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Strongly Secure Multiuser Communication and
Authentication With Anonymity Constraints

Rémi A. Chou , Member, IEEE, and Aylin Yener , Fellow, IEEE

Abstract— We consider authentication of messages sent from
transmitters to a receiver over a multiple access channel,
where each transmitter shares a secret key with the legitimate
receiver. Additionally, there exists a computationally unbounded
opponent who has access to noisy observations of the mes-
sages transmitted and can initiate impersonation or substitution
attacks. We require that the legitimate receiver must be able
to authenticate the messages he receives with respect to prede-
termined groups of transmitters, but at the same time must be
kept ignorant of the transmitter’s identity of a given message in a
given group. We propose an information-theoretic formulation of
these anonymity constraints as well as an authentication coding
scheme for which the asymptotic probability of successful attack
is shown to optimally scale with the length of the secret keys
shared between each transmitter and the legitimate receiver.
Our results quantify the positive impact of the multiple access
setting compared to the single-user setting on the probability of
successful attack.

Index Terms— Authentication, anonymity, impersonation
attack, substitution attack, multiple access wiretap channel.

I. INTRODUCTION

AUTHENTICATION aims at preventing the receiver of
a message from being deceived by a falsely claimed

authorship of the message. Early work by Simmons [2] consid-
ers a transmitter T and a receiver R, which are the legitimate
users, an opponent, whose computational power is unbounded,
and the following model for the authentication problem. The
transmitter T wishes to send M � = f(K, M) to the receiver R
over a noiseless channel, where f is an encoding function, K is
a secret key shared with R, and M is a message. f is designed
such that R is able to recover M from (M �, K). However, R

could receive �M , a modified version of M �, if an opponent
performs a substitution attack, i.e., intercepts M � and sends�M to R. The substitution attack is successful if R decodes �M
in �M �= M and decides that �M has been authored by T . R
could also be subject to an impersonation attack, for which
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the opponent generates and sends to R a message M �� before
T initiates any communication. The impersonation attack is
successful if R decides that the message he decodes has been
authored by T . PI and PS , the probabilities of successful
impersonation and substitution attacks, respectively, are lower
bounded in function of the size of the secret key K shared by
the legitimate users in [2], specifically, PI � 2−I(K;M) and
PS � 2−H(K|M). A review of subsequent works related to
this model can be found in [3], [4], as well as [5], in which a
simplified and unified proof of several results via hypothesis
testing is proposed.

While the model described above considers authentication
over noiseless channels, several more recent works have stud-
ied authentication over noisy channels, including [6]–[11], see
also [12] for a review. The closest counterpart to Simmons’
noiseless authentication model described above is [11]. Instead
of decoupling the problem of authentication over noisy channel
to channel coding and authentication over noiseless channel,
which has been shown to be detrimental in general [8], [9],
reference [11] has proposed combining these two tasks to
take advantage of the channel noise. Specifically, [11] has
provided the lower bound max(PI , PS) � 2−H(K), as well as
an asymptotically matching upper bound for a coding scheme
based on wiretap codes for strong secrecy [13].

In this paper, we build upon the premise of taking advantage
of the physical channel for providing information-theoretic
security and consider multiuser authentication with anonymity
constraints. In particular, we consider an authentication prob-
lem for multiple legitimate transmitters who wish to commu-
nicate strongly secure messages to a legitimate receiver over
a multiple access channel in the presence of an opponent.
As in [2], [5], [11], we consider impersonation and substitution
attacks by the opponent. Additionally, we enforce anonymity
constraints which protect the identity of the individual trans-
mitters with respect to a predefined transmitter group struc-
ture while simultaneously allowing the legitimate receiver to
authenticate the integrity of the messages sent through the
multiple access channel. A precise problem statement will be
provided in the next section, however, we can already provide
three motivating examples for transmitter group structures that
will be covered by our model.

1) Multiuser authentication in one-to-one correspondence:
Consider the case of a base station that receives signals
from a number of legitimate cellular users and wishes to
authenticate each signal individually. In this case, each
group has one member and no anonymity is desired.
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2) Multiuser authentication with complete anonymity: Con-
sider the case of a legitimate receiver who must validate
the group of transmitters for the messages he decodes but
should be kept uninformed of the identity of the transmit-
ter of a particular message. This case could correspond,
for instance, to a secret ballot, or an anonymous review
among a set of known reviewers.

3) Multiuser authentication with group anonymity: Con-
sider several groups of people involved in clinical trials.
Assume that each group is assigned a different drug.
At the end of the trial, each participant submits a report
of his/her experience to the principal investigator. Upon
receiving all the reports, the latter must identify the group
G associated with a particular report but the identity of the
person who wrote the report should be kept anonymous
among the group G.

The contributions of this paper are fourfold. (i) We propose a
metric to assess anonymity in multiuser authentication over
noisy channels. (ii) We provide an authentication scheme
relying on multiple access wiretap channel codes for strong
secrecy, and prove that its probability of successful attack
optimality scales with the length of the secret keys shared by
the legitimate users. (iii) We quantify the impact of anonymity
constraints on the probability of successful attack. (iv) We
quantify the impact of the multi-transmitter setting on the
probability of successful attack compared to the single-user
case in [11]. Preliminary results were presented in [1].

The remainder of the paper is organized as follows.
We describe the model under consideration in Section II.
We propose a coding scheme in Section III. We derive a lower
bound on the probability of successful attack, valid for any
authentication scheme, in Section IV. We derive in Section V
an upper bound on the probability of successful attack for the
coding scheme of Section III. We summarize our main results
in Section VI. We end the paper with concluding remarks in
Section VII.

Notation: Throughout the paper, let �a, b� � [�a�, �b�]∩N,
and let 1{ω} denote the indicator function, which is equal to
1 if the predicate ω is true and 0 otherwise. Define [x]+ �
max(0, x) for any x ∈ R. Let R+ � {x ∈ R : x > 0}
be the set of strictly positive real numbers. Unless specified
otherwise, capital letters designate random variables, whereas
lowercase letters designate realizations of associated random
variables, e.g., x is a realization of the random variable X .
For two sequences of bits l1 and l2, let l1	l2 denote the
concatenation of l1 and l2. Given a sequence of t sequences
of bits (li)i∈�1,t�, let 	i∈�1,t�li denote l1	l2	. . . 	lt. Finally,
for any finite set S, we denote the symmetric group on S by
S(S).

