard BC multicast code to those receivers. A comparison
of columns 2 and 3 in Tables I and II shows that a smart
cache assignment creates new coding opportunities that can
be exploited by joint cache-channel coding.

From Table I, column 2, we further observe the following
behavior of the global capacity-memory tradeoff C�(M): First
of all, without cache memory, C�(M = 0) equals the largest
symmetric rate C{1,...,K} that is achievable to all the receivers
in the BC. Now consider the slope with which C�(M) increases
with M. For small total cache budget M, smart cache assign-
ment and coding (see column 2) allow to attain a steeper slope
than traditional uniform cache assignment (see column 1)
as well as separate cache-channel coding (see column 3).
In particular, our proposed cache assignment and coding allow
to achieve what we call a perfect caching gain, where the
capacity-memory tradeoff grows as M

N , i.e., like the total size
of all cache memories in the network divided by the number
of files N. This is the same performance as if each receiver
had access to all cache memories in the network.

From Table II, we observe that for large cache memories,
a smart cache assignment increases the capacity from C{1} +
M
KN to 1

K

∑K
k=1 C{k} + M

KN . So the weak channel of user 1 is no
longer limiting in the delivery phase. The gain of additional
cache memories is, however, only local, i.e., the capacity-
memory tradeoff only grows as M

KN .
We remark that the results in this paper are not restricted to

erasure BCs and hold for general memoryless degraded BCs.

B. Main Contributions and Implications

The main contributions of this paper are as follows.

• New coding schemes: We propose two new joint cache-
channel coding schemes for degraded broadcast networks
with heterogeneous cache sizes: superposition piggyback
coding and generalized coded caching. In superposition
piggyback coding, we assume a single cache memory
at the weakest receiver and our delivery scheme loads
(piggybacks) the information that is intended for stronger
receivers and cached at weakest receiver onto the infor-
mation that is communicated to this weakest receiver.2

When the rate of the piggybacked information is modest,
the decoding at the strong receivers can be done without
harming the performance at the weak receivers. The
communication to the stronger receivers can thus be
viewed as being almost for free. In some sense, piggyback
coding provides the stronger receivers virtual access to
the weak receivers’ cache-memories as if these cache
contents were locally present at the stronger receivers.
All receivers gain virtual access to the weakest receiver’s
cache memory (the only cache memory in this case) and
hence perfect caching gain is achieved.
In generalized coded caching, all receivers have cache
memories, but weaker receivers have larger cache sizes
than stronger receivers. We build the placement and
delivery similar to the coded-caching scheme in [1].
However, by assigning larger cache memories to the
weaker users, we create a new coding opportunity: piggy-
back coding. We piggyback information for the stronger
receivers on the communication to the weaker receivers
(without harming the weaker receivers’ decodability).
Using our coding scheme, the amount of the virtual
cache memory that is provided to the stronger receivers

2Piggyback coding was proposed in a version without superposition coding
in [21], [22]. This original version can be seen as a simplified version of
the coding scheme in [34] (without binning) in the context of Slepian-Wolf
coding over broadcast channels.
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increases compared to the original coded-caching scheme,
resulting in an improved performance. We show that
generalized coded caching is optimal for a specific cache
assignment.

• A New Converse Result: We prove a general converse
result for degraded BCs with arbitrary cache sizes at
the receivers. Our result strictly improves over the
existing converse results for degraded BCs in [22],
[35], and at the time of submission,3 also over all
previous converse results for the noise-free bit-pipe
model [1], [10]–[12].

• Global Capacity-Memory Tradeoff: We study the problem
of cache assignment on cache-aided noisy broadcast
networks, and derive new upper and lower bounds on the
global capacity-memory tradeoff, i.e., on the largest rate
that is achievable under an optimized cache assignment.
The bounds match when the total available cache budget
is small or large. For a small total cache budget M,
a perfect global caching gain is achievable. For larger
cache budgets M, the caching gain diminishes as M
increases. Finally for M larger than a certain threshold,
only a local caching gain is possible; i.e., the performance
corresponds to a system where all receivers store the
same content and no coded delivery is possible. In this
case, the global capacity-memory tradeoff grows as

M
K·N , where K denotes the number of receivers. Finally,
we demonstrate numerically that the popular approach of
assigning equal cache sizes to all receivers is suboptimal
over Gaussian and erasure BCs. We further prove this
analytically for erasure BCs in the small cache size
regime.

C. Notation

Random variables are denoted by uppercase letters, e.g.
A, their alphabets by matching calligraphic font, e.g. A, and
elements of an alphabet by lowercase letters, e.g. a ∈ A. We
also use uppercase letters for deterministic quantities like rate
R, capacity C, number of users K, cache size M, and number
of files in the library N. Vectors are identified by bold font
symbols, e.g., a. We use the shorthand notation An for the
sequence A1, . . . , An where n is an integer. The Cartesian
product of A and A′ is A × A′, and the n-fold Cartesian
product of A is An . Further, |A| denotes the cardinality of A.
The notation (a)+, for a ∈ R, refers to max(0, a).

We will be using the abbreviation i.i.d. for independent and
identically distributed.

For indices w1 and w2 taking value in
{
1, . . . , �2�1�}

and {1, . . . , �2�2�}, respectively, we define the generalized
XOR as the index in {1, . . . , �2�max�} that corresponds to the
componentwise XOR of the length-�max binary representations
of w1 and w2, where �max := max{�1, �2}. We denote the
generalized XOR of w1 and w2 by

w1⊕w2.

3The parallel work [36] slightly improves on this bound for the noise-
free bit-pipe model (but does not generalize to noisy channels); see
also [37].

D. Outline

The remainder of the paper is organized as follows.
Section II describes the problem setup. Section III summarizes
known results for the scenario where there is no cache memory
in the network. The main results of this paper are described
in Sections IV–VI. Section VII specializes these results to the
examples of erasure and Gaussian BCs, and to the noise-free
bit-pipe model. The paper is concluded in Section VIII.

II. PROBLEM DEFINITION

Consider a network with a transmitter and receivers
1, . . . , K. The transmitter has access to a library with N inde-
pendent messages, W1, . . . , WN, each distributed uniformly
over the set

{
1, . . . , �2nR�}. Here, R ≥ 0 denotes the rate of

transmission and n is the transmission blocklength. We assume
that N ≥ K.

Each receiver k ∈ K := {1, . . . , K} is equipped with a
cache of size nMk bits, where we have Mk ≥ 0. The sizes
of the cache memories thus scale linearly in the blocklength
n. Communication takes place in two phases. First, in the
placement phase, the transmitter chooses caching functions

gk : {1, . . . , �2nR�}N → {
1, . . . , �2nMk �}, k ∈ K, (1)

and places
Vk := gk(W1, . . . , WN) (2)

in receiver k’s cache. This phase takes place in a noiseless
fashion.

The subsequent delivery phase takes place over a degraded
BC [38] with finite input alphabet X , finite output alphabets
Y1, . . . ,YK ,4 and the channel transition law

�(y1, . . . , yK|x), for x ∈ X , y1 ∈ Y1, . . . , yK ∈ YK (3)

which decomposes as

�(y1, . . . , yK|x) = �K(yK|x) · �K−1(yK−1|yK) · · · �1(y1|y2).

(4)

Without loss of generality, this decomposition assumes that
the K users of the degraded BC are ordered from weakest to
strongest.

At the beginning of the delivery phase, each receiver k
produces a random demand Dk from the set N := {1, . . . , N}
to indicate that it wishes to learn message WDk . The transmitter
and all the receivers are informed about the entire demand
vector

D := (D1, . . . , DK).

Using this information, the transmitter forms the channel input
sequence Xn = (X1, . . . , Xn) as

Xn = f (W1, . . . , WN, D) (5)

for some encoding function f : {1, . . . , �2nR�}N×NK → X n .
Each receiver k ∈ K observes the outputs Y n

k := (Yk,1,
. . . , Yk,n) of the DMC �(y1, . . . , yK |x) for inputs Xn . With
the previously learned demand vector D, its local cache

4The results of this paper readily extend to continuous alphabets. We will
consider Gaussian BCs in Section VII-C.
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content Vk , and the channel outputs Y n
k , it then produces its

guess of the desired message WDk :

Ŵk := ϕk(Y
n
k , Vk, D) (6)

by means of a decoding function

ϕk : Yn
k × {1, . . . , �2nMk �}×NK → {1, . . . , �2nR�}. (7)

We define the probability of error as:

Pe
(n) := �D

[
Pe

(n)(D)
]
, (8)

where

Pe
(n)(d) := �

[ K⋃
k=1

{
Ŵk 	= Wdk

}∣∣∣∣D = d
]
, (9)

and we assume that the random demand vector D has a uni-
form distribution on NK, i.e., D = d with probability 1

N K for
every d ∈ NK . Notice that the probability of error cannot be
reduced by using stochastic instead of deterministic caching,
encoding, and/or decoding functions. It is thus without loss in
optimality that in this paper we assume deterministic functions.

A rate-memory tuple (R, M1, . . . , MK) is achievable if for
any ε > 0 there exists a sufficiently large blocklength n and
caching, encoding, and decoding functions as in (2), (5), and
(6) so that Pe

(n) ≤ ε.
Definition 1: The capacity-memory tradeoff C(M1, . . . ,

MK) is the largest rate R for which the rate-memory tuple
(R, M1, . . . , MK) is achievable:

C(M1, . . . , MK) := sup{R : (R, M1, . . . , MK) achievable}.
Our main goal in this paper is to optimize the cache assign-

ment (M1, . . . , MK) to attain the largest capacity-memory
tradeoff C(M1, . . . , MK) under the total cache constraint:

K∑
k=1

Mk ≤ M. (10)

Definition 2: The global capacity-memory tradeoff C�(M)
is defined as:

C�(M) := max
M1,...,MK>0 :∑K

k=1 Mk≤M

C(M1, . . . , MK). (11)

Remark 1: The global capacity memory tradeoff depends
on the BC law �(y1, . . . , yK|x) only through its marginal
conditional laws �1(y1|x), . . . , �K(yK|x). All our results thus
also apply to stochastically degraded BCs.

A. Minimum Delivery Rate

Most previous works on caching that modeled the BC
as a noise-free bit-pipe, e.g. [1], have fixed the size of the
messages to F bits and assumed that delivery takes place over
ρ · F channel uses and that each receiver k ∈ K has mk F
bits of cache memory. A delivery rate ρ is then said to be
achievable given normalized cache memory sizes m1, . . . , mK
if there exist caching, encoding, and decoding functions such
that the probability of error in (8) tends to 0 as F → ∞.
In Section VII-B, we specialize our results to the noise-free

bit-pipe channel model and use the notion of delivery rate to
compare our results with the state-of-the-art.

It is not difficult to see the following correspondence
between the two definitions:

Message rate R is achievable with (M1, . . . , MK)

⇐⇒
Delivery rate ρ = 1

R
is achievable with (m1, . . . , mK)

where m1 = M1

R
, . . . , mK = MK

R
.

III. PRELIMINARIES: CAPACITIES

WITHOUT CACHE MEMORIES

In this section, we recall known results for our network in
the special case when there are no cache memories:

M1 = . . . = MK = 0. (12)

These results will be utilized in the subsequent sections to
state our results for cache-aided broadcast networks.

