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Abstract—We investigate Quality of Information (QoI) aware
scheduling in task processing networks. Specifically, we consider
the scenario where a network sequentially receives tasks from
an end user, utilizes its resources to process them, and sends
back its response. The utility derived by the end user from
this response depends on both the accuracy and the freshness
of the information. There is often a trade-off between these two
attributes and we present a model that quantifies this dependence.
Using dynamic programming and optimal stopping theory, we
characterize the optimal scheduling policy that maximizes the
time average utility delivered by the network. We show that
for many scenarios of practical interest, the optimal policy has
a simple threshold structure. We also propose a method to
approximately compute the threshold in closed-form. This work
takes a step towards incorporating application aware objectives
in making optimal scheduling decisions.

Index Terms—Quality of Information, Scheduling, Optimal
Stopping, Dynamic Programming

I. INTRODUCTION

Traditional performance metrics for communication net-
works include throughput, fairness, and delay. From the point
of view of many applications in different types of networks,
these may not be sufficient indicators of acceptable perfor-
mance. For example, for an intrusion detection application
running on a wireless sensor network, a high throughput and
low delay data stream may provide little or no utility to the
end user if it is unable to correctly detect the phenomenon
of interest. Similarly, in a mission-critical tactical network,
a low volume of reliable data may be more useful than a
less accurate high volume of data. In light of this, there is
growing interest in defining and quantifying new higher layer
metrics that can capture application-specific objectives more
adequately. To date, several such metrics have been proposed.
Some examples include provenance, accuracy/fidelity, relia-
bility, corroboration/credibility, freshness, etc. A notion of
Quality of Information (QoI) is being proposed to formally
describe this class of attributes [1] [2]. For example, [1]
discusses the significance of QoI-aware networking in tactical
military networks and describes several types of attributes that
affect QoI.

The QoI associated with a piece of information can be
defined as the value provided by it to the end user/application.
Thus, by definition, it is application dependent. It should be

noted that this is different from the notion of Quality of Service
(QoS), which is defined based on traditional metrics such as
delay, jitter or packet loss ratio, and where the specific infor-
mation content is irrelevant to determine its utility to the end
user. Recent work is beginning to explore the impact of QoI
on fundamental networking operations such as rate control,
scheduling, and routing. For example, [3] considers the design
of information quality aware routing in sensor networks.
Specifically, it addresses a least-cost routing tree problem that
satisfies a given accuracy of detection constraint and proposes
a greedy heuristic based on least-cost path approximation and
pruning. Similarly, the QoI attribute of accuracy and its impact
on rate control at the transport layer has been considered
in [4], [5] in the context of event detection applications in
wireless sensor networks. Reference [6] considers network
utility maximization for sensor networks capable of in-network
processing, while [7] focuses on the effect of corroboration,
where the belief in information is reinforced by several sources
reporting the same (or similar) information in social swarming
applications. [10], [11] consider rate allocation and scheduling
for distortion-sensitive compressible data.

The QoI attributes in these works have been studied in
isolation and the trade-offs that result when these are jointly
considered have not been investigated. Given that some of
these can be traded off with one another, it is important to
investigate the question of how to make control decisions
that optimize performance with respect to multiple attributes.
In this paper, we take a step in this direction by analyzing
a model where the QoI depends on both the accuracy and
the freshness of the information, and characterizing optimal
decision strategies for various network scenarios.

Specifically, we consider a task processing network such as
a sensor network or a team of mobile nodes. The network is
sent jobs sequentially from an end user, i.e., central command
or the sink node, and it uses its resources such as energy,
sensing, computation, etc. to process this task. The utility
derived by the end user, i.e. the QoI, depends on the quality
of the response generated by the network, and is a function
of both the accuracy and the freshness of the information
provided by the network. Accuracy can be increased by a
longer processing time for a particular task. For example, if a
task corresponds to a certain event that is sensed, its accuracy
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can be increased by waiting for additional observations about
the event, or by running more extensive computations on
these observations. However, the utility associated with the
response also diminishes the longer it takes for the network to
respond. This introduces a trade-off. Should we respond with
less accurate but more timely information? Or should we incur
more delay while making the information more accurate? We
cast this as a sequential decision making problem and make
use of dynamic programming and optimal stopping theory to
characterize the structure of the optimal solution. Specifically,
in Sec. III, we show that for many scenarios of practical
interest, the optimal policy has a simple threshold structure.
Further, in Sec. IV, we provide a method to approximately
compute the threshold in closed-form. Numerical results sug-
gest that the approximate threshold performs close to optimal.