II. PROBLEM STATEMENT

A. Model Constituents

We first describe the principal constituents of our model
depicted in Figure 1.

Parties. Consider a set L � �1, L� of L ∈ N
∗ transmitters,

a legitimate receiver, and an opponent. The transmitters form
groups according to a partition P � {Gq : q ∈ Q} of L, where

Fig. 1. Multiuser authentication with anonymity constraints: The L trans-
mitters are grouped according to the partition P � {Gq}q∈Q of L, so that
anonymity of transmitters among each group must be preserved. The switch
models a potential attack initiated by the opponent in Block b ∈ B. When
the switch is connected to Yb there is no attack, whereas when the switch
is connected to �Yb, there is an impersonation attack or a substitution attack,
depending on whether or not the transmitters are silent.

Q � �1, Q�, Q ∈ N
∗, i.e., ∀q1 ∈ Q, ∀q2 ∈ Q\{q1},Gq1 �=

∅,Gq1 ∩ Gq2 = ∅, and
�
q∈Q

Gq = L. The partition P is known

to all parties. Additionally, we define C � {|Gq| : q ∈ Q} as
the set of lengths taken by the parts of P . For convenience,
we define (cd)d∈D as the sorted (in increasing order) sequence
of the elements of C, where D � �1, D� with D � |C|. We
also define for d ∈ D, nd as the number of parts of P with
length cd. We thus have

�
d∈D ndcd = L and

�
d∈D nd = Q.

For instance, if L = 6 and P = {{1}, {2}, {3}, {4, 5, 6}},
then Q = 4, D = 2, c1 = 1, c2 = 3, n1 = 3, n2 = 1.

Communication Channel. We consider a discrete memo-
ryless multiple access channel

�
XL, WY Z|XL ,Y × Z

�
, where

XL, Y , and Z are finite alphabets and XL � (Xl)l∈L.
To model the absence of a priori knowledge of the legitimate
receiver about how the transmitters are associated with the
different inputs of the channel, we introduce a permutation Π
chosen uniformly at random over S(L) such that Input l ∈ L
of the channel is used by Transmitter Π(l). For instance, when
L = 3, if Π is defined by (Π(1), Π(2), Π(3)) � (3, 1, 2),
then Input 1 is used by Transmitter 3, Input 2 is used by
Transmitter 1, and Input 3 is used by Transmitter 2. Π is
assumed fixed for the entire communication protocol, and
unknown to the legitimate receiver and the opponent. Assume
that the transmission over the channel is over B ∈ N

∗ blocks
and define B � �1, B�. For b ∈ B, let Yb and Zb denote
the observations of the legitimate receiver and the opponent
in Block b, respectively, when XL,b � (Xl,b)l∈L is the input
of the channel with Xl,b a codeword of length N emitted
by Transmitter Π(l) ∈ L. We also define XB

L � (XL,b)b∈B,
YB � (Yb)b∈B, and ZB � (Zb)b∈B.

Secret keys. For the purpose of authentication, we assume
that the legitimate receiver and each transmitter share a



574 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 1, JANUARY 2020

secret key uniformly distributed over the same alphabet K =
{0, 1}log |K|, where the logarithm is base 2 and |K| is a power
of 2. Let Kl denote the key shared between Transmitter l ∈ L
and the legitimate receiver, and define KL � (Kl)l∈L. The
keys Kl’s are assumed mutually independent, i.e., their joint
probability distribution factorizes as pKL =

�
l∈L pKl

, and
private in the sense that Transmitter l does not share Kl with
any other transmitter.

Remark 1. If the transmitters share with the legitimate
receiver private keys that do not have the same length, then
the transmitters can truncate their keys to the length of the
smallest key.

B. Definition of an authentication protocol

We describe in Section II-B.1 a generic scheme for authen-
tication. We describe in Section II-B.2 the impersonation
and substitution attacks to which an authentication scheme
can be subject. We describe and motivate in Section II-B.3
the requirements we propose for an authentication scheme.
We also show in Section II-B.3 that our model subsumes the
model in [11].

1) We first introduce a general definition for authentication
schemes and describe how it operates:

Definition 1. Let L, N, B, Q ∈ N
∗. Let P � {Gq}q∈Q be

a partition of L. Define the sequences RL �
	
R

(S)
l



l∈L

,

RQ � (Rq)q∈Q, and the sequence T � (τb)b∈B ∈ QB . An
(L, N, B,K,RL,RQ,P , T ) authentication scheme for a dis-
crete memoryless multiple access channel (XL, WY Z|XL ,Y×
Z) consists of

• B communication blocks of length N .
• For q ∈ Q, a message set Mq � �1, 2NRq�.
• For q ∈ Q, an alphabet Fq and a function υq : K|Gq| →

Fq, which maps KGq � (Kl)l∈Gq to Fq ∈ Fq. In the
following, we refer to Fq as the authentication sequence
for the group Gq .

• For each transmitter l ∈ L,

(i) a private key Kl ∈ K shared with the legitimate
receiver as described in Section II-A;

(ii) a message set M(S)
l � �1, 2NR

(S)
l �. Ml,b ∈ M(S)

l

denotes the message that Transmitter l wishes to
secretly communicate to the legitimate receiver over
Block b ∈ B � �1, B�, i.e., Ml,b must be kept
secret from the opponent. We make the assumption that
the messages (Ml,b)l∈L are mutually independent in
each block b ∈ B. Let ML,b � (Ml,b)l∈L denote all
the messages sent over Block b, and define MB

L �
(ML,b)b∈B.

(iii) an encoder hl : K×M(S)
l ×Mq → XN

Π−1(l), where q
is such that l ∈ Gq .

• A decoder g : YN →×
l∈L

M(S)
l that maps for any b ∈ B,

Yb to an estimate �ML,b of ML,b.
• For q ∈ Q, a decision function dq : YN × Fq → {0, 1},

which maps for any b ∈ B, (Yb, Fq) to Dq ∈ {0, 1}.
If the receiver has recovered the messages sent by the

transmitters in Gq and decides that the messages come
from the transmitters in Gq then Dq = 1, otherwise Dq =
0. Note that dq describes how this decision is made by the
receiver, and that it is left unspecified in this definition
in all generality. We provide examples for the decision
functions (dq)q∈Q in Examples 1 and 5 in Section II-B.3.