When (12) holds, it is know from [38], [39] that it is optimal
to have the stronger receivers also decode messages intended
to weaker receivers. This is done by the so-called superposition
coding. Here, the worst case probability of error in (8) is
attained for a demand vector d that has all different entries and
the capacity-memory tradeoff C(M1 = 0, . . . , MK = 0) is the
largest symmetric rate R with which K independent messages
can be sent reliably to the K receivers. We thus have

C(M1 = 0, . . . , MK = 0) = CK (13)

where CK is found from the capacity of degraded broadcast
channels [38], [39]:

CK :=max min
{

I (U1; Y1), I (U2; Y2|U1), . . . ,

I (UK−1; YK−1|UK−2), I (X; YK|UK−1)
}
.

(14)

The maximization in (14) is over all auxiliary random
tuples U1, . . . , UK−1, X, Y1, . . . , YK that satisfy the following
Markov chain:

U1 → U2 → · · · → UK−1 → X → (Y1, . . . , YK) (15a)

and the channel transition law:

PY1...YK |X (y1, . . . , yK|x) = �(y1, . . . , yK|x). (15b)

Denote the alphabet sets of the auxiliary random variables
U1, . . . , UK by U1, . . . ,UK. Using the Fenchel-Eggleston-
Carathéodory theorem [40, Appendix A], without loss of
generality, one can restrict the cardinality of the sets as
follows:

|Uk | ≤ |Uk+1| + 2 (16)

|UK−1| ≤ |X | + 2. (17)

To present the results in this paper, we will also need
the no-cache capacity region of the BC to a subset of



7004 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 11, NOVEMBER 2019

the receivers

S := { j1, . . . , j|S|} ⊆ K, j1 < · · · < j|S|. (18)

The no-cache capacity region CS is naturally given by the set
of all nonnegative rate-tuples (R1, . . . , R|S|) for which there
exist random variables U1, . . . , U|S|−1, X, Y j1, . . . , Y j|S| that
satisfy (15b) and form the Markov chain

U1 → U2 → · · · → U|S|−1 → X → (
Y j1, . . . , Y j|S|

)
, (19)

such that the following conditions hold:

R1 ≤ I (U1; Y j1), (20a)

Rk ≤ I (Uk; Y jk |Uk−1), k ∈ {2, . . . , |S| − 1}, (20b)

R|S| ≤ I
(
X; Y j|S|

∣∣U|S|−1
)
. (20c)

We denote by CS the largest symmetric rate R ≥ 0 in CS :

CS := max
R≥0

{R : (R, . . . , R) ∈ CS }. (21)

Notice that C{k} is simply the point-to-point capacity to
receiver k and we will abbreviate it as Ck .

By (20) and (21):

CS =max min
{

I (U1; Y j1), I (U2; Y j2|U1), . . . ,

I (U|S|−1; Y j|S|−1|U|S|−2), I (X; Y j|S| |U|S|−1)
}
,

(22)

where the maximization is over all random tuples U1, . . . ,
U|S|−1, X, Y j1, . . . , Y j|S| that satisfy (15b) and (19).

IV. CODING SCHEMES AND LOWER BOUNDS ON

THE CAPACITY-MEMORY TRADEOFF

We present three lower bounds on the capacity-memory
tradeoff along with coding schemes that achieve them.
The first coding scheme and lower bound apply for gen-
eral cache assignments M1, . . . , MK. The second and third
ones apply only to specific cache assignments. Nevertheless,
the proposed schemes are useful for a broad set of cache-
assignments by time- (and memory-) sharing different coding
schemes, or equivalently, taking convex combinations of dif-
ferent lower bounds.

A. The Local Caching Gain

The simplest way to use receiver cache memories is to store
the same information at each and every receiver. This allows
the receivers to retrieve this information locally, without trans-
mission over the BC. Global caching gains are not possible
under this caching strategy.

Applying the described simple caching strategy to only a
part of the cache memory that is of size 	 ≥ 0, while allowing
a smart use of the remaining memory, leads to the following
proposition, see also [41, Proposition 1].

Proposition 1 (Local caching gain): For all 	 > 0 and
M1, . . . , MK ≥ 0:

C(M1 + 	, . . . , MK + 	) ≥ C(M1, . . . , MK) + 	

N
. (23)

As a consequence, for all 	total > 0 and M ≥ 0:

C�(M + 	total) ≥ C�(M) + 	total

K · N
. (24)

Fig. 3. Superposition piggyback code construction C for K = 4 receivers.
Recall that receiver 1 is the weakest. Each dot represents a codeword.

We will see that this lower bound is tight in certain regimes
of operation, namely, when the cache budget is larger than a
threshold.

B. Superposition Piggyback Coding

We generalize the piggyback coding scheme of [22], [35],
that was specific to erasure BCs, to general degraded BCs
by introducing superposition coding. The scheme assigns all
the available cache memory to the weakest receiver, and uses
a layered superposition code for delivery, see Fig. 3. In this
superposition code:

• the lower-most layer encodes the part of message Wd1

(intended for receiver 1) that is not stored in receiver 1’s
cache memory and the parts of messages Wd2, . . . , WdK

that are stored at receiver 1.
• the k-th lowest layer, for k ∈ {2, . . . , K}, encodes the part

of the message Wdk (intended for receiver k) that is not
stored in the cache memory of receiver 1.

When decoding, each receiver k ∈ {2, . . . , K}, decodes the k
lowest layers using, e.g., a standard joint typicality decoder.
In particular, receiver 1 (the weakest user) only decodes
the lowest layer. This layer encodes a part of message Wd1

that is desired at receiver 1 together with parts of messages
Wd2, . . . , WdK that are not desired at receiver 1, but are locally
available at its cache memory. As we will see, the cache
content allows receiver 1 to achieve the same decoding per-
formance as if the additional messages to the other receivers
were not encoded in the lowest layer. In other words, we can
encode information desired at the stronger receivers 2, . . . , K
through the lowest superposition layer without affecting the
decoding performance at the weakest receiver.

1) Lower Bound on Capacity-Memory Tradeoff: Let
(U �

1 , . . . , U �
K−1, X�) be a random K-tuple that achieves the

Symmetric Capacity CK, i.e., it is a solution to the optimiza-
tion problem in (14). Define

Msingle
1 := N

K − 1

(
I (U �

1 ; Y2) − I (U �
1 ; Y1)

)
. (25)

Theorem 2: Under the following cache assignment

M1 = Msingle
1 (26a)

M2 = · · · = MK = 0, (26b)
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we have

C(M1, . . . , MK) ≥ CK + M1

N
. (27)

Remark 2: Since the receivers can always choose to ignore
their cache memories, and because the superposition piggy-
back coding scheme can be time- and memory-shared with a
no-caching scheme, Theorem 2 remains valid for all

0 ≤ M1 ≤ Msingle
1 , (28)

M2, . . . , MK ≥ 0. (29)

We will see in Corollary 6 ahead that (27) holds with
equality for all 0 ≤ M1 ≤ Msingle

1 provided that M2 = . . . =
MK = 0.

The RHS of (27) coincides with the capacity-memory
tradeoff of a scenario where each and every receiver has
access to receiver 1’s cache memory. Superposition piggyback
coding can thus be viewed as a coding technique that virtually
provides all stronger receivers access to the weakest receiver’s
cache memory.

2) Coding Scheme: Let (U �
1 , . . . , U �

K−1, X�) be a solution
to the optimization problem in (14) so that the following
inequality is strict:

I (U �
1 ; Y1) < I (U �

1 ; Yk), k ∈ {2, . . . , K}. (30)

(If no such choice exists, Theorem 2 reduces to
C(M1, . . . , MK) ≥ CK and is trivial.)

Let ε > 0 be arbitrary small, and define the rates

R(A) := CK − ε, (31a)

R(B) := 1

K − 1

(
I (U �

1 ; Y2) − I (U �
1 ; Y1)

)
. (31b)

The RHS of (31b) is positive by (30). Split each message Wd ,
d ∈ {1, . . . , N}, into two parts:

Wd = (W (A)
d , W (B)

d

)
,

where W (A)
d and W (B)

d are of rates R(A) and R(B), and thus
the total message rate is

R = R(A) + R(B). (32)

Placement Phase: Store W (B)
1 , . . . , W (B)

N in the cache mem-
ory of receiver 1. This is possible by (26a) and the definition
of Msingle

1 in (28).
Delivery Phase: For the transmission in the delivery phase,

construct a K-level superposition code C with a cloud center
of rate R(A) + (K − 1)R(B) and satellites of rates R(A) in
levels 2, . . . , K. For the code construction, use a probability
distribution

PU �
1

· PU �
2 |U �

1
· · · PU �

K−1|U �
K−2

· PX�|U �
K−1

that achieves CK.
It will be convenient to arrange the codewords in the cloud

center in an array with �2nR(A)� columns and (�2nR(B)�)K−1

rows. The columns are used to encode message W (A)
d1

and the
rows to encode the message tuple

W(B) := (W (B)
d2

, . . . , W (B)
dK−1

, W (B)
dK

)
. (33)

The k-th level satellite is used to encode message W (A)
dk

, for
k ∈ {2, . . . , K}. See Figure 3 for an illustration of the code
construction.

Let un
1(w1,column, w1,row) denote the cloud-center code-

word of C in column w1,column and row w1,row. Similarly,
let xn(w1,column, w1,row; w2; w3; . . . ; wK) denote the level-K
satellite codeword of C that corresponds to the cloud center
codeword un

1(w1,column, w1,row) and to the w2-th, w3-th,w4-th,
etc. satellite codewords in levels 2, 3, 4, . . ..

The transmitter chooses and sends the codeword

xn
(

W (A)
d1

, W(B); W (A)
d2

; W (A)
d3

; . . . ; W (A)
dK

)
over the channel.

Decoding: Receiver k ∈ {2, . . . , K}, decodes all messages
in levels 1, . . . , k. Recall that its desired message parts W (A)

dk

and W (B)
dk

are encoded in levels k and 1 (i.e., the cloud center),
respectively.

Receiver 1 only has to decode W (A)
d1

, because it can retrieve

W (B)
d1

directly from its cache memory. To decode W (A)
d1

it
performs the following steps:

1) It retrieves the message-tuple W(B) from its cache mem-
ory.

2) It forms the subcodebook C ′(W(B)) ⊆ C that contains
all level-1 codewords that are “compatible” with the
retrieved tuple W(B):

C ′(W(B)
) := {un

1

(
w, W(B)

)}⌊2nR(A)
⌋

w=1 . (34)

Figure 3 illustrates such a subcodebook in red.
3) It decodes its desired message W (A)

d1
using an optimal

decoding rule for the subcodebook C ′(W(B)).