II. BASIC MODEL

We consider an information processing network that se-
quentially receives tasks from an end user and employs its
resources to process them. When it is finished processing a
task, it reports the result back to the end user. The utility
derived by the end user from this response depends on its
Quality of Information (QoI). This QoI is a function of both
the accuracy and the freshness of the information, to be made
precise below.

We assume that at most one task can be processed by the
network at any time. The network can continue to work on
the task as long as there is no new task at hand. However,
once a new task arrives, the network must stop processing
the current task, send its response, and move on to the new
task. Thus, the tasks are not queued in the basic model and
the deadline for any task is given by the (random, potentially
unknown) time until the next arrival. Within this duration, the
network may decide to stop at any time and return its response,
for example, if it determines that the processing thus far has
resulted in a sufficient amount of QoI. When this happens, the
network stays idle until the next task arrival. Similar models
for task processing networks have been considered in [6]–[9].

We assume a time-slotted system. In the basic model, we
assume that the interarrival times of the tasks are independent
identically distributed (i.i.d.) according to a fixed distribution
function with finite mean. We also assume that the tasks
themselves, the QoI associated with them and their responses,
are all independent of each other. Under these assumptions, the
arrival of each new task can be thought of as a renewal event.
Later, we extend the model to a scenario where the interarrival
times depend on the control decisions made by the network.

Within the lifetime of a task, the system evolves as follows.
Let X(t) denote the QoI state corresponding to the current task
in slot t. The QoI state X(t) is assumed to be a non-negative
real valued number and represents the amount of utility that
the end user derives if the network sends back its response in
the current slot.1 We assume that for each task, the QoI state

1More generally, the utility derived could be a functional of the QoI state
f(X(t)), where f(X) is increasing in X . For simplicity, we assume f(X) =
X .
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Fig. 1. State transition diagram for the case with i.i.d. Bernoulli Q(t) process.
For simplicity, all transitions are not shown.

starts with value 0 and transitions to an idle state I whenever
the network sends back its response. However, if the network
continues to process the task in the current slot, the QoI state
in the next slot is given by:

X(t+ 1) = γX(t) +Q(t) (1)

where 0 ≤ γ < 1 is a discounting factor that captures the
effect of the attribute of freshness on the QoI. A lower value
of γ implies higher dependence of the QoI on the attribute
of freshness and vice versa. The second term Q(t) represents
the increase in QoI as a result of the continued processing,
and this can be thought of as the gain in total QoI due to
potentially higher accuracy of information. We assume that
Q(t) in (1) takes values in an i.i.d. fashion from a finite set
of non-negative values and has a finite mean E {Q(t)} = Q.
Note that the new QoI state is assumed to be the sum of the
past discounted QoI and the increase Q(t).

The following is an example scenario that fits in this model.
Consider a sensor network where consecutive queries are
issued and the network can handle one query at a time. To
respond to any query, the network must make observations that
incur some cost and potentially generate stochastic outcomes.
While more observations tend to increase the quality of the
response, the end user also cares about its timeliness, so that
delay in responding diminishes its value to the end user. Thus,
the overall QoI can be captured by (1).

Before proceeding, we note an underlying assumption of
the model. It is assumed that the QoI or utility associated
with data can be computed in the network/fusion center. Doing
this would require the network to be aware of a model and its
associated parameters that enables the evaluation. For example,
in (1), it would require a knowledge of γ. This could be
specified by the end user based on application characteristics.