An (L, N, B,K,RL,RQ,P , T ) authentication scheme
for a discrete memoryless multiple access channel
(XL, WY Z|XL ,Y × Z) operates as follows.

• For q ∈ Q, transmitters in Gq communicate over a
noiseless private channel that all the transmitters in Gq can
have access to. The overall information communicated
over this channel is denoted by Mq and its rate by Rq .
At the end of the communication, the individual keys
of the transmitters must still be private as explained in
Section II-A.

Remark 2. It is unclear at this point whether this
extra communication among the members of a group is
necessary. We will later discuss why Rq should be strictly
positive in general. We will also show that Rq can be
chosen vanishing to zero as N → ∞.

• For b ∈ B, Transmitter l ∈ L encodes his messages Ml,b,
uniformly distributed over M(S)

l as hl (Kl, Ml,b, Mq) ,
where q is such that l ∈ Gq , and send the result-
ing codeword XΠ−1(l),b over the channel in Block b,
i.e., Transmitter l uses Input Π−1(l) of the multiple access
channel as described in Section II-A. We also assume that
(MB

L , (Mq)q∈Q) is independent of Π.
• For b ∈ B, upon observing Yb in Block b, the legitimate

receiver computes �ML,b with decoder g. The legiti-
mate receiver decides then whether to authenticate the
messages or not in the following manner. Let λ ��
q∈Q

1 {Dq}. If λ < τb, then the legitimate receiver

refuses all the messages. If λ � τb, then the legitimate
receiver accepts all the messages from Gq , where q ∈ Q
is such that Dq = 1, as authentic, and refuses all the
other messages.

Remark 3. If one chooses τb = Q, b ∈ B, then either
the legitimate receiver authenticates all the received
messages or none of them. If one choose τb < Q, b ∈ B,
then one allows the legitimate receiver to authenticate
some messages and reject others in a given block. Hence,
the potential advantage of choosing τb < Q is to avoid
a waste of bandwidth. The choice of τb, b ∈ B, and its
relationship with the probability of a successful attack is
further discussed in Section II-B.3, where we describe the
requirements for the authentication scheme.

2) We next describe the attack model: The opponent can
choose an arbitrary block index b ∈ B and initiate one of the
following. Note that without loss of generality [11], we assume
the channel between the opponent and the legitimate receiver
to be noiseless.

• Impersonation attack: The opponent sends �Yb to the
receiver when the transmitters are silent, and where �Yb is
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a function of all observations of the opponent, i.e, Zb−1 �
(Zi)i∈�1,b−1�.

• Substitution attack: The opponent blocks the transmis-
sion of the b-th block between the transmitters and the
legitimate receiver while observing Zb. The opponent
then sends �Yb, to the legitimate receiver, where �Yb

is a function of all observations of the opponent, i.e,
Zb � (Zi)i∈�1,b�.

An impersonation or a substitution attack is successful if
λ � τb, where λ is defined in Section II-B.1, and if there exists
q0 ∈ Q such that Dq0 = 1 and the messages decoded by the
legitimate receiver associated with Gq0 differ from the mes-
sages sent by Gq0 . We denote the probability of a successful
impersonation and the probability of a successful substitution
attack in Block b by PI,b(τb) and PS,b(τb), respectively.
For any (L, N, B,K,RL,RQ,P , T ) authentication scheme
SN , we define the probability of a successful attack by the
opponent as

PA(SN ) � max
b∈B

max (PI,b(τb), PS,b(τb)) . (1)

3) We now introduce the requirements for an authentica-
tion scheme as described in Section II-B.1 under the attack
model desribed in Section II-B.2: A sequence (SN )N∈N

of (L, N, B,K,RL,RQ,P , T ) authentication schemes must
satisfy the following constraints.

• Reliability: MB
L must be reconstructed reliably by the

legitimate receiver, i.e.,

lim
N→∞

P

�MB
L �= MB

L |{Absence of attack}
�

= 0, (2)

where �MB
L denotes the estimate of MB

L .
• Strong Secrecy: MB

L must be kept secret from the
opponent in the sense that

lim
N→∞

I
�
MB

L ;ZB
�

= 0. (3)

• Anonymity: For all b ∈ B, for all q ∈ Q, we require
anonymity of the transmitters in the group Gq , i.e., for
any l ∈ L, the legitimate receiver can determine from
which group of transmitters Gq , the message �Ml,b has
been sent but must not be able to determine from which
transmitter in Gq , �Ml,b has been sent. We formalize the
requirement as follows.
For q ∈ Q, define the restriction of Π to Gq as Πq , define
Imq as the image of Πq , and let S(Gq, Imq) be the set of
all bijections from Gq to Imq . While the sets Imq can be
determined by the decoder for all q ∈ Q, the anonymity
constraint is written as
∀N, B ∈ N

∗, ∀yB ∈ YNB, ∀q ∈ Q, ∀σ ∈ S(Gq, Imq),

P
�
Πq = σ|YB = yB

�
=

1
|Gq|!

. (4)

• Attack Resilience: The asymptotic probability of a suc-
cessful attack by the opponent limN→∞ PA(SN ) should
be arbitrarily small for sufficiently long keys, i.e., we
require

lim
|K|→∞

lim
N→∞

PA(SN ) = 0. (5)

Remark 4. This requirement raises several questions.
Is there an authentication scheme that meets this con-
straint? Is it possible to determine a convergence rate
for lim|K|→∞ limN→∞ PA(SN ) = 0 in function of
|K|? Is it possible to determine an optimal conver-
gence rate for lim|K|→∞ limN→∞ PA(SN ) = 0 in func-
tion of |K|, over all the possible sequences (SN )N∈N

of (L, N, B,K,RL,RQ,P , T ) authentication schemes?
What particular choices for Fq and dq , q ∈ Q, would
allow achievability of this optimal convergence rate?
How does the choice of the sequence of thresholds T
influence the probability of successful attack? The goal
of our study is to address these questions.