Error Analysis: Each receiver k ∈ {2, . . . , K} reli-
ably decodes messages (W (A)

d1
, W (B)

d2
, . . . , W (B)

dK
) as well as

W (A)
d2

, . . . , W (A)
dk

if the following inequalities hold:

k R(A) + (K − 1) · R(B) < I (U �
k ; Yk), (35a)

(k − �) · R(A) < I (U �
k ; Yk|U �

� ), � ∈ {1, . . . , k − 1},
(35b)

where we define U �
K = X�. One can verify that for degraded

BCs the choice of R(A) and R(B) in (31) satisfies the con-
straints in (35). In fact, by (31) and the degradedness of the
BC, we have for all j ∈ {2, . . . , k}

R(A) ≤ I (U �
j ; Y j |U �

j−1) − ε < I (U �
j ; Yk |U �

j−1) − ε (36)

R(A) + (K − 1) · R(B) ≤ I (U �
1 ; Y2) − ε < I (U �

1 ; Yk). (37)

Summing (37) over all j ∈ {2, . . . , k}, adding (36), and
using the chain rule of mutual information and the Markov
chain U �

1 → U �
2 → · · · → U �

K , establishes (35a). Similarly,
summing up (36) for j ∈ {�, . . . , k} establishes (35b).

Finally, receiver 1 can decode with arbitrarily small prob-
ability of error because subcodebook C ′(W(B)) contains
�2nR(A)� codewords that are generated i.i.d. according to PU �

1
and because

R(A) < I (U �
1 ; Y1).

Letting ε → 0 proves achievability of Theorem 2.
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C. Generalized Coded-Caching

We generalize the coded-caching scheme of [1] to degraded
BCs and to unequal cache sizes. In [1], the authors have
proposed a scheme for error free channels, parametrized by an
integer t∈ [1 : K − 1], that can simultaneously communicate
to groups of t + 1 users and hence offer global caching
gains. In (noisy) broadcast channels, users have different
channel statistics. The main idea in this section is to assign a
larger cache memory at weaker receivers to balance the worse
channel condition and to send generalized XOR-messages to
groups of t + 1 receivers at a time. Our cache assignment and
delivery scheme are designed such that, in the transmission to
any group of t + 1 receivers, each of the involved receivers
is served at a rate close to its capacity. This is possible
because each receiver has stored all other transmitted messages
in its cache memory, and can exploit this knowledge in the
decoding. Notice that if separate cache-channel coding was
applied, the rate to each receiver was limited by the worst
channel capacity.

1) Lower Bound on Capacity-Memory Tradeoff: We will
need the following definitions. Let for each t ∈ K

G(t)
1 , . . . ,G(t)

(K
t )

(38a)

denote all unordered size-t subsets of K. Define their comple-
ments as:

G(t),c
� := K\G(t)

� , � ∈
{

1, . . . ,

(
K
t

)}
. (38b)

For any given distribution PX and t = 1, . . . , K − 1, define
the cache sizes and rates:

M(t)
k = N ·

∑{
� : k∈G(t)

�

} ∏
k′∈G(t),c

�
I (X; Yk′ )

∑( K
t+1)

j=1

∏
k′∈G(t+1),c

j
I (X; Yk′ )

, (39)

R(t) =
∑(K

t )
�=1

∏
k′∈G(t),c

�
I (X; Yk′ )

∑( K
t+1)

j=1

∏
k′∈G(t+1),c

j
I (X; Yk′ )

. (40)

Note that when t = K − 1 the denominators of (39) and (40)
are equal to 1, and hence we have

M(K−1)
k = N

∑
�∈K\{k}

I (X; Y�), (41)

R(K−1) =
∑

�

I (X; Y�). (42)

Observe that for any given PX , we have

M(t)
1 ≥ M(t)

2 ≥ · · · ≥ M(t)
K , t ∈ {1, . . . , K − 1}, (43)

so a larger cache memory is assigned the weaker a receiver is.
The choices of M(t) in (39) and R(t) in (40) become clear in the
description of the coding scheme. In particular, these choices
ensure decodability of (sub-)messages in different phases of
the coding scheme.

Theorem 3: Fix a t ∈ {1, . . . , K − 1} and an input distri-
bution PX , and consider the corresponding cache assignment
in (39). Then,

C
(
M(t)

1 , . . . , M(t)
K

)
≥ R(t), (44)

where M(t)
1 , . . . , M(t)

K and R(t) are calculated from PX as
described in (39) and (40).

As we will see in Corollary 7, the inequality in (44) holds
with equality for t = K − 1.

We first explain the scheme for the special case of two users.
2) Coding Scheme in the Special Case K = 2 and t = 1:

Fix an input distribution PX and a small ε > 0, and define the
rates

R(A) = I (X; Y1) − ε, (45)

R(B) = I (X; Y2) − ε. (46)

Notice that by the degradedness of the BC:

R(B) ≥ R(A). (47)

Fix a blocklength n and generate a random codebook

C := {xn( j)
}�2nR(B)�

j=1 (48)

by choosing all entries i.i.d. according to PX . The codebook
C is revealed to all terminals of the network.

Allocate cache memories

M1 = N · R(B) = N · (I (X; Y2) − ε), (49a)

M2 = N · R(A) = N · (I (X; Y1) − ε), (49b)

to receivers 1 and 2, respectively.
Split each message Wd , for d ∈ {1, . . . , N}, into two parts:

Wd = (W (A)
d , W (B)

d

)
,

which are of rates R(A) and R(B), respectively.
In the caching phase, the transmitter stores messages

W (B)
1 , . . . , W (B)

N

in receiver 1’s cache memory and messages

W (A)
1 , . . . , W (A)

N

in receiver 2’s cache memory. This is possible given the cache
assignment in (49).

In the delivery phase the transmitter uses codebook C to
send the XOR message5

W (A)
d1

⊕W (B)
d2

(50)

to both receivers using the codeword

xn
(

W (A)
d1

⊕W (B)
d2

)
.

To guess W (B)
d2

, Receiver 2 decodes the XOR-message and

XORs the decoded message with W (A)
d1

, which it has stored in
its cache memory. The remaining part of its desired message,
W (A)

d2
, is retrieved from its cache memory.

Receiver 1 performs joint cache-channel decoding where it
can exploit that it has more cache memory than receiver 2.
Specifically, it retrieves W (B)

d2
from its cache memory, and

5Recall that in Section I-C we defined the generalized XOR operation ⊕
as the component-wise XOR over the binary representations of two messages
zero-padded to the length of the longer one.
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extracts a subcodebook C ′(W (B)
d2

) ⊆ C containing all code-

words that are compatible with W (B)
d2

:

C ′(W (B)
d2

) :=
{

xn(w ⊕ W (B)
d2

)
}⌊2nR(A)

⌋
w=1

. (51)

Note that subcodebook C ′(W (B)
d2

) is of rate R(A) which is
smaller than the rate R(B) of the original codebook C.

To guess W (A)
d1

, receiver 1 decodes the XOR message in (50)

using an optimal decoding rule for this subcodebook C ′(W (B)
d2

),

and XORs the decoded message with W (B)
d2

, which it has
stored in its cache memory. The remaining part of its desired
message, W (B)

d1
, is retrieved from its cache memory.

With this scheme, both receivers correctly recover their
desired messages Wd1 and Wd2 whenever they successfully
decode the XOR-message in (50). Since the rate R(B) of the
original codebook C satisfies

R(B) < I (X; Y2), (52)

and the rate of R(A) of the subcodebook C ′(W (B)
d2

) satisfies

R(A) < I (X; Y1), (53)

the probability of decoding error at both receivers tends to 0 as
the blocklength n tends to infinity.

Letting ε → 0, we conclude that for K = 2 the rate-memory
triple

R = I (X; Y1) + I (X; Y2),

M1 = I (X; Y2),

M2 = I (X; Y1)

is achievable.
Notice that the weaker receiver 1 is assigned a larger cache

memory than the stronger receiver 2:

M1 ≥ M2. (54)

The described scheme can also be applied with a uniform
cache assignment M1 = M2 = N · R(A), however at the cost of
a decreased achievable rate R = 2· I (X; Y1). In fact, assigning
a larger cache memory M1 to receiver 1 allows to transmit
more information to receiver 2 during the communication to
receiver 1.

3) General Coding Scheme: Fix a positive integer t ∈
{1, . . . , K − 1}. This parameter is an indicator of the num-
ber of receivers that cache each part of a file. Similar to
the work of [1], this caching scheme ensures that t + 1
receivers can be simultaneously served in each transmission
during the delivery phase. Pick a small number ε > 0 and
an input distribution PX . Consider the cache assignment in
(39), where mutual informations are calculated with respect
to PX .

Split each message Wd into
(K

t

)
independent submessages:

Wd =
{

W
d,G(t)

�
: � = 1, . . . ,

(
K
t

)}
,

where each submessage W
d,G(t)

�
is of rate

RG(t)
�

:=
∏

k∈G(t),c
�

I (X; Yk)

∑( K
t+1)

j=1

∏
k∈G(t+1),c

j
I (X; Yk)

− ε. (55)

The total message rate is thus

R =
(K

t )∑
�=1

RG(t)
�

=
∑(K

t )
�=1

∏
k∈G(t),c

�
I (X; Yk)

∑( K
t+1)

j=1

∏
k∈G(t+1),c

j
I (X; Yk)

−
(

K
t

)
ε. (56)

Placement Phase: For each d ∈ {1, . . . , N}, store the tuple{
W

d,G(t)
�

: k ∈ G(t)
�

}
(57)

in the cache memory of receiver k ∈ K. This is possible by
(55) and the cache assignment in (39).

Delivery Phase: Transmission in the delivery phase takes
place in

( K
t+1

)
subphases.

We define the subphase j ∈ {1, . . . ,
( K

t+1

)}
to be of length

n j :=

⎢⎢⎢⎢⎢⎣n ·
∏

k∈G(t+1),c
j

I (X; Yk)

∑( K
t+1)

j ′=1

∏
k∈G(t+1),c

j ′
I (X; Yk)

⎥⎥⎥⎥⎥⎦ , (58)

and to transmit messages{
W

dk ,G(t+1)
j \{k}

}
k∈G(t+1)

j

(59)

to the intended receivers in G(t+1)
j . For this purpose, the trans-

mitter creates the generalized XOR message

WXOR,G(t+1)
j

=
⊕

k∈G(t+1)
j

W
dk ,G(t)

j+1\{k}, (60)

which is of rate

R
XOR,G(t+1)

j
:= max

G(t)
� ⊆G(t+1)

j

RG(t)
�

=
⎛
⎝ max

k′∈G(t+1)
j

I (X; Yk′ )

⎞
⎠ ·

∏
k∈G(t+1),c

j
I (X; Yk)

∑( K
t+1)

j=1

∏
k∈G(t+1),c

j
I (X; Yk)

− ε,

and generates a codebook

C j =
{

x
n j
j (w) : w = 1, . . . ,

⌊
2

nR
XOR,G(t+1)

j

⌋}
, (61)

by drawing all entries i.i.d. according to PX .
The transmitter then sends the codeword

x
n j
j

(
W

XOR,G(t+1)
j

)
(62)

over the channel.
We now describe the decoding. Each receiver k ∈ K can

retrieve messages {
W

dk ,G(t)
�

: k ∈ G(t)
�

}
(63)

directly from its cache, see (57), and thus only needs to decode
messages {

W
dk ,G(t)

�
: k /∈ G(t)

�

}
. (64)
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For each j ∈ {1, . . . ,
( K

t+1

)} and k ∈ G(t+1)
j , receiver k decodes

message W
dk ,G(t+1)

j \{k} from its subphase- j outputs

Y
n j
k, j :=

(
Y

k,
∑ j−1

j ′=1
n j ′+1

, . . . , Y
k,
∑ j

j ′=1
n j ′

)
.