From the description of the basic model, denoting the
system idle state with I , it can be seen that in any state X 6= I ,
there are two possible control actions: Stop: A response is sent
back to the end user, and Continue: The network continues
to process the current task. In the following, we assume that
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stopping in any state X 6= I yields a QoI utility of X while
continuing incurs a processing cost of β. For simplicity, we
assume that β is constant in the rest of the paper while noting
that the results can be easily generalized to the case where
β takes values randomly from a set in an i.i.d. fashion.2 If
there is no new task arrival in the next slot, then the control
action of Stop transitions the state to I whereas with a new
task arrival, the state transitions to 0. Likewise, if there is no
new task arrival in the next slot, the control action of Continue
transitions the state according to (1). However, with a new task
arrival, the network must send its response for the last task first
and then the state transitions to 0. Once the response has been
sent for a task, the system stays in the idle state X = I until
the arrival of a new task.

Fig. 1 shows the state transition diagram for a sample
scenario where Q(t) is i.i.d. Bernoulli taking values from
{0, Q0}. Given this model, our goal is to design a control
algorithm that maximizes the time-average QoI delivered by
the network. This is made precise in the next section.

A. Control Objective

Let Xr denote the QoI delivered to the end user for task
r under any policy (where r ∈ {1, 2, 3, . . .}). Similarly, let
Cr denote the total processing cost incurred on task r. This
is equal to β times the number of slots in which the control
action of Continue was chosen for task r. Then, our control
objective is to maximize the time average QoI minus the
average processing cost. Since the length of a renewal period
is independent of the control actions, this is equivalent to
maximizing the average QoI minus the total processing cost
per task. This can be expressed as:

Maximize: lim
R→∞

1
R

R∑
r=1

E {Xr − Cr} (2)

Since the tasks are independent of each other, this max-
imization can be achieved by separately maximizing the
expected QoI minus the total processing cost in each renewal
period. This problem can be cast as a stochastic shortest path
(SSP) problem [13]. Specifically, we always start in the QoI
state X = 0 and terminate whenever the next task arrives.
Since the expected interarrival time of the tasks is finite,
this SSP problem always terminates under any control policy.
In the next section, we present the dynamic programming
formulation for this problem.

B. Dynamic Programming Formulation

Let (X,N) represent the current state of the system where
X denotes the QoI state and N denotes the number of slots
that have elapsed since the last renewal. Let p(N) be the
probability that a new task arrives in the next slot given
that N slots have elapsed since the last renewal. Finally, let
J(X,N) denote the optimal cost-to-go value functions. Then,

2The structural results of the paper also hold if there is a constant or random
i.i.d. communication cost associated with sending the response to the end user.

∀N ≥ 0,∀X 6= I , Bellman’s equation for this system is:

J(X,N) =max
[
X,−β + p(N)(γX +Q)

+ (1− p(N))E {J(γX +Q,N + 1)}
]

(3)

This can be interpreted as follows. In any state (X,N), X 6= I ,
we have two options: Stop, or Continue. The first term within
the max operator on the right hand side denotes the utility
derived if we stop in state (X,N). The second term denotes
the expected utility derived if we continue. This involves
a processing cost of β. Then, if a new task arrives in the
next slot, we must stop processing the current task and
send its response. This yields an expected utility given by
p(N)(γX + Q). Finally, if there is no new task in the next
slot, we transition to the state (γX + Q,N + 1) where Q is
the random increase in QoI due to the continued processing.
The optimal value function in state (X,N) is given by the
maximum of these two terms. Note that when X = I , we
trivially have J(I,N) = 0, ∀N ≥ 0. From (3), it is optimal
to stop in state (X,N) if:

X ≥ −β + p(N)Q+ (1− p(N))E {J(γX +Q,N + 1)}
1− γp(N)

Else, it is optimal to continue. In the next section, we analyze
the above property in detail for specific types of task arrival
processes.