We now provide some settings covered by our model.

Example 1 (Single-user authentication [11]). Choose L =
Q = 1, for all b ∈ B, τb = Q, and RQ = ∅. Note that
the anonymity constraint is irrelevant since L = 1. This case
recovers the setting in [11]. Moreover, the authors in [11]
choose in Definition 1, F1 = K1 and choose the decision
rule d1 such that d1 = 1 if F1 is present at the beginning
of the decoded message, and d1 = 0 otherwise. It is also
proved in [11] that there exists a sequence (SN )N∈N of
authentication schemes such that the probability of successful

attack satisfies limN→∞ PA(SN )
|K|→∞∼ 1

|K| , and that this
convergence rate is optimal over all possible sequences of
authentication schemes. This result will be recovered by our
results.

Example 2 (Multiuser authentication in one-to-one correspon-
dence). Consider a partition P of L with Q = L, i.e., P
is the set of singletons {{l} : l ∈ L}. In this case, there
is no anonymity constraint, i.e., the legitimate receiver must
find a bijection between the L decoded messages and the L
transmitters. This case could corresponds to Point 1 described
in the introduction.

Example 3 (Multiuser authentication with complete
anonymity). Consider a partition P of L with Q = 1, i.e., P
is the singleton {L}. In this case, the legitimate receiver must
authenticate the group of transmitters as L for the L decoded
messages but should be kept uninformed of the identity of the
transmitter of a particular message. This case is illustrated
by Point 2 in the introduction.

Example 4 (Multiuser authentication with group anonymity).
Consider a partition P of L with Q ∈ �2, L − 1�. This case
could corresponds to Point 3 in the introduction, where the
partition of L represents the different groups of people.

We now illustrate with a simple coding scheme our model.

Example 5. Consider L = 2, B = 1, Q = 1, P =
{{1, 2}}. Define F1 � K1 ⊕ K2, note that F1 is known at
the receiver. Assume that Transmitter l, l ∈ L, draws Rl

a sequence of uniformly distributed bits over K, and sends
Rl ⊕ Kl to the other transmitter over their private noiseless
channel. Hence, by doing these one-time pads the transmitters
do not disclose their keys to each other - see Lemma 6 in
Appendix A. The transmitters also exchange a random bit C
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over their private channel such that C is unknown to the legit-
imate receiver. Define (H1||H2) � K1⊕K2⊕R1⊕R2, where
|H1| = |H2| and || denotes concatenation (for simplicity,
we assume in this example that the length of the keys is even).
Then, Transmitter l ∈ {1, 2} encodes (H̄l(C), Rl, Ml) and
sends the result XΠ−1(l) over the channel, where H̄l(C) � Hl

if C = 1 and H̄l(C) � H3−l if C = 0. We assume
that the transmitters use a code for multiple access wiretap
channels [14], which ensures that reliability and secrecy hold.
Upon observing the channel output Y, the legitimate receiver
can compute an estimate of the pair

�
(Mi, Ri, H̄i(C))

�
i∈{1,2}

(without knowing how to map the elements of the pair to the
indices 1 and 2), and can compute an estimate of the pair
((H̄1(C)||H̄2(C)) ⊕ R1 ⊕ R2, (H̄2(C)||H̄1(C)) ⊕ R1 ⊕ R2).
The decision rule d1 to authenticate the messages is then the
following: if either the estimate of (H̄1(C)||H̄2(C)) ⊕ R1 ⊕
R2 or the estimate of (H̄2(C)||H̄1(C)) ⊕ R1 ⊕ R2 is equal
to F1, then accept the estimates of the messages M1, M2 as
authentic, otherwise reject all the messages. By construction,
for any σ ∈ S(L), for any y, P[Π = σ|Y = y] = P[C = 1] =
P[C = 0] = 1/2, i.e., the anonymity constraint is satisfied.

Note that this simple coding scheme raises many questions
that our study will address. What is the probability of suc-
cessful attack by an opponent for this scheme and how does
it scale with |K|? What is the optimal scaling with |K| of the
probability of successful attack for this setting? Is the private
channel between the trasmitters necessary? Is the choice of
F1 optimal in terms probability of successful attack? Is the
decision rule d1 optimal in terms of probability of successful
attack?

Remark 5. As illustrated in Example 5, note that the legiti-
mate receiver cannot authenticate a strict subset of messages
from a given group Gq , q ∈ Q. Indeed, by the anonymity
requirement, the receiver could not know which messages have
not been correctly authenticated for the group Gq .

Remark 6. Our setting only considers partitions of L for
the purpose of anonymity. The reason is the following. Con-
sider three transmitters that form two overlapping groups, for
instance, G1 � {1, 2} and G2 � {2, 3}, such that anonymity
should be preserved in G1 and G2. Assume that the legitimate
receiver estimates the messages sent by the transmitters as I ,
J , K , and decides (correctly) that (I, J) are the messages
coming from G1, and that (J, K) are the messages coming
from G2. The receiver can then deduce that Transmitter 2 has
sent J , Transmitter 1 has sent I , and Transmitter 3 has sent
K , and no anonymity is possible for the transmitters.

Section III is dedicated to the design of a coding scheme
that meets the objectives described in this section.

III. CODING SCHEME DESIGN

In Section III-A, we provide guidelines for the design
of authentication schemes as defined in Section II-B.
In Section III-B, we construct an authentication scheme in
light of Section III-A.

A. Design guidelines

Observe that the authentication scheme design should aim
at maximizing H (Fq), for all q ∈ Q, to make an attack more
difficult to succeed. Indeed, the probability of a successful
attack by an opponent is lower bounded by the probability of
the opponent correctly guessing Fq , q ∈ Q at random, which,
ideally, we would also like to be the best possible strategy
for the opponent. Since Fq is a function of KGq , we could
potentially choose Fq such that H(Fq) = H(KGq), however,
it raises the question of whether such a choice is compatible
with the other requirements described in Section II-B. This
question is addressed in this section. We also determine
in this section that the communication rates Rq , q ∈ Q,
in Definition 1, must be strictly positive in general.