Specifically, with the messages stored in its cache memory, it
forms the XOR message

WXOR, j,k :=
⊕

k′∈G(t+1)
j \{k} W

dk′ ,G(t+1)
j \{k′ }, (65)

and it extracts a subcodebook C ′
j,k(WXOR, j,k) from C j that

consists of all codewords that are compatible with WXOR, j,k :

C ′
j,k(WXOR, j,k) :=

{
x

n j
j

(
w ⊕ WXOR, j,k

)}⌊2
nRG(t+1)

j \{k}
⌋

w=1
.

It then decodes the XOR message W
XOR,G(t+1)

j
by applying

an optimal decoding rule for subcodebook C ′
j,k(WXOR, j,k) to

the subphase- j outputs Y
n j
k, j , and XORs the resulting message

Ŵ
XOR,G(t+1)

j
with WXOR, j,k to obtain

Ŵ
dk ,G(t+1)

j \{k} = ŴXOR,G(t+1)
j

⊕ WXOR, j,k . (66)

After the last sub-phase
( K

t+1

)
, each receiver k ∈ K has

decoded all its missing messages in (64), and can thus recover
Wdk .

Error Analysis: If each XOR-message WXOR,G(t+1)
j

is

decoded correctly by all its intended receivers in G(t+1)
j ,

j = 1, . . . ,
( K

t+1

)
, then all receivers 1, . . . , K recover their

desired messages Wd1 , . . . , WdK .
The probability that receiver k ∈ G(t+1)

j finds an incorrect
value for the XOR message WXOR,G(t+1)

j
tends to 0 as n (and

thus n j ) → ∞ because the rate of the subcodebook C ′
j,k

satisfies
lim

n→∞
n

n j
· RG(t+1)

j \{k} < I (X; Yk),

see (55) and (58). Letting then ε → 0, establishes Theorem 3.

V. UPPER BOUNDS AND EXACT RESULTS ON THE

CAPACITY-MEMORY TRADEOFF

We present a general upper bound on the capacity-memory
tradeoff. We further show that the upper bound matches the
lower bounds derived in the previous section in certain regimes
of cache sizes. In these regimes, we can thus characterize the
exact capacity-memory tradeoff.

A. Upper Bounds

Our upper bound is formulated in terms of the following
parameters. Consider any set S ⊆ K and represent it by S =
{ j1, . . . , j|S|} as in (18). Define

α�
S,1 := M j1

N
(67a)

and for k ∈ {2, . . . , |S|}:

α�
S,k := min

{∑k
i=1 M ji

N − k + 1
,

1

|S|−k+1

( |S|
N

|S|∑
i=1

M ji −
k−1∑
i=1

α�
S,i

)}
. (67b)

Theorem 4: There exist random variables X, Y1, . . . , YK
and for every receiver set S as in (18) random variables
{US,1, . . . , US,|S|−1} so that the channel law (15b) and the
following Markov chain hold:

US,1 → US,2 → · · · → US,|S|−1 → X → (
Y1, . . . , YK

)
,

(68)
and so that for each S we have

C(M1, . . . , MK) ≤ I
(
US,1; Y j1

)+ α�
S,1, (69a)

C(M1, . . . , MK) ≤ I
(
US,k; Y jk |US,k−1) + α�

S,k,

∀k ∈ {2, . . . , |S| − 1}, (69b)

C(M1, . . . , MK) ≤ I
(
X; Y j|S| |US,|S|−1) + α�

S,|S|. (69c)

Proof: See Appendix A.
Without cache memories, M1 = . . . = MK = 0, the parame-

ters α�
S,1, . . . , α

�
S,|S| equal 0 for all S ⊆ {1, . . . , K}, and hence

the upper bound in Theorem 4 recovers the exact capacity-
memory tradeoff CK in (14).

The upper bound in Theorem 4 is asymmetric in the differ-
ent cache sizes M1, M2, . . . , MK, because the parameters α�

S, ji
are not symmetric. In fact, increasing the cache memories at
weaker receivers generally increases the upper bound more
than increasing the cache memories at stronger receivers.

The upper bound in Theorem 4 is weakened if the
constraints in (69) are ignored for certain receiver sets
S, or if in these constraints the input/output random variables
X, Y j1, . . . , Y j|S| are allowed to depend on the receiver set S.
Using the latter relaxation, Theorem 4 results in the following
corollary.

Corollary 5: Given cache sizes M1, . . . , MK ≥ 0, rate
R ≥ 0 is achievable only if for every receiver set S ⊆ K:(

(R − α�
S,1)

+, (R − α�
S,2)

+, . . . , (R − α�
S,|S|)

+) ∈ CS ,

(70)

where CS denotes the no-cache capacity region to the receivers
in S (assuming no cache memories at the receivers and
ignoring all receivers in K\S).

Proof: If R is achievable, then Theorem 4 ensures that
for every set S = { j1, . . . , j|S|}, there exists a set of random
variables (U1, U2, . . . , U|S|−1, X, Y j1, . . . , Y j|S|) that satisfy
(19)–(20) and hence (70) holds for every set S. Note that this
does not necessarily hold in the reverse direction, meaning that
if (70) holds for every S it is not clear if the conditions of
Theorem 4 are satisfied in general. This is because the choice
of random variable X that is found from (70) (for every S)
may implicitly depend on S while this is not permissible in
condition (68) in Theorem 4.
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Remark 3: The upper bounds of Theorem 4 and Corollary 5
are relaxed when each α�

S,k is replaced by α̃S,k , defined below:

α̃S,1 := M j1

N
, (71a)

α̃S,k := |S| ·∑|S|
i=1 M ji − M j1

(|S| − 1)N
, k ∈ {2 . . . , |S|}.

(71b)

The same holds if each α�
S,k is replaced by

α′
S,k :=

∑|S|
i=1 M ji

N
. (72)

In particular, Corollary 5 recovers the previous upper bound
in [22, Theorem 9] and [35, Theorem 1] if α�

S,k is replaced
by α′

S,k .
Proof: The proof requires a close inspection of the proof

of Theorem 4 in Appendix A. See Appendix D.

B. Exact Results

By comparing the new upper bounds with the three lower
bounds presented in Section IV, the exact expression for
C(M1, . . . , MK) can be obtained in some special cases. For
example, as the following corollary states, the lower bound
achieved by superposition piggyback coding matches the upper
bound when only receiver 1 has a cache memory and this
cache memory is small.

Corollary 6: Under a cache assignment satisfying

0 ≤ M1 ≤ Msingle
1 and M2 = . . . = MK = 0, (73)

the capacity-memory tradeoff is

C(M1, 0, . . . , 0) = CK + M1

N
.

Proof: Achievability follows by Theorem 2 (see also
Remark 2) and the converse follows by Corollary 5, where
it suffices to consider only the set S = K. In fact, under (73),
α�
K,1 = . . . = α�

K,K = M1
N .

The next corollary states that the lower bound attained by
generalized coded caching with parameter t = K − 1 matches
the upper bound under the corresponding cache assignment
in (41). Moreover, any extra cache memory that is uniformly
distributed over the K receivers only brings local caching gain.

Proposition 7: For each k ∈ K, let M�(K−1)
k be given by

(41) when PX is chosen as a maximizer of

CAvg := 1

K
· max

PX

⎛
⎝ K∑

k=1

I (X; Yk)

⎞
⎠ . (74)

For any 	 ≥ 0, we have

C
(
M�(K−1)

1 + 	, . . . , M�(K−1)
K + 	

)

= CAvg +
∑K

k=1 M�(K−1)
k

K · N
+ 	

N
. (75)

Proof: See Appendix E.

VI. BOUNDS ON THE GLOBAL CAPACITY-MEMORY

TRADEOFF C�(M)

The two preceding sections presented lower and upper
bounds on the capacity-memory tradeoff for given cache
assignments. In this section, we assume that a system designer
is given a total cache budget M ≥ 0 that it can arbitrarily
distribute across users. We are thus interested in the largest
capacity-memory tradeoff optimized over the cache assign-
ment M1, . . . , MK subject to a total cache budget M1 + M2 +
. . . + MK ≤ M. We introduced this quantity as the global
capacity-memory tradeoff C�(M) in (11). This section presents
lower and upper bounds on C�(M), for any value of M,
as well as exact results for C�(M) when M is below a certain
threshold or above another threshold.

A. Lower Bound

Proposition 1 and Theorems 2 and 3 readily yield a lower
bound on C�(M), see (77). As we will see in Corollary 11
ahead, this lower bound holds with equality when the total
cache size M is small or large.

Let

R(0) := CK, M(0) := 0, (76a)

and

Rsingle := CK + Msingle

N
, Msingle := Msingle

1 , (76b)

where CK is defined in (13) and Msingle
1 is defined in (25).

Also, for any given PX , recall M(t) and R(t) from (39) and
(40), and define for t ∈ {1, . . . , K − 1}:

M(t) :=
K∑

k=1

M(t)
k . (76c)

We have proved the achievability of each pair by proposing
a corresponding scheme. Consider two schemes achieving
the memory-rate pairs (M(t), R(t)) and (M(t ′), R(t ′)). By time
sharing between the two schemes, we can achieve all memory-
rate pairs that lie on the line connecting (M(t), R(t)) and
(M(t ′), R(t ′)). I.e., the upper-convex envelope of all these rate-
memory pairs thus lower-bounds C�(M). This is formulated
in Corollary 8 below.

Corollary 8: The global capacity-memory tradeoff is lower-
bounded by:

C�(M) ≥ upp hull
{(

R(0), M(0)
)
,
(
Rsingle, Msingle),⋃

PX

{(
R(1), M(1)

)
, . . . ,

(
R(K−1), M(K−1)

)}}
.

(77)

Notice that for any PX :

M(0) ≤ Msingle ≤ M(1) ≤ · · · ≤ M(K−1) (78)

and

R(0) ≤ Rsingle ≤ R(1) ≤ · · · ≤ R(K−1). (79)
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B. Upper Bounds

Theorem 4 directly yields the following upper bound on the
global capacity-memory tradeoff.

Corollary 9: There exist random variables X, Y1, . . . , YK
and for every receiver set S as in (18) random variables
{US,1, . . . , US,|S|−1}, such that (15b) and (68) hold, and such
that for some M1, . . . , MK ≥ 0 summing to M and all S:

C�(M)≤ I
(
US,1; Y j1) + α�

S,1, (80a)

C�(M)≤ I
(
US,k; Y jk |US,k−1)+α�

S,k, k ∈{2, . . . , |S|−1},
(80b)

C�(M)≤ I
(
X; Y j|S| |US,|S|−1) + α�

S,|S|, (80c)

where {α�
S,k} are defined in (67).