III. CHARACTERIZING THE OPTIMAL POLICY

We consider three types of task arrival processes: geometric
task arrivals, periodic task arrivals, and infinite backlog.

A. Geometric Arrivals
Suppose in each slot, a new task arrives according to an i.i.d.

Bernoulli process with rate 0 < λ ≤ 1. Then, the interarrival
times are geometrically distributed with mean 1

λ , and we have
that p(N) = λ for all N . Using the memoryless property of
the geometric distribution, (3) can be simplified:

J(X) =max
[
X,−β + λ(γX +Q)

+ (1− λ)E {J(γX +Q)}
]

(4)

Thus, it is optimal to stop in any state X if X ≥
−β+λQ+(1−λ)E{J(γX+Q)}

1−λγ . We now show that the optimal
control policy is of threshold type with a unique threshold.

Theorem 1: For geometric interarrival times, the optimal
control policy is of threshold type with a unique threshold
αg such that it is optimal to stop in any state X ≥ αg , and
continue otherwise.

Proof: It is known that the value iteration algorithm
converges to the optimal value function [13]. Specifically,
consider the following iteration:

J0(X) = 0 ∀X (5)

Jk+1(X) = max
[
X,−β + λ(γX +Q)

+ (1− λ)E {Jk(γX +Q)}
]

(6)
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Fig. 2. Figure illustrating the threshold behavior of the optimal policy for
geometric interarrival times.

Then, it is known that limk→∞ Jk(X) = J∗(X) where J∗(X)
is optimal value function [13]. Using induction, we first show
that J∗(X) is convex and increasing in X . Further, we show
that the maximum slope of J∗(X) is 1.

Using the above iteration with k = 0, J1(X) is given by:

J1(X) =

{
−β + λ(γX +Q) if X < λQ−β

1−λγ
X else

Thus, J1(X) is convex and increasing in X . Further, since
λγ < 1, the maximum slope of J1(X) is 1.

Now assume that Jk(X) is convex and increasing in X and
that the maximum slope of Jk(X) is 1. Then E {Jk(γX +Q)}
is also convex and increasing and has maximum slope given
by γ < 1. Therefore, using (6), it can be seen that Jk+1(X),
which is the maximum of X and −β + λ(γX + Q) + (1 −
λ)E {Jk(γX +Q)}, is also convex and increasing. Further, it
has a maximum slope of max[1, λγ+(1−λ)γ] = 1. Since this
holds for all k and since limk→∞ Jk(X) = J∗(X), we have
that J∗(X) is convex and increasing in X and has maximum
slope 1.

Since the maximum slope of J∗(X) is 1, the maxi-
mum slope of the line y = −β + λ(γX + Q) + (1 −
λ)E {J∗(γX +Q)} is λγ+(1−λ)γ = γ < 1. Together with
the fact that3 J∗(0) > 0, this implies that there is exactly
one point of intersection between the curves y = X and
y = −β+λ(γX +Q) + (1−λ)E {J∗(γX +Q)}. This point
is given by αg (see Fig. 2).

B. Periodic Arrivals

Next we consider the case where tasks arrive periodically,
once every D slots. Thus, each task has a fixed deadline of D
slots. p(N) in (3) becomes p(D − 1) = 1 and p(N) = 0 for
all N 6= D − 1, and we have:

J(X,D) = X, (7)

J(X,D − 1) = max
[
X,−β + γX +Q

]
, (8)

J(X,K) =max
[
X,−β+E {J(γX +Q,K + 1)}

]
, (9)

3We ignore the degenerate case J∗(0) = 0.

y = x

y = -!+E{J*("x + Q, K+1)}

X

Y

0 #p
K

y = -!+E{J*("x + Q, K)}

#p
K+1

Fig. 3. Figure illustrating the stage dependent threshold behavior of the
optimal policy for periodic interarrival times.

where 0 ≤ K ≤ D−2 in (9). Thus, it is optimal to stop in any
state (X,D− 1) if X ≥ Q−β

1−γ . Similarly, it is optimal to stop
in any state (X,K) if X ≥ −β + E {J(γX +Q,K + 1)}.
We will show that the optimal policy is described by stage
dependent thresholds αpK .