Specifically, we first show that any authentication scheme
as defined in Section II-B must satisfy Property 1 to minimize
the probability of a successful attack by an opponent. We
then provide in Lemma 1 a necessary condition to ensure
the anonymity requirement (4). We develop consequences of
Lemma 1 in Lemma 2, which provides an upper-bound on
H(Fq), q ∈ Q, and in Lemma 3, which shows that the
communication rates Rq , q ∈ Q, in Definition 1, must be
strictly positive in general.

Property 1. To minimize the probability of a successful attack
by an opponent, an authentication scheme, as defined in
Section II-B, must be such that in the absence of attack

∀b ∈ B, ∀q ∈ Q, I (Yb; Fq) = H (Fq) . (6)

Indeed, for any authentication scheme, there exists a strategy
for the opponent to successfully attack the messages asso-
ciated with the group of transmitters Gq with probability
at least 2−I(Yb;Fq), which is minimized when (6) holds to
yield the probability of successfully guessing Fq at random,
i.e., 2−H(Fq).

Proof: The proof is an application of [5, Section IV].
Assume that the opponent forms a fraudulent signal �Yb

according to the distribution p�Yb
� pYb

. Note that pYb
is

known to the opponent because it is independent of the specific
key KL shared by the legitimate users. Upon observing�Yb, when the legitimate receiver authenticates the messages
associated with Gq , q ∈ Q, he has to decide whether �Yb has
been generated from pFqYb

(Hypothesis H0), or from pFqp�Yb
,

(Hypothesis H1). The probability that the legitimate receiver
accepts the messages in Gq , i.e., the probability of accept-
ing Hypothesis H0 whereas Hypothesis H1 holds, is lower

bounded by [5, Lemma 1], 2−D

�
pFqYb

���pFq p
�Yb

�
= 2−I(Yb;Fq),

where D(·||·) denotes the Kullback-Leibler divergence.
In light of Property 1, in the remainder of this section,

we will consider authentication schemes as defined in
Section II-B that in addition satisfy in the absence of attack

I (Yb; Fq) = H (Fq) , (7)

for all b ∈ B, for all q ∈ Q.
We now provide a necessary condition to ensure the

anonymity requirement (4) that we will use to derive an upper-
bound on H(Fq), q ∈ Q, in Lemma 2.
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Lemma 1. If the anonymity requirement (4) holds, then

∀N, B ∈ N
∗, ∀q ∈ Q, max

G⊂Gq

s.t. |G|=|Gq|−1

I
�
YB ; KG

�
= 0. (8)

Proof: By contradiction, assume that (8) does not hold,
i.e., there exists N ∈ N

∗, B ∈ N
∗, q ∈ Q, G ⊂ Gq such that

|G| = |Gq| − 1, and

I
�
YB; KG

�
�= 0. (9)

For notation convenience, define H � Π−1(G), I �
Π−1(Gq)\Π−1(G), and J � L\Π−1(Gq) such that {H, I,J }
forms a partition of L. We have

I
�
XB

HMqΠ; KG
�

= I
�
XB

HMqΠ; KG
�

+ I
�
KGq\G ; KGMq

�
(10a)

= I
�
XB

HMqΠ; KG
�

+ I
�
KGq\G ; KGXB

HMqΠ
�

(10b)

� I
�
XB

HMqΠ; KG
�

+ I
�
KGq\G ; KG |XB

HMqΠ
�

(10c)

= I
�
XB

HMqΠKGq\G ; KG
�

(10d)

= I
�
XB

LMqΠKGq\G ; KG
�
− I

�
XB

I ; KG |XB
HMqΠKGq\G

�
− I

�
XB

J ; KG |XB
H∪IMqΠKGq\G

�
(10e)

� I
�
XB

L ; KG
�
− I

�
XB

I ; KG |XB
HMqΠKGq\G

�
− I

�
XB

J ; KGqX
B
H∪IMq|Π

�
(10f)

= I
�
XB

L ; KG
�
− I

�
XB

J ; KGqX
B
H∪IMq|Π

�
(10g)

= I
�
XB

L ; KG
�

(10h)

� I
�
YB ; KG

�
(10i)

> 0, (10j)

where (10a) holds because the keys of the transmitters in
Gq\G must remain secret from the transmitters in G after
the exchange of Mq , i.e., I(KGq\G ; KGMq) = 0, (10b) holds
because KGq\G−(Mq, KG)−(XB

H, Π) forms a Markov chain,
(10c), (10d), (10e), (10f) hold by the chain rule, (10g) holds
because XB

I − (XB
H, Mq, Π, KGq\G) − KG forms a Markov

chain, (10h) holds because XB
J −Π−(KGq ,X

B
H∪I , Mq) forms

a Markov chain, (10i) holds by the data processing inequality,
(10j) holds by (9).

Since I
�
XB

HMqΠ; KG
�

does not depend on the specific
realization of Π, it can be assumed known to the legitimate
receiver. Hence, by (10j), there exists G� ⊂ Gq and H� ⊂
Π−1(Gq) such that |H�| = |G�| = |Gq| − 1, and the legitimate
receiver can determine that

I
�
XB

H′MqΠ; KG′
�

> 0. (11)

Then, note that there exists a ∈ G� such that Π−1(a) ∈ H�,
otherwise Π(H�) ∩ G� = ∅, and

I
�
XB

H′MqΠ; KG′
�

= I
�
XB

H′Π; KG′ |Mq

�
(12a)

= 0, (12b)

where (12a) holds by the key privacy requirement,
i.e., I (Mq; KG′) = 0, (12b) holds because (XB

H′ , Π) −Mq −
KG′ forms a Markov chain when Π(H�) ∩ G� = ∅, and
(12b) would contradict (11). Finally, since Π−1(a) ∈ H�,
the anonymity requirement (4) is not satisfied because for
any yB ∈ YNB , P[Πq = σ|YB = yB ] = 0, where

σ ∈ S(Gq, Imq) and is such that σ−1(a) ∈ Π−1(Gq)\H� �= ∅.