Evaluating this bound numerically is cumbersome because
for each possible subset S the coefficients α�

S,1, . . . , α
�
S,|S|

have to be computed and then the optimal choice of
US,1, . . . , US,|S|−1, X needs to be found in order to find
the loosest upper bound in (80). To find upper bounds that
have easier close-form expressions, we loosen the bound by
either relaxing some of the constraints in (80); by replacing
each parameter α�

S,k in (80) by α̃S,k or by α′
S,k (defined in

(71) and (72)); and/or by allowing X, Y j1, . . . , Y jS in (80) to
depend on the set S. The following corollary presents such a
simpler upper bound. Recall the definitions in (38).

Corollary 10: For each t ∈ K:

C�(M) ≤ 1(K
t

) (K
t )∑

�=1

CG(t)
�

+ t

K
· M

N
. (81)

Proof: Fix t ∈ K. For each � = 1, . . .
(K

t

)
, specialize

Corollary 5 to S = G(t)
� and relax it by replacing each

parameter α�

G(t)
� ,k

by α′
G(t)

� ,k
defined in (72). Since α′

G(t)
� ,1

=
. . . = α′

G(t)
� ,t

, we obtain

C�(M) ≤ CG(t)
�

+ α′
G(t)

� ,1
= CG(t)

�
+
∑

i∈G(t)
�

Mi

N
. (82)

Now, averaging (82) over all indices � = 1, . . . ,
(K

t

)
and upper-

bounding the sum M1 + . . . + MK by M yields the desired
result.

C. Exact Results

Lower and upper bounds on C�(M) presented above match
for small and large total cache sizes M. Corollary 11 below
states this more formally. Recall Msingle from (25) and define
ML as follows:

ML = N · (K − 1) · K · Cavg (83)

where Cavg is defined in (74).
Corollary 11: For any positive total cache size M ≤ Msingle:

C�(M) = CK + M
N

, 0 ≤ M ≤ M single, (84)

and for any M ≥ ML:

C�(M) = KCavg + 1

K
· M − ML

N
, M ≥ ML. (85)

Before presenting the proof of this Corollary, let us briefly
discuss the implications: For small cache sizes, the entire cache
memory should be assigned to the weakest receiver and the
superposition piggyback coding scheme of Section IV-B is
optimal. For large total cache sizes M, a careful assignment
of the available cache memory is needed. In particular, for
M = ML, the generalized coded caching of Section IV-C (and
its corresponding cache assignment) is optimal.

Remark 4: For small total cache sizes, C�(M) grows as M
N .

This corresponds to a perfect global caching gain as if each
receiver could access all cache contents in the network locally.
For large total cache sizes, the global benefit of receivers’
cache memories is fully exploited. Any additional cache bud-
get exceeding ML should be distributed among the receivers
uniformly and it only offers a local caching gain. In particular,
C�(M) grows as 1

K · M
N . This is similar to the insights from

[17] (for rate-limited links). For moderate cache sizes, C�(M)
grows with M

N at a slope equal to:

R(t+1) − R(t)

M(t+1)

N − M(t)

N

= 1

t + 1
− M(t)

t (t + 1)
(
M(t+1) − M(t)

) ,
for t = 1, . . . , K − 1.

Proof of Corollary 11: The global capacity-memory tradeoff
C�(M) is upper-bounded by the right-hand side of (84) and
this follows by specializing Corollary 10 to t = K. Equality
in (84) for M ≤ Msingle follows by Theorem 2.

The capacity memory tradeoff C�(M) is also upper-bounded
by the right-hand side of (85). To see this, relax Corollary 9
by (i) replacing each parameter α�

S,k with α′
S,k and (ii) consid-

ering only the constraints (80) that correspond to sets S = {k},
for k ∈ K. Next, average the K resulting inequalities and
maximize over the input distribution PX . This yields:

C�(M) ≤ Cavg + 1

K
M
N

. (86)

Using the definition of ML as given in (83), we can equiva-
lently write the RHS of (86) in the form of KCavg + 1

K
M−ML

N .
Equality in (85) for M ≥ N(K − 1)KCAvg follows from
Proposition 7 with 	 = 0. Recall that M(K−1)

k is given in
(41) as the sum of mutual information terms I (X; Y�) for all
� ∈ K\{k}. So we have

M�(K−1)
1 + . . . + M�(K−1)

K = N
K∑

i=1

(K − 1)I (X; Yi ) (87)

= N(K − 1)KCAvg (88)

where in the first step we have noted that each mutual
information term appears (K − 1) times in the sum on the
LHS of (87). �

VII. EXAMPLES

A. Erasure BCs

We specialize our results to erasure BCs where at time i
receiver k’s output Yk,i equals the channel input Xi with
probability 1 − δk and it equals an erasure symbol “?” with



SAEEDI BIDOKHTI et al.: BENEFITS OF CACHE ASSIGNMENT ON DEGRADED BCs 7011

Fig. 4. Bounds on C�(M) for a 4-user Erasure BC with δ1 = 0.9, δ2 = 0.6,
δ3 = 0.1, δ4 = 0.05.

probability δk . Without loss of generality, we assume that the
erasure probabilities satisfy:

1 > δ1 ≥ δ2 ≥ . . . ≥ δK ≥ 0. (89)

For erasure BCs,

CS =
(∑

s∈S

1

1 − δs

)−1

, S ⊆ K. (90)

Moreover, a Bernoulli-1/2 input distribution PX maximizes
I (X; Yk) and I (X; Yk |U) simultaneously for all k ∈ K and
auxiliaries U that form the Markov chain U → X → Yk .
Therefore, Theorem 4 and Corollary 5 coincide. Also,

Cavg = 1

K

K∑
k=1

Ck = 1 −
∑K

k=1 δk

K
. (91)

Figure 4, depicts the upper and lower bounds on C�(M)
in Corollaries 8 and 9. For comparison, the upper bound
of Theorem 4 is also plotted under the uniform cache
assignment:

M1 = . . . = MK = M
K

.

One observes that a smart allocation of the total cache memory
M significantly increases the global capacity-memory tradeoff
of erasure BCs when different receivers have different erasure
probabilities.

Analytically, we can prove that for a small total cache size
M ≤ Msingle any cache assignment that does not allocate all
the cache memory to the weakest receiver is suboptimal on the
erasure BC. This follows from the achievability in Corollary 11
and Proposition 12 below.

Proposition 12: For a given M1 ≥ 0 and M := ∑K
k=1 Mk ,

M ≥ 0,

C(M1, . . . , MK)

≤ min

{
CK + M1

N
+ (M−M1)

N
· K · CK
(K − 1)C{2,...,K}

,

C1 + M1

N

}
. (92)

The RHS of (92) is strictly less than CK + M
N unless

M = M1 or δ1 = . . . = δK.
Proof: See Appendix F.

B. Noise-Free Bit-Pipe

Consider now the noise-free bit-pipe model in [1] with
uniform cache assignment. It corresponds to an erasure BC
where each receiver has zero erasure probability:

δ1 = · · · = δK = 0. (93)

Consider also the notation introduced in Section II-A.
We adopt the system model of [1] with equal cache sizes

m1 = · · · = mK = m

and the delivery rate ρ.
From the upper bound on C(M1, . . . , MK) in Theorem 4,

the following lower bound on the minimum achievable deliv-
ery rate ρ� can be obtained as a function of the normalized
symmetric cache size m.

Corollary 13: For the noise-free bit-pipe model in [1],
the delivery rate is bounded from below as follows.

ρ� ≥ t − m · min

{
t2

N
,

t∑
k=1

k

N − k + 1

}
, m ≤ N. (94)

Proof: See Appendix G.
This lower bound improves on the lower bounds in [1],
[10]–[12] that existed at the time when this manuscript was
submitted. It is within a constant gap of 2.35 bits from the
optimal rate-memory tradeoff [37]. A slightly improved bound
has been established in a parallel work [36]. This latter bound,
however, is specific to the noise-free bit-pipe model.

C. Gaussian BCs

Finally, we specialize our results to memoryless Gaussian
BCs. At time t , the received symbol at receiver k is

Yk,t = Xt + Zk,t , (95)

where Xt is the input to the channel and {Zk,t } is an i.i.d.
Gaussian process with zero mean and variance σ 2

k > 0.
The channel inputs are subject to an average block-power
constraint P . Without loss of generality, the receivers are
ordered in increasing strength:

σ 2
1 ≥ σ 2

2 ≥ · · · ≥ σ 2
K > 0.

By [39], for every set S as defined in (18), we have

CS = 1

2
log2

(
1 + β1 P∑|S|

k=2 βk P + σ 2
1

)
, (96)
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Fig. 5. Upper and lower bounds on C�(M) on a 4-receiver Gaussian BC
with input power P = 1 and noise variances σ1 = 4, σ 2

2 = 1, σ 2
3 = 0.5, and

σ 2
4 = 0.1. We have N = 10.

where β1, . . . , β|S| form a unique choice of |S| real numbers
in [0, 1] that sum to 1 and satisfy

β1 P∑|S|
k=2 βk P + σ 2

1

= βi P∑|S|
k=i+1 βk P + σ 2

ji

, i ∈ {1, . . . , |S|}.
(97)

In particular,

Ck = 1

2
log

(
1 + P

σ 2
k

)
, k ∈ {1, . . . , K}. (98)

Moreover, given a power constraint P > 0, a zero-mean
variance-P Gaussian input distribution maximizes I (X; Yk)
and I (X; Yk |U) simultaneously for all k ∈ K and Gaussian
auxiliaries U that form the Markov chain U → X → Yk .
Therefore, Theorem 4 and Corollary 5 coincide. Also,

Cavg = 1

K

K∑
k=1

Ck = 1

K

K∑
k=1

1

2
log

(
1 + P

σ 2
k

)
. (99)

Figure 5 shows the upper and lower bounds on C�(M) in
Corollaries 8 and 9. The five blue points indicate the rate-
memory points (R(0), M(0)), (Rsingle, Msingle), (R(1), M(1)),
(R(2), M(2)), and (R(3), M(3)) for a zero-mean variance-P
Gaussian distribution PX . For comparison, the figure also
shows the upper bound in Theorem 4 for a setup with uniform
cache assignment M

K across all receivers. We observe that
a smart cache assignment provides substantial gains in the
capacity-memory tradeoff.

VIII. SUMMARY AND CONCLUSION

We have provided close upper and lower bounds on the
global capacity-memory tradeoff C�(M) of degraded BCs. The
bounds coincide in the regimes of small and large total cache
memories with thresholds depending on the BC statistics.

For small cache memory sizes (characterized in (84)), the
global capacity-memory tradeoff is achieved by assigning
all the available cache memory to the weakest receiver.
In this regime, C�(M) grows as M

N which corresponds to a
perfect global caching gain; i.e., all receivers can benefit from
all the cache contents in the network. This performance is
achieved by superposition piggyback coding which provides
every receiver virtual access to the weakest receiver’s cache
content.