We first establish the following property of the value func-
tions that allows us to characterize the relationship between
the thresholds.

Lemma 1: J(X,K) ≥ J(X,K + 1) ∀X,K
Proof: This follows by noting that by choosing the same

sequence of control actions starting in state (X,K) as the
optimal policy would choose starting in state (X,K + 1), we
can get at least the same utility as J(X,K + 1).

Then, we have the following:
Theorem 2: For periodic interarrival times, the optimal con-

trol policy is of threshold type with stage dependent thresholds
αpK such that in any stage K, it is optimal to stop in any state
X ≥ αpK and continue otherwise. Further, these thresholds
satisfy the relation αpK ≥ α

p
K+1 for all K.

Proof: Using the same technique as in the geometric case,
it can be shown that J(X,K) is convex and increasing in X
for all K. Further, the maximum slope of J(X,K) is 1.

Since the maximum slope of J(X,K) is 1 for all K, the
maximum slope of the line y = −β+E {J(γX +Q,K + 1)}
is given by γ < 1. Together with the fact that J(0,K) > 0,
these facts imply that for each K, there is exactly one point
of intersection between the curves y = X and y = −β +
E {J(γX +Q,K + 1)}. This point is given by αpK .

Using Lemma 1, we have that E {J(γX +Q,K + 1)} ≥
E {J(γX +Q,K + 2)}. Thus, the point of intersection of y =
X and y = −β + E {J(γX +Q,K + 1)}, i.e., αpK , cannot
be smaller than the point of intersection of y = X and y =
−β + E {J(γX +Q,K + 2)}, i.e., αpK+1 (See Fig. 3). This
shows that αpK ≥ α

p
K+1.

This result also captures the intuitive observation that as the
deadline approaches, the thresholds to stop decrease as there
are fewer opportunities to increase the QoI. For large D, the
optimal policy is well approximated by a stationary policy that
uses a single threshold for all stages. This can be thought of
as the case where the network is lightly loaded with tasks.
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Further, in the limit as D → ∞, this reduces to a one-shot
problem with only one task and thus we have the following:

Theorem 3: For the one-shot problem with only one task,
the optimal control policy is of threshold type with a unique
threshold αos such that it is optimal to stop in any state X ≥
αos and continue otherwise.

C. Infinite Backlog
Next, we consider the scenario where an infinite number

of tasks are waiting in the system. This can be thought of as
the case where the network is heavily loaded with tasks. In
contrast to the cases in Sec. III-A and III-B, the interarrival
times for the tasks are now a function of the control decisions.
Specifically, a new task arrives whenever the network stops
processing the current task and sends its response. This makes
the problem structurally different from the ones treated earlier.

This problem can be cast as an optimal stopping time
problem [12] with the goal of maximizing the rate of return.
Specifically, we want to maximize the ratio:

E {YN}
E {TN}

(10)

for a stopping rule N , where YN is the QoI delivered minus
total processing cost and TN is the duration of the renewal
period resulting from using the stopping rule N . Note that
unlike the cases treated in Sec. III-A and III-B, it is not
sufficient to simply maximize the numerator E {YN}, as the
length of the renewal period TN depends on the control policy
used.

Such problems can be approached by transforming the rate
of return problem into a stopping time problem. Specifically,
(10) can be maximized by solving a stopping problem that
maximizes E {YN − ξTN} where ξ is the optimal rate of
return. Note that with this transformation, the total per stage
cost to continue becomes β+ ξ. Since the total per stage cost
to continue β + ξ > 0, it can be shown that this problem
satisfies the framework of Assumption P in [13, Section 3.4].
Then, the DP algorithm is given by:

J(X) = max
[
X,−β − ξ + E {J(γX +Q(t))}

]
(11)

Further, as k → ∞, the following value iteration algorithm
converges to the optimal value function:

J0(X) = 0 ∀X (12)

Jk+1(X) = max
[
X,−β − ξ + E {Jk(γX +Q(t))}

]
(13)

Comparing this with (6), it can be seen that the iterates have
similar structure. Using similar arguments, for this case also,
we have the following:

Theorem 4: For the case with infinite backlog, the optimal
control policy is such that it is optimal to stop in any state
X ≥ αinf and continue otherwise. Furthermore, the threshold
αinf is unique.