Lemma 2. For any authentication scheme, as defined in
Section II-B, we have

∀q ∈ Q, H (Fq) � log |K|. (13)

Proof: Let b ∈ B, let q ∈ Q. We have

I (Yb; Fq)
� I

�
Yb; KGq

�
(14a)

= I
�
Yb; Kl∗ |KGq\{l∗}

�
+ I

�
Yb; KGq\{l∗}

�
(14b)

= I
�
Yb; Kl∗ |KGq\{l∗}

�
(14c)

� H (Kl∗) (14d)

= log |K|, (14e)

where (14a) holds by the data processing inequality due to
the Markov chain Yb − KGq − Fq , in (14b) l∗ is an arbitrary
element of Gq , (14c) holds by (8) or because |Gq| = 1. Hence,
by (7), H (Fq) = I (Yb; Fq) � log |K|.

Finally, we show that the communication rates Rq , q ∈ Q,
in Definition 1, must be strictly positive in general.

Lemma 3. Consider an authentication scheme, as defined in
Section II-B. Let q ∈ Q be such that |Gq| > 1. If the transmit-
ters in Gq are not allowed to communicate with each other,
then there exists multiple access channels, (Xm, WY |XM ,Y),
for which it is necessary to have maxυq H (Fq) = 0, where the
maximum is taken over all the function υq of KGq , as defined
in Definition 1.

Proof: Let b ∈ B. Consider a channel such that the
legitimate receiver observes Yb �

	
Y(1)

b ,Y(2)
b



, and such

that there exists q ∈ Q and l∗ ∈ Gq with |Gq| > 1 such that
Y(1)

b only depends on the codeword sent by the transmitter
l∗ ∈ Gq , and Y(2)

b only depends on the codewords sent by
the transmitters in L\{l∗}. Consider an authentication scheme
as defined in Definition 1 with arbitrary functions (υq)q∈Q.
We then have,

I (Yb; Fq) � I
�
Yb; Kl∗ |KGq\{l∗}

�
(15a)

= I
	
Y(1)

b ; Kl∗ |KGq\{l∗}



+ I
	
Y(2)

b ; Kl∗ |KGq\{l∗}Y
(1)
b



(15b)

� I
	
Y(1)

b ; Kl∗ |KGq\{l∗}



+ I
	
Y(2)

b KGq\{l∗}; Kl∗Y
(1)
b



(15c)

= I
	
Y(1)

b ; Kl∗ |KGq\{l∗}



(15d)

= I
	
Y(1)

b ; Kl∗



(15e)

� I (Yb; Kl∗) (15f)

= 0, (15g)

where (15a) holds by the proof of Lemma 2, (15e) holds by
independence between (Y(1)

b , Kl∗) and KGq\{l∗}, (15g) holds
by (8) because |Gq| > 1. Hence, by (7) and (15g), H (Fq) =
I (Yb; Fq) = 0.
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B. Proposed coding scheme

The basis of our coding scheme is a multiple access
wiretap code for strong secrecy [14]. Hence, we briefly recall
the definition and known results concerning this model in
Section III-B.1. We then describe our encoding and decoding
scheme in Section III-B.2. We only study the reliability,
strong secrecy, and anonymity constraints in this section, and
postpone the analysis of successful probability of attack to
Sections IV and V.

1) Multiple access wiretap channel codes:
Codes for the multiple access wiretap channel are formally

defined as follows.

Definition 2. A code CN for a multiple access wiretap channel
(XL, WY Z|XL ,Y × Z) consists of

• L encoders, fl : M(S)
l → XN

l , l ∈ L, which maps
a message Ml of Transmitter l uniformly distributed
over M(S)

l � �1, 2NR
(S)
l � to a codeword of length N .

Moreover, we define ML � (Ml)l∈L;

• One decoder, g : YN → ×
l∈L

M(S)
l , which maps a

sequence of N channel output observations to an estimate�ML of ML.

Definition 3. A rate L-tuple
	
R

(S)
l



l∈L

is achievable, if there

exists a sequence of codes (CN)N∈N∗ , such that

lim
N→∞

P

�ML �= ML
�

= 0 (reliability), (16a)

lim
N→∞

I (ML;Z) = 0 (strong secrecy), (16b)

where Z is the channel output observed by the eavesdropper.

The next result characterizes a set of known achievable
rates.

Theorem 1. Let Conv (·) denotes the convex hull of a set. The

region R � Conv
	�

pXL=
�

l∈L pXl
R(pXL )



is achievable,

where we have defined

R(pXL) �
�	

R
(S)
l



l∈L

: ∀A ⊆ L,

�
l∈A

R
(S)
l � [I(XA; Y |XAc) − I(XA; Z)]+

�
. (17)

Note that Theorem 1 has been established for weak secrecy
in [15] and extended to strong secrecy in [14], [16]. Note also
that when L = 2, Theorem 1 can be obtained with a low-
complexity and explicit coding scheme [17].

2) Proposed encoding and decoding algorithms:
For q ∈ Q, we choose Fq in Definition 1 as

Fq �
�
l∈Gq

Kl, (18)

where
�

denotes the modulo-2 addition. We define for any
q ∈ Q,

Kq,i � Fq [�1 + (i − 1)n∗, i n∗�] , ∀i ∈ �1, |Gq|�, (19)

where for any A ⊆ �1, log |K|�, Fq [A] denote the bits of
Fq in positions indexed by A, n∗ is known by all parties

and such that n∗ = o(log(|K|)) and lim|K|→∞ n∗ = +∞.
As seen in Lemma 3, in general, communication among
transmitters is required to allow authentication. Algorithm 1
describes the communication process among the transmitters.
After the communication process described in Algorithm 1,

Algorithm 1 Communication Among Transmitters
1: for q ∈ Q do
2: for l ∈ Gq do
3: Transmitter l draws a binary sequence Rl uniformly

distributed over K and sends Kl⊕Rl to all transmitters
in Gq

4: Transmitter l sends Kl[�1, |Gq |n∗�] to all transmitters
in Gq

5: end for
6: All the transmitters in Gq can compute

Γq �
�
l′∈Gq

(Kl′ ⊕ Rl′)

7: All the transmitters in Gq can compute Kq,i, ∀i ∈
�1, |Gq|�, defined in (19)

8: An arbitrary transmitter in Gq sends to all transmitters
in Gq a permutation Σq uniformly chosen at random in
S(�1, |Gq|�)

9: end for

Transmitter l ∈ Gq , q ∈ Q, has leaked to other group
members Kl[�1, |Gq|n∗�], however, this amount of key leaked
is negligible since n∗ = o(log |K|) and no information has
been leaked about Kl[�|Gq |n∗ + 1, log |K|�] – see Lemma 6
in Appendix A. The corresponding communication rate Rq ,
q ∈ Q, in Definition 1 is thus

Rq =
|Gq | log |K| + log(|Gq|!) + o(log |K|)

NB
, (20)

where we have used n∗ = o(log |K|).
Note that the probability that all the elements

of the sequence (Kq,i)q∈Q,i ∈�1,|Gq|� are distinct is�L−1
i=1

�
1 − i

2n∗
� |K|→∞−−−−−→ 1.

Remark 7. The exchange of the sequences defined in (19)
described in Algorithm 1 is meant to simplify the presentation
of our coding scheme and the decoding rule. Specifically,
in Algorithm 3, the decoder can easily determine how to
combine the decoded messages from all transmitters to form
the left-hand side in (23).

Remark 8. Communication among transmitters is not needed
when Q = L.

For any group Gq , q ∈ Q, we then divide Γq, obtained in
Algorithm 1, in |Gq| parts as follows. ∀i ∈ �1, |Gq| − 1�,

Γq,i � Γq

��
|Gq|n∗ + 1 + (i − 1)Δq, |Gq|n∗ + iΔq

��
,

(21a)

Γq,|Gq| � Γq

��
|Gq|n∗ + 1 + (|Gq| − 1)Δq, log |K|

��
, (21b)

where

Δq �
�

log |K| − n∗|Gq|
|Gq| − 1

− 1
�

, (22)
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and for any A ⊆ �1, log |K|�, Γq[A] denote the bits of Γq in
positions indexed by A. The transmitters then encode their
messages as described in Algorithm 2, and the legitimate
receiver decodes its observations as described in Algorithm 3.

Algorithm 2 Encoding at the Transmitters
1: for Block b ∈ B do
2: for q ∈ Q do
3: for l ∈ Gq do
4: Define Γ(1)

l � Γq,Ρq(l), Γ(2)
l � Kq,Ρq(l). Transmitter

l encodes
	
Ml,b, Rl, Γl �


Γ(1)

l , Γ(2)
l

�

as his secret

message with the multiple access wiretap codes of
Theorem 1

5: end for
6: end for
7: end for

Algorithm 3 Decoding at the Legitimate Receiver
1: for Block b ∈ B do
2: For all l ∈ L, the legitimate receiver forms the estimate	�Ml,b, �Rl,b, �Γl,b



of (Ml,b, Rl, Γl), using the decoder of

Theorem 1 associated with the encoders used in Algo-
rithm 2. Let (�Γ(1)

l )l∈L, (�Γ(2)
l )l∈L denote the estimates of

(Γ(1)
l )l∈L, (Γ(2)

l )l∈L, respectively
3: for q ∈ Q do
4: if all the elements of (Kq,i)i∈�1,|Gq|� appears

exactly once in (�Γ(2)
l,b )l∈L in positions indexed by

(li,q)i∈�1,|Gq|� ∈ L|Gq|, and

�Rq ⊕
��

||
i∈�1,|Gq|�

�Γ(2)
li,q,b

�
||
�

||
i∈�1,|Gq|�

�Γ(1)
li,q,b

��
= Fq, (23)

where || denotes concatenation, and �Rq is defined as the
sum

�
i∈�1,|Gq|�

�Rli,q,b with the first |Gq |n∗ bits replaced

by zeros then
5: The decoder decides that the messages	�Mli,q,b



i∈�1,|Gq|�

comes from the transmitters

in Gq and sets Dq = 1
6: else
7: The decoder sets Dq = 0
8: end if
9: end for

10: if
�
q∈Q

1 {Dq = 1} � τb then

11: The legitimate receiver accepts as authenticated all the
messages of Group Gq if q is such that Dq = 1, q ∈ Q,
and refuse all the other messages

12: else
13: The legitimate receiver refuses all the messages
14: end if
15: end for

The following proposition summarizes the properties satis-
fied by our proposed scheme. As alluded to earlier, we post-
pone the analysis of the probability of successful attack to
Sections IV and V.

Proposition 1. For any rate L-tuple
	
R

(S)
l



l∈L

∈ R ∩
R

L
+, where R is defined in Theorem 1, for RQ �

(O(|Gq | log |K|)/NB)q∈Q, the authentication scheme defined
by Algorithms 1, 2, and 3 satisfies strong secrecy, anonymity,
and reliability. Note also that (7) is asymptotically satisfied,
and that (13) holds with equality.

Proof: Reliability holds by Theorem 1. Strong secrecy is
shown as follows. Define for b ∈ B, VL,b � (Ml,b, Rl, Γl)l∈L
and VB

L � (VL,b)b∈B. We have

I
�
VB
L ;ZB

�
=
�
b∈B

I
�
Zb;VB

L |Zb−1
�

(24a)

�
�
b∈B

I
�
Zb;VB

L Zb−1
�

(24b)

=
�
b∈B

I
�
Zb;VB

L
�

(24c)

=
�
b∈B

I (Zb;VL,b) (24d)

�
�
b∈B

δ(N) (24e)

= Bδ(N), (24f)

where (24c) holds because for any b ∈ B,
we have Zb − VB

L − Zb−1, (24d) holds because
Zb − VL,b − (VL,b′)b′∈B\{b}, (24e) holds by Algorithm 2 and
Theorem 1 and where δ(N) denotes a generic function that
vanishes to zero exponentially fast as N → ∞.

We now verify that the anonymity constraints hold. Consider
an arbitrary bijection β between S(Gq, Imq) and S(�1, |Gq|�).
By construction of Fq , we have, ∀N, B ∈ N

∗, ∀q ∈ Q, ∀yB ∈
YNB, ∀σ ∈ S(Gq, Imq),

P
�
Πq = σ|YB = yB

�
= P [Σq = β(σ)] =

1
|Gq |!

. (25)

IV. CHARACTERIZATION OF THE PROBABILITY OF A

SUCCESSFUL ATTACK: LOWER BOUND

We derive in Section IV-B a lower bound on the probability
of successful attack valid for any authentication scheme,
as defined in Section II-B, that satisfies Equation (7) and
Equation (13) with equality. We will then provide in Section V
an upper bound on the probability of successful attack for the
coding scheme proposed in Section III-B and compare it to the
lower bound found in this section. We first introduce additional
definitions in Section IV-A.

A. Additional definitions

Define

B(L, B,K,P , T )
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� max
b∈B

⎛⎜⎜⎜⎜⎝
max
ε∈E

�
lb∈Λb

�
d∈D

�
nd

ld,b

 �
	d

ld,b

 
ld,b!

|K|τb

⎞⎟⎟⎟⎟⎠ , (26)

where we have defined the sets

E �
�

ε � (	d)d∈D ∈ N
D :

�
d∈D

	dcd � L

�
, (27)

∀b ∈ B,

Λb �
�

lb � (ld,b)d∈D ∈×
d∈D

�1, nd� :
�
d∈D

ld,b = τb

�
,

(28)

and with the convention

�
x

y

 
� 0 when x, y ∈ N are such

that y > x. Finally, define

b∗ as any element of argmin
b∈B

τb, (29)

such that

B(L, B,K,P , T )

|K|→∞∼

max
ε∈E

�
lb∗∈Λb∗

�
d∈D

�
nd

ld,b∗

 �
	d

ld,b∗

 
ld,b∗ !

|K|τb∗
. (30)

B. Lower bound on the probability of a successful attack

In this section, we consider any authentication scheme
as defined in Section II-B that satisfies Equation (7) and
Equation (13) with equality. As explained in Section III-A,
an authentication scheme should be designed to satisfy Equa-
tion (7) and Equation (13) with equality to make an attack of
the opponent more difficult. To lower bound the probability
of a successful attack by an opponent, one can consider any
strategy and study its probability of success, since the later
represents the probability of success that an opponent can at
least yield. In the following proposition, we study the case
where the opponent tries to guess at random the sequences
(Fq)q∈Q.

Proposition 2. Let L, N, B, Q ∈ N
∗. Let P �

{Gq}q∈Q be a partition of L, and let T � (τb)b∈B ∈
QB be a sequence of decision thresholds. For any
sequence (SN )N∈N of (L, N, B,K,RL,RQ,P , T ) authenti-
cation schemes, the probability of a successful attack PA(SN )
is lower bounded by a term equivalent, as |K| → ∞,
to B(L, B,K,P , T ), defined in Section IV-A.

Proof: The strategy of the opponent is the following. For
b ∈ B, the opponent successively guesses at random with
	d tries for each d ∈ D, some authentication sequence Fq

associated with the groups of size cd. We assume that for a
given d ∈ D, the opponent can redraw sequences that he has
already drawn for previous d’s, i.e., the opponent draws with
replacement for different d’s. Note that the number of tries
	d, d ∈ D, are limited by the constraint

�
d∈D 	dcd � L. For

instance, if L = 6 and G1 = {1}, G2 = {2}, G3 = {3},
G4 = {4, 5, 6}, then the attacker could try to impersonate
G1, G2, or G3 with 6 tries, or G4 with 2 tries as there are
6 transmitters. Define for ε ∈ E , lb ∈ Λb, and for d ∈ D,
the events

Ad(ε, lb)

� {Correctly guess exactly ld,b authentication sequences

for the groups of size cd in 	d tries} , (31)

and

A(ε, lb) �
$

d∈D
Ad(ε, lb). (32)

For a given ε ∈ E , the probability that the opponent correctly
guesses at least τb authentication sequences is lower bounded
by

P

% �
lb∈Λb

A(ε, lb)

&
=
�

lb∈Λb

P [A(ε, lb)] (33a)

=
�

lb∈Λb

�
d∈D

P[Ad(ε, lb)] (33b)

=
�

lb∈Λb

�
d∈D

�
nd

ld,b

 �
|K| − nd

	d − ld,b

 
�
|K|
	d

 (33c)

= f(|K|, ε, b), (33d)

where (33a) holds because the events (A(ε, lb))lb∈Λb
are

mutually disjoint, (33b) holds because the draws of the oppo-
nent are independent of each other and with replacement
for different group sizes, in (33c) observe that we have an
hypergeometric distribution: for d ∈ D, there are nd correct
sequences among 2log |K| = |K| possible sequences and the
opponent must guess ld,b correct sequences in 	d tries without
replacement, in (33d) we have defined

f(|K|, ε, b)

�
�

lb∈Λb

�
d∈D

�
nd

ld,b

 �
	d

ld,b

 
ld,b!

�d−ld,b−1�
k=0

(|K| − nd − k)

�d−1�
k=0

(|K| − k)

.

(34)

Finally, the opponent chooses b ∈ B and ε ∈ E to
maximize his probability of success, so that the probability of
a successful attack is lower bounded by max

b∈B
max
ε∈E

f(|K|, ε, b).
As shown in Appendix B, we have

max
b∈B

max
ε∈E

f(|K|, ε, b) |K|→∞∼ max
b∈B

max
ε∈E

g(|K|, ε, b), (35)

where

g(|K|, ε, b) �
�

lb∈Λb

�
d∈D

�
nd

ld,b

 �
	d

ld,b

 
ld,b!

|K|τb
. (36)
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V. CHARACTERIZATION OF THE PROBABILITY OF A

SUCCESSFUL ATTACK: UPPER BOUND

We now provide an upper bound on the probability of suc-
cessful attack for the coding scheme proposed in Section III-
B and show that it asymptotically matches the lower bound
derived in Section IV.

A. Preliminary definitions

We consider an arbitrary attack strategy, denoted by e,
performed by the opponent. Recall that an attack from the
opponent consists in forming a fraudulent signal �Yb, which
is function of all his knowledge in Block b ∈ B, that will be
sent to the legitimate receiver. Let

�mL,b(e) � (�ml,b)l∈L , (37)�rL,b(e) � (�rl,b)l∈L , (38)

�γL,b(e) � (�γl,b)l∈L =
	
[�γ(1)

l,b , �γ(2)
l,b ]



l∈L
, (39)

be the messages decoded in Block b by the legiti-
mate receiver upon decoding �Yb with Algorithm 3 and
where

	�γ(1)
l,b



l∈L

,
	�γ(2)

l,b



l∈L