For the regime of moderate M, we proposed a generalized
coded caching scheme that performs a particular cache assign-
ment such that the weaker receivers are provided with larger
cache sizes. It then simultaneously serves t + 1 receivers in
each delivery, where t ∈ {1, . . . , K−1} is the parameter of the
scheme (similar to the scheme in [1]). We observed that the
larger the total cache budget M is, the larger the coded caching
parameter t needs to be chosen. Hence, as M increases, cache
memories will have to store more overlapping contents, and
hence the caching gain decreases. In other words, the slope of
the rate-memory tradeoff (achieved by the generalized coded
caching) decreases as the total cache budget M increases. The
same behavior is also observed from the upper bound.

In the regime of large M (characterized by the threshold
in (85)), the caching gain is only local and C�(M) grows as M

KN .
In particular, the memory threshold in (85) corresponds to the
extreme case where t = K − 1. In this case, the generalized
coded caching scheme and its corresponding cache assignment
are optimal and achieve the global capacity-memory tradeoff.
For larger cache memories, it is optimal to first allocate the
total cache memory as proposed by our scheme for t = K−1,
and then uniformly allocate all the remaining cache memory
across all the receivers (and store the same content in those
extra portions of the receivers’ cache memories).

By examining several examples, we have demonstrated that
assigning the total cache memory uniformly across all the
receivers can be highly suboptimal over noisy BCs.

From a practical view point, one of the main technical
challenges for implementing the proposed generalized coded
caching scheme is its high level of subpacketization, i.e., the
fact that messages need to be split into a very large number
of smaller parts. Recent efforts focus on schemes with low
subpacketization levels. See for example [42]–[44] for results
on the noise-free bit-pipe model.

APPENDIX A
PROOF OF UPPER BOUND IN THEOREM 4

Fix the rate of communication

R < C(M1, . . . , MK).

Since R is achievable, for each sufficiently large blocklength n
and for each demand vector d, there exist K caching func-
tions

{
g(n)

k

}
, an encoding function { f (n)(· · · , d)}, and K

decoding functions
{
ϕ

(n)
k (· · · , d)

}
so that the probability of

error Pe
(n) tends to 0 as n → ∞. Recall that Pe

(n) is the
average over all error probabilities Pe

(n)(d), d ∈ NK . So Pe
(n)

goes to zero if and only if Pe
(n)(d) goes to zero for all demand

vectors d. We note that this should hold for every demand
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vector d and, in particular, for d with all-different entries.
To obtain the upper bound in Theorem 4, we consider only
demand vectors d in which all entries are different.

Fix ε > 0 and a sufficiently large blocklength n (depending
on this ε). Let

Vk = g(n)
k (W1, . . . , WN), k ∈ {1, . . . , K}, (100)

denote the cache contents corresponding to the chosen caching
function, and let for each demand vector d = (d1, . . . , dK)
with all different entries

Xn
d = f (n)(W1, . . . , WN, d) (101)

denote the input of the degraded BC corresponding to the
chosen encoding functions. Let Y n

k,d denote the corresponding
channel outputs at receiver k.

Lemma 14: There exist random variables
Xd, Y1,d, . . . , YK,d and for each set S as in (18) random
variables {US,1,d, . . . , US,|S|−1,d}, so that given Xd = x ∈ X :

(Y1,d, Y2,d, . . . , YK,d) ∼ �(· · · |x); (102a)

and for each S:

US,1,d →· · ·→US,|S|−1,d → Xd →YK,d →YK−1,d · · ·→Y1,d

(102b)

forms a Markov chain; and the following |S| inequalities hold:

R − ε ≤ 1

n
I
(
Wd j1

; Vj1

)+ I
(
US,1,d; Y j1,d

)
, (103a)

R − ε ≤ 1

n
I
(
Wd jk

; Vj1, . . . , Vjk |Wd j1
, . . . , Wd jk−1

)
+ I
(
US,k,d; Y jk,d|US,k−1,d),

∀k ∈ {2, . . . , |S| − 1}, (103b)

R − ε ≤ 1

n
I
(
Wd j|S| ; Vj1, . . . , Vj|S| |Wd j1

, . . . , Wd j|S|−1

)
+ I
(
Xd; Y j|S|,d|US,|S|−1,d). (103c)

Proof: The proof is inspired by the converse proof of the
capacity of degraded BCs without caching [38]. Details are as
follows. Since the worst case error probability is bounded by
ε, using Fano’s inequality we have

R − ε ≤ 1

n
I
(
Wd j1

; Y n
j1,d, Vj1

)
= 1

n
I
(
Wd j1

; Vj1

)+ 1

n
I
(
Wd j1

; Y n
j1,d

∣∣Vj1

)
, (104a)

where the equality follows by the chain rule of mutual infor-
mation. Similarly, for k ∈ {2, . . . , K}:

R − ε
(a)≤ 1

n
I
(
Wd jk

; Y n
jk,d, Vj1, . . . , Vjk

∣∣Wd j1
, . . . , Wd jk−1

)
= 1

n
I
(
Wd jk

; Vj1, . . . , Vjk

∣∣Wd1, . . . , Wd jk−1

)
+ 1

n
I
(
Wd jk

; Y n
jk ,d

∣∣V1, . . . , Vjk , Wd j1
, . . . , Wd jk−1

)
,

(104b)

where (a) uses Fano’s inequality as well as the fact that all
messages are independent. Recall that the demand vector d
has all different entries.

We next develop the second summands in (104a) and
(104b). For the second summand in (104a) we write

1

n
I
(
Wd j1

; Y n
j1,d

∣∣Vj1

) = 1

n

n∑
t=1

I
(
Wd j1

; Y j1,d,t
∣∣Vj1, Y t−1

j1,d

)
(a)≤ 1

n

n∑
t=1

I
(
Wd j1

, Y t−1
j1,d

, Vj1; Y j1,d,t
)

= I
(
US,1,d,T ; Y j1,d,T

∣∣T )
≤ I
(
US,1,d; Y j1,d

)
(105)

where T denotes a random variable that is uniformly distrib-
uted over {1, . . . , n} and independent of all previously defined
random variables, and where

US,1,d,T := (Vj1, Wd j1
, Y T −1

j1,d
), (106)

US,1,d := (US,1,d,T , T ), (107)

Y j1,d := Y j1,d,T . (108)

Step (a) holds because, for any triple of random variables
(A, B, C), we have I (A; B|C) ≤ I (A, C; B) by the chain
rule of mutual information and the nonnegativity of mutual
information.

Define further for k ∈ {2, . . . , |S| − 1}:
US,k,d,T := (US,k−1,d,T , Vjk , Wd jk

, Y T −1
jk ,d

), (109)

US,k,d := (US,k,d,T , T ), (110)

Y jk,d := Y jk,d,T , (111)

and

Y j|S|,d := Y j|S|,d,T , (112)

Xd := Xd,T . (113)

For k ∈ {2, . . . , K − 1}, we expand the second summand in
(104b) as:

1

n
I
(
Wd jk

; Y n
jk,d

∣∣Vj1, . . . , Vjk , Wd j1
, . . . , Wd jk−1

)
= 1

n

n∑
t=1

I
(
Wd jk

; Y jk,d,t
∣∣Vj1, . . . , Vjk , Wd j1

, . . . , Wd jk−1
, Y t−1

jk ,d

)
(a)= 1

n

n∑
t=1

I
(
Wd jk

; Y jk,d,t
∣∣Vj1, . . . , Vjk , Wd j1

, . . . , Wd jk−1
,

Y t−1
j1,d

, . . . , Y t−1
jk−1,d, Y t−1

jk ,d

)
≤ 1

n

n∑
t=1

I
(
Wd jk

, Y t−1
jk ,d

, Vjk ; Y jk,d,t
∣∣Vj1, . . . , Vjk−1 ,

Wd j1
, . . . , Wd jk−1

, Y t−1
j1,d

, . . . , Y t−1
jk−1,d

)
(b)= I

(
US,k,d,T ; Y jk,d,T

∣∣US,k−1,d,T , T )

(c)= I
(
US,k,d; Y jk,d

∣∣US,k−1,d), (114)

where (a) follows from the degradedness of the outputs; (b)
by (106) and the definition of T ; and (c) by the definitions in
(110), (112), and (113).
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Similarly, we also have

1

n
I
(
Wd j|S| ; Y n

j|S|,d
∣∣Vj1, . . . , Vj|S|, Wd j1

, . . . , Wd j|S|−1

)
= 1

n

n∑
t=1

I
(
Wd j|S|; Y j|S|,d,t

∣∣Vj1, . . . , Vj|S|, Wd j1
, . . . , Wd j|S|−1

,

Y t−1
j1,d

, . . . , Y t−1
j|S|−1,d

, Y t−1
j|S|,d

)
≤ 1

n

n∑
t=1

I
(
Wd j|S| , Y t−1

j|S|,d, Vj|S| ; Y j|S|,d,t
∣∣Vj1, . . . , Vj|S|−1,

Wd j1
, . . . , Wd j|S|−1

, Y t−1
j1,d

, . . . , Y t−1
j|S|−1,d

)
≤ I (Xd,T ; Y j|S|,d,T |US,|S|−1,d,T , T )

= I (Xd; Y j|S|,d|US,|S|−1,d). (115)

It can be verified that the defined random variables satisfy
Conditions (102). Combining this observation with (104)–
(115) concludes the proof.

We average the bounds in (103) over demand vectors. Let
N dist

K be the set of all the
(N
K

)
K! K-dimensional demand vectors

with all distinct entries. Also, let Q be a uniform random
variable over the elements of N dist

K and independent of all
other random variables. Define for each set S as in (18):

US,1 := (US,1,Q, Q), (116)
US,k := US,k,Q, k ∈ {2, . . . , |S| − 1}, (117)

X := XQ, (118)
Yk := Yk,Q, k ∈ K. (119)

Notice that the defined random variables defined in (116)–
(119) satisfy conditions (15b) and (68) in the theorem.
It remains to prove that they also satisfy (69). To this end,
we average inequalities (103) over all the demand vectors
in N dist

K . Using standard arguments to take care of the aver-
aging random variable Q, and defining

αS,1 := 1(N
K

)
K!
∑

d∈N dist
K

1

n
I (Wd j1

; V1), (120a)

αS,k := 1(N
K

)
K!
∑

d∈N dist
K

1

n
I (Wd jk

; V1, . . . , Vjk|Wd j1
, . . . , Wd jk−1

),

k ∈ {2, . . . , |S|}, (120b)

we obtain for each S as in (18):

R − ε ≤ I
(
US,1; Y j1

)+ αS,1, (121a)
R − ε ≤ I

(
US,k; Y jk |US,k−1) + αS,k, ∀k ∈{2, . . . , |S|−1},

(121b)
R − ε ≤ I

(
X; Y j|S| |US,|S|−1) + αS,|S|. (121c)

Lemma 15: For each set S, parameters αS,1, . . . , αS,|S|
satisfy the following constraints:

0 ≤ αS,k ≤
∑k

i=1 M ji

N − k + 1
, k ∈ {1, . . . , |S|}, (122a)

αS,k′ ≤ αS,k, k, k ′ ∈ {1, . . . , |S|}, k ′ ≤ k, (122b)
|S|∑
k=1

αS,k ≤ |S|
N

|S|∑
k=1

M jk . (122c)

Proof: See Appendix B.

By (121)–(122) and letting ε → 0, the following interme-
diate result—which is used in other proofs in this paper—is
obtained.