IV. APPROXIMATE THRESHOLD

The value iteration algorithm, in principle, can be used to
compute the optimal value function and the optimal threshold.

However, it can be computationally intensive. Here, we present
an alternate method to determine the optimal threshold approx-
imately. The advantage of this is that it gives an expression
for the optimal threshold in closed form. This method relies
on making an approximation of the optimal value function.

We focus on the geometric case. For simplicity, we assume
that Q(t) is a Bernoulli i.i.d. process: Q(t) = Q0 w.p. q and
0 else, so that Q = qQ0. Since it is optimal to stop in any
state X ≥ αg (Theorem 1), using (4) we have that:

J(αg) = αg = max
[
αg,−β + λ(γαg +Q)

+ (1− λ)[qJ(γαg +Q0) + (1− q)J(γαg)]
]

(14)

Note that at the threshold αg , the two terms within the max
operator must be equal. This is because αg corresponds to the
point of intersection between the curves y = X and y = −β+
λ(γX+Q)+(1−λ)E {J(γX +Q(t))} (see Fig. 2). Next, the
maximum possible value for any state X is Q0

1−γ . This implies
that γαg+Q0 ≥ αg . This is because if γαg+Q0 < αg , we get
αg > Q0

1−γ , a contradiction. Next, when state X = γαg +Q0,
the optimal decision is to stop, since γαg + Q0 ≥ αg and
we are to the right of the threshold. Thus, J(γαg + Q0) =
γαg +Q0.

Using these, we can get the following equation for αg:

αg =− β + λ(γαg +Q)
+ (1− λ)[q(γαg +Q0) + (1− q)J(γαg)] (15)

Next, for 0 ≤ X < αg , we approximate the value function
J(X) by a straight line with slope γ, i.e., J(X) ≈ γX +
αg(1 − γ). The intuition behind this approximation is that
the maximum slope of y = −β + λ(γX + Q) + (1 −
λ)E {J(γX +Q(t))} is γ. Thus, our approximation is a lower
bound on the actual value function J(X) when 0 ≤ X < αg .

Using this approximation, we get J(γαg) ≈ γ2αg+αg(1−
γ) = αg(1− γ+ γ2). Now we can use (15) to evaluate αg as
follows:

αg ≈ Q− β
1− λγ − (1− λ)[qγ + (1− q)(1− γ + γ2)]

(16)

We compare the performance of a scheme that uses this
approximate threshold with the optimal scheme for different
parameter settings. Specifically, we fix Q0 = 1, q = 0.5, β =
0.01 and vary the task arrival rate λ and decay factor γ. As
shown in Fig. 4, a scheme that uses the approximate threshold
performs quite close to the optimal policy. This suggests the
goodness of the approximation (16).

V. CONCLUSIONS

In this paper, we have considered a model for Quality of In-
formation (QoI) aware scheduling in task processing networks.
Specifically, we have focused on two attributes that affect QoI:
accuracy and freshness, and presented a model that quantifies
the trade-off between the two. Using dynamic programming
and optimal stopping theory, we showed that the optimal
scheduling policy that maximizes the time average utility
delivered by the network has a simple threshold structure for
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Fig. 4. Comparison of average reward minus cost per task under the optimal
and approx. thresholds for different task arrival rates λ and decay factor γ.

many scenarios of practical interest. Further, we proposed a
method to approximately compute the threshold. Numerical
results suggest that the approximate threshold performs close
to optimal. We believe that this work takes a step towards
incorporating application aware objectives in making optimal
scheduling decisions.
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