Lemma 16: There exist random variables X, Y1, . . . , YK
and for every receiver set S as in (18) random variables
{US,1, . . . , US,|S|−1}, so that (15b) and (68) hold, and for all
S:

C(M1, . . . , MK) ≤I
(
US,1; Y j1

)+ αS,1, (123a)

C(M1, . . . , MK) ≤I
(
US,k; Y jk |US,k−1) + αS,k,

∀k ∈ {2, . . . , |S|}, (123b)

for parameters αS,1, . . . , αS,|S| satisfying (122).
By the following Lemma 17, because constraints (123)

are increasing in αS,1, . . . , αS,|S|, and by constraint (122c),
we conclude that the choice αS,k = α�

S,k in (67) makes the
upper bound (123) loosest. The following Lemma 17 thus
concludes the proof.

Lemma 17: Lemma 16 remains valid, if parameters
αS,1, . . . , αS,|S| are further constrained to satisfy for each
k ∈ {1, . . . , |S| − 1} one of the two following conditions:

• αS,k =
∑k

i=1 M ji
N−k+1 ; or

• αS,k = αS,k+1.
Proof: See Appendix C.

APPENDIX B
PROOF OF LEMMA 15

We only prove the lemma for S = K. The proofs for the
other sets are similar.

We first prove (122a). Every αK,k is nonnegative, because
mutual information is nonnegative. To prove the upper bound
in (122a), we proceed as follows. Let N dist

K again be the set
of K-dimensional demand vectors that have K distinct entries
in {1, . . . , N}; and for each k ∈ {1, . . . , K} and each k − 1
dimensional demand vector d̃ = (d1, . . . , dk−1), define Wd̃ :=
(Wd1, . . . , Wdk−1 ). We have:

αK,k

= 1

K!(NK)
∑

d∈N dist
K

I (Wdk ; V1, . . . , Vk |Wd1, . . . , Wdk−1 )

= 1

K!(NK)
∑

d̃∈N dist
k−1

∑
d∈N dist

K :
(d1,...,dk−1)=d̃

I (Wdk ; V1, . . . , Vk |Wd̃)

(a)= 1

K!(NK)
∑

d̃∈N dist
k−1

∑
j∈N \{d̃1,...,d̃k−1}

I (W j ; V1, . . . , Vk |Wd̃)

·
(

N − k

K − k

)
(K − k)!

= 1

k!(Nk )
∑

d̃∈N dist
k−1

∑
j∈N \{d̃1,...,d̃k−1}

I (W j ; V1, . . . , Vk |Wd̃)

(b)= 1

k!(Nk )
∑

d̃∈N dist
k−1

[
H (W1, . . . , WN |Wd̃)

−
∑

j∈N \{d̃1,...,d̃k−1}
H (W j |V1, . . . , Vk, Wd̃)

]
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(c)≤ 1

k!(Nk )
∑

d̃∈N dist
k−1

I (W1, . . . , WN ; V1, . . . , Vk |Wd̃)

(d)≤ (k − 1)!( N
k−1

)
k!(Nk )

k∑
i=1

Mi

=
∑k

i=1 Mi

N − k + 1
, (124)

where (a) holds because for each value of K and j there
are

(N−k
K−k

)
(K − k)! ordered demand vectors d ∈ N dist

K with
(d1, . . . , dk−1) = d̃ and with dk = j ; (b) holds by the indepen-
dence of the messages; (c) holds because for any random tuple
(A1, . . . , AL) it holds that

∑L
l=1 H (Al) ≥ H (A1, . . . , AL);

and (d) holds because I (W1, . . . , WN ; V1, . . . , Vk |Wd̃) cannot
exceed

∑k
i=1 Mi . This concludes the proof of (122a).

To prove constraint (122b), we fix a K-dimensional demand
vector d ∈ N dist

K , and consider the cyclic shifts of this vector.
For � ∈ {0, . . . , K − 1}, let d(�) be the vector obtained from
d when the elements are cyclically shifted � positions to the
right. (For example, if d = (1, 2, 3) then d(2) = (2, 3, 1).) For
each � ∈ {0, . . . , K − 1} and k ∈ {1, . . . , K}, let d(�)

k denote
the k-th index of demand vector d(�). So,

d(�)
k = d(k−�) mod K (125)

where for each positive integer ξ the term (ξ mod K) takes
value in {1, . . . , K} so that

ξ mod K = ξ − bK for some positive integer b. (126)

For each � ∈ {1, . . . , K−1} and k, k ′ ∈ {2, . . . , K} with k ′ ≤ k,
we write

I (Wd1 ; V1)
(a)= I (W

d(k′−1)
k′

; V1)

(b)≤ I (W
d(k′−1)

k′
; V1, . . . , Vk′ |W

d(k′−1)
1

, . . . , W
d(k′−1)

k′−1

)

(a)= I (W
d(k−1)

k
; V1, . . . , Vk′ |W

d(k−1)

1+k−k′
, . . . , W

d(k−1)
k−1

)

(b)≤ I (W
d(k−1)

k
; V1, . . . , Vk |Wd(k−1)

1
, . . . , W

d(k−1)
k−1

)

(127)

where (a) follows by (125) and (b) is by the independence of
messages.

Fix a demand vector d ∈ N dist
K and sum up the above

inequality (127) over all K cyclic shifts d(0), d(1), . . . , d(K−1)

of d (where for simplicity we relabel the shifts) to obtain:

K−1∑
�=0

I
(

W
d(�)

1
; V1

)

≤
K−1∑
�=0

I

(
W

d(�)
k′

; V1, . . . , Vk′ |W
d(�)

1
, . . . , W

d(�)
k′−1

)

≤
K−1∑
�=0

I
(

W
d(�)

k
; V1, . . . , Vk |Wd(�)

1
, . . . , W

d(�)
k−1

)
. (128)

Since the set N dist
K can be partitioned into subsets of demand

vectors that are cyclic shifts of each others and all cyclic shifts

of a demand vector in N dist
K are also in N dist

K , we conclude
from (128):∑

d∈N dist
K

I (Wd1 ; V1)

≤
∑

d∈N dist
K

I (Wdk′ ; V1, . . . , Vk′ |Wd1, . . . , Wdk′−1
)

≤
∑

d∈N dist
K

I (Wdk ; V1, . . . , Vk |Wd1, . . . , Wdk−1). (129)

This proves (122b).
We proceed to prove constraint (122c). For each d ∈ N dist

K :

I (Wd1 ; V1)+
K∑

k=2

I (Wdk ; V1, . . . , Vk |Wd1, Wd2 , . . . , Wdk−1)

≤ I (Wd1 , Wd2 , . . . , WdK ; V1, . . . , VK). (130)

So,∑
d∈N dist

K

[
I (Wd1 ; V1)

+
K∑

k=2

I (Wdk ; V1, . . . , Vk |Wd1, Wd2 , . . . , Wdk−1 )

]

≤
∑

d∈N dist
K

I (Wd1 , Wd2, . . . , WdK ; V1 . . . , VK)

(a)=
∑

d∈N dist
K

[
H (Wd1) + H (Wd2) + · · · + H (WdK)

− H (Wd1, . . . , WdK |V1, . . . , VK)
]

(b)= K
N

|N dist
K |H (W1, . . . , WN)

−
∑

d∈N dist
K

H (Wd1, . . . , WdK |V1, . . . , VK)

(c)≤ K
N

K!
(

N
K

)
H (W1, . . . , WN)

− K
N

K!
(

N
K

)
H (W1, . . . , WN|V1, . . . , VK)

(b)= K
N

K!
(

N
K

)
I (W1, . . . , WN; V1, . . . , VK)

≤ K
N

K!
(

N
K

)
n

K∑
k=1

Mk ,

where (a) holds by the chain rule of mutual information,
(b) by the independence and uniform rate of messages
W1, . . . , WN and the definition of the set N dist

K , which is of
size

(N
K

)
K!, and (c) by the generalized Han-Inequality (the

following Proposition 18).

Proposition 18: Let L be a positive integer and A1, . . . , AL

be a finite random L-tuple. Denote by AJ the subset {Al, l ∈
J }. For every i ∈ {1, . . . , L}:

1(L
i

) ∑
J⊆{1,...,L}:

|J |=i

H (AJ )

i
≥ 1

L
H (A1, . . . , AL). (131)

Proof: See [45, Theorem 17.6.1].
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APPENDIX C
PROOF OF LEMMA 17

We prove the lemma by contradiction. Fix a random tuple
(X, Y1, . . . , YK) satisfying (15b) and for each set S as in (18)
a random tuple US,1, US,2, . . . , US,|S|−1 satisfying (68) and
real numbers αS,1, . . . , αS,|S| satisfying (122).

Assume that for some set S as in (18) and some
k̃ ∈ {1, . . . , |S| − 1}:

αS,k̃ 	= αS,k̃+1 (132)

and

αS,k̃ <

∑k̃
i=1 M ji

N − k̃ + 1
. (133)

Let

γ := max

⎧⎪⎨
⎪⎩

1

2
,

αS,k̃+1 −
∑k̃

i=1 M ji

N−k̃+1

αS,k̃+1 − αS,k̃

⎫⎪⎬
⎪⎭ . (134)

Notice that by (133):

γ ∈
[

1

2
, 1

)
. (135)

Define the new parameters

ᾱS,k := αS,k, k ∈ {1, . . . , |S|}\{k̃, k̃ + 1}, (136a)

ᾱS,k̃ := γαS,k̃ + (1 − γ )αS,k̃+1, (136b)

ᾱS,k̃+1 := (1 − γ )αS,k̃ + γαS,k̃+1. (136c)

Notice that this new set of parameters satisfies constraints
(122) when αS,1, . . . , αS,|S| are replaced by ᾱS,1, . . . , ᾱS,|S|.
In particular,

ᾱS,k ≤ ᾱS,k+1, k ∈ {1, . . . , |S| − 1}. (137)

We will show that there exist new auxiliary random vari-
ables ŪS,1, ŪS,2, . . . , ŪS,|S|−1 satisfying the Markov chain
(68), and so that upper bound (103) is looser for these new
auxiliaries and the new parameters ᾱS,1, . . . , ᾱS,|S| than for
the original auxiliaries US,1, . . . , US,|S|−1 and parameters
αS,1, . . . , αS,|S|−1.

To simplify notation in the following, we define

US,|S| := X. (138)

Notice that since αS,k̃ 	= αS,k̃+1 and by (122b), the strict
inequality

αS,k̃ < αS,k̃+1 (139)

must hold. Choose

ŪS,k = US,k, k ∈ {1, . . . , |S| − 1}\{k̃}, (140)

and
ŪS,|S| = US,|S| = X. (141)

The choice of ŪS,k̃ depends on whether

I (US,k̃; Yk̃ |US,k̃−1) ≤ I (US,k̃+1; Yk̃+1|US,k̃) (142a)

or

I (US,k̃; Yk̃|US,k̃−1) > I (US,k̃+1; Yk̃+1|US,k̃). (142b)

If (142a) holds, choose

ŪS,k̃ = US,k̃ . (143)

If (142b) holds, let E ∈ {0, 1} be a Bernoulli-β random
variable independent of everything else, where

β := (1 − γ ) − (1 − γ ) · I (US,k̃+1; Yk̃+1|US,k̃)

I (US,k̃; Yk̃|US,k̃−1)
. (144)

Choose

ŪS,k̃ =
{

(US,k̃, E) if E = 0,

(US,k̃−1, E) if E = 1.
(145)

Notice that in both cases the proposed choice satisfies the
Markov chain ŪS,1 → Ū2,S → · · · → ŪS,|S|−1 → X .

Trivially, for k /∈ {
k̃, k̃ + 1

}
, constraint (103)

is unchanged if we replace (US,1, US,2, . . . , US,|S|−1, X)
by (ŪS,1, ŪS,2, . . . , ŪS,K−1, X) and (αS,1, . . . , αS,|S|) by
(ᾱS,1, . . . , ᾱS,|S|).

If (142a) holds, then the proposed replacement relaxes
constraint (103) for k = k̃

(
because ᾱS,k̃ > αS,k̃

)
and it

tightens it for k = k̃+1
(
because ᾱS,k̃+1 < αS,k̃+1

)
. However,

the new constraint for k = k̃ + 1 is less stringent than the
original constraint for k = k̃:

ᾱS,k̃+1 + I (ŪS,k̃+1; Yk̃+1|ŪS,k̃)

(a)= (1 − γ ) · αS,k̃ + γ · αS,k̃+1 + I (US,k̃+1; Yk̃+1|US,k̃)

(b)
> αS,k̃ + I (US,k̃+1; Yk̃+1|US,k̃)

(c)≥ αS,k̃ + I (US,k̃; Yk̃ |US,k̃−1), (146)

where (a) holds by (136c); (b) holds by (139); and (c)
holds by holds by assumption (142a). We conclude that
when (142a) holds, the upper bound on C(M1, . . . , MK) in
(103) is relaxed if everywhere one replaces
(US,1, US,2 . . . , U|S,|S|−1) and (αS,1, . . . , αS,|S|) by
(ŪS,1, ŪS,2, . . . , ŪS,|S|−1) and (ᾱS,1, . . . , ᾱS,|S|).

We now assume that (142b) holds. We show that the new
constraints obtained for k = k̃ and for k = k̃ + 1 cannot be
more stringent than the tighter of the two original constraints
for k = k̃ and k = k̃ + 1.

Consider k = k̃. By (144) and (145) we have

I (ŪS,k̃; Yk̃ |ŪS,k̃−1)= I (US,k̃; Yk̃ |ŪS,k̃−1 E)

=(1 − β)· I (US,k̃; Yk̃ |US,k̃−1)

=γ · I (US,k̃; Yk̃ |US,k̃−1)

+(1−γ )· I (US,k̃+1; Yk̃+1|US,k̃). (147)

By (136b) and (147):

ᾱS,k̃ + I (ŪS,k̃; Yk̃ |ŪS,k̃−1)

= (γαS,k̃ + (1 − γ )αS,k̃+1

)
+γ I (US,k̃; Yk̃|US,k̃−1) + (1 − γ )I (US,k̃+1; Yk̃+1|US,k̃)

≥ min
{
αS,k̃ + I (US,k̃; Yk̃ |US,k̃−1),

αS,k̃+1 + I (US,k̃+1; Yk̃+1|US,k̃)
}
. (148)
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Let now k = k̃ + 1. We have:

I (ŪS,k̃+1; Yk̃+1|ŪS,k̃)

(a)= (1 − β)I (US,k̃+1; Yk̃+1|US,k̃)

+β I (US,k̃+1; Yk̃+1|US,k̃−1)

(b)= (1 − β)I (US,k̃+1; Yk̃+1|US,k̃)

+β I (US,k̃+1, US,k̃; Yk̃+1|US,k̃−1)

(c)= I (US,k̃+1; Yk̃+1|US,k̃) + β I (US,k̃; Yk̃+1|US,k̃−1)

(d)≥ I (US,k̃+1; Yk̃+1|US,k̃) + β I (US,k̃; Yk̃|US,k̃−1)

(e)= γ I (US,k̃+1; Yk̃+1|US,k̃) + (1 − γ )I (US,k̃; Yk̃ |US,k̃−1),

(149)

where (a) follows by the definition of ŪS,k̃ and ŪS,k̃+1; (b)
by the Markov chain (68); (c) by the chain rule of mutual
information and Markov chain (68); (d) by the degradedness
of the channel (15b); (e) by the definition of β in (144).

Therefore, by (136c):

ᾱS,k+1 + I (ŪS,k̃+1; Yk̃+1|ŪS,k̃)

≥ (1 − γ ) · αS,k̃ + γ · αS,k̃+1

+(1−γ ) · I (US,k̃; Yk̃|US,k̃−1)+γ · I (US,k̃+1; Yk̃+1|US,k̃)

≥ min
{
αS,k̃ + I (US,k̃; Yk̃|US,k̃−1),

αS,k̃+1 + I (US,k̃+1; Yk̃+1|US,k̃)
}
. (150)

We thus conclude that also when (142b) holds, the upper
bound on C(M1, . . . , MK) in (103) is relaxed if one
replaces (US,1, US,2, . . . , US,|S|−1) and (αS,1, . . . , αS,K) by
(ŪS,1, ŪS,2, . . . , ŪS,|S|−1) and (ᾱS,1, . . . , ᾱS,|S|).

APPENDIX D
PROOF OF REMARK 3

We first prove that the bound in Theorem 4 is loosened
when each α�

S,k is replaced by α̃S,k . Consider the intermediate
Lemma 16 in the proof of Theorem 4, Appendix A. Relax the
upper bound in this lemma by replacing for k = 2, . . . , K
constraint (122a) by

αS,k ≥ 0. (151)

Following similar steps as in the proof of Lemma 17, see also
[22, Lemma 12], it can be shown that this relaxed upper bound
is not changed when one imposes that

αS,2 = αS,3 = . . . = αS,|S|,

and

αS,1 = M1

N
or αS,1 = αS,2.

Since constraints (123) are increasing in αS,1, . . . , αS,|S|,
by constraint (122c), we conclude that the relaxed upper bound
is loosest for

αS,1 = M1

N

αS,k = |S|∑|S|
i=1 M ji − M j1

(|S| − 1)N
, k ∈ {2, . . . , |S| − 1},

i.e., for αS,k = α̃S,k .

We now prove that the bound in Theorem 4 is loosened
when each α�

S,k is replaced by α′
S,k . Consider again the

intermediate Lemma 16 in Appendix A. Relax constraint
(122a) by replacing it with αS,k ≥ 0, for all k = 1, . . . , K.
Following the steps in [22, Lemma 12], it can be shown that
the new constraints are loosest if each

αS,k = α′
S,k . (153)

This concludes the proof.

APPENDIX E
PROOF OF PROPOSITION 7

For 	 = 0, achievability follows by specializing Theorem 3
to t = K − 1 and to the input distribution PX that maxi-
mizes (74). In fact, for this input distribution:

R(K−1) = KCavg = Cavg +
∑K

k=1 M�(K−1)
k

K · N
.

For 	 > 0, achievability follows from Proposition 1.
The converse is proved as follows. Consider cache sizes

M∗(K−1)
1 , . . . , M∗(K−1)

K as given in (41). Apply Theorem 4,
but consider only the constraints (69) corresponding to the
sets S = {k}, for k ∈ K. Taking the average over the resulting
K constraints establishes that there exists a random variable
(X, Y1, . . . , YK) satisfying (15b) and so that

C(M(K−1)
1 , . . . , M(K−1)

K ) ≤ 1

K

∑
k∈K

I (X; Yk) + 1

K

∑
k∈K

M(K−1)
k

N
.

(154)

Maximizing the right-hand side over input distributions PX

yields the desired converse.

APPENDIX F
PROOF OF PROPOSITION 12

Relax the upper bound in Theorem 4 by considering con-
straints (69) only for the set of all receivers S = K, and
by replacing each α�

S,k by α̃S,k . Specializing the resulting
relaxed bound to the erasure BC, one obtains the following
upper bound:

C(M1, . . . , MK)

≤ max min

{
(1 − δ1)β1 + M1

N
, (1 − δ2)β2 + KM − M1

N · (K − 1)
,

. . . , (1 − δK)βK + KM − M1

N · (K − 1)

}
,

(155)

where the maximization is over the choice of parameters
β1, β2, . . . , βK ≥ 0 satisfying

K∑
k=1

βk ≤ 1. (156)

The upper bound in the proposition is established by solving
this maximization problem. In fact, by noticing that the bound
is increasing in β1, β2, . . . , βK ≥ 0, and by first fixing β1
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and optimizing over the choices β2, . . . , βK ≥ 0 summing to
1 − β1, we obtain

C(M1, . . . , MK)

≤ max
β1∈[0,1] min

{
β1C1 + M1

N
,

(1 − β1)C{2,...,K} + KM − M1

(K − 1) · N

}

= max
β1∈[0,1] min

{
β1C1, (1 − β1)C{2,...,K} + K(M − M1)

(K − 1) · N

}

+M1

N
.

(157)

If K(M − M1)

(K − 1) · N
≥ C1,

then the maximum is achieved at β1 = 1 and the upper bound
results in

C(M1, . . . , MK) ≤ C1 + M1

N
. (158)

Otherwise the maximum is at β = β�, where

β�
1 := C{2,...,K} + K(M−M1)

(K−1)·N
C1 + C{2,...,K}

, (159)

and the upper bound results in

C(M1, . . . , MK) ≤ CK + K(M − M1)

(K − 1) · N
· C1

C1 + C{2,...,K}
+ M1

N

= CK + K(M − M1)

(K − 1) · N
· CK

C{2,...,K}
+ M1

N
(160)

where we used that for erasure BCs

CK = C1 · C{2,...,K}
C1 + C{2,...,K}

. (161)

APPENDIX G
PROOF OF COROLLARY 13

Fix t ∈ K and S = {1, . . . , t}. For the considered channel

(r1 . . . , rt ) ∈ CS ⇐⇒
t∑

k=1

rk ≤ 1. (162)

The upper bound in Corollary 5 thus states that for this noise-
free BC a rate-memory tuple (R, M1, . . . , MK) is achievable
only if

t R −
t∑

k=1

α�
S,k ≤ 1. (163)

This is equivalent to the following bound on the capacity-
memory tradeoff

C(M1, . . . , MK) ≤ 1

t

(
1 +

t∑
k=1

α�
S,k

)
. (164)

Notice that the sum
∑t

k=1 α�
S,k takes on only two different

values, depending on the outcomes of the minimizations
defining α�

S,k . It is either

t∑
k=1

α�
S,k = t

∑t
k=1 Mk

N
(165a)

or
t∑

k=1

α�
S,k =

t∑
k=1

∑k
i=1 Mi

N − k + 1
. (165b)

Combining (164) with (165), applying the correspondence
ρ = R−1 and mk = Mk

R , and setting m1 = m2 = . . . =
mk = m yields,

1 ≤ 1

t

(
ρ + m · min

{
t2

N
,

t∑
k=1

k

N − k + 1

})
, (166)

which is equivalent to the bound in the corollary.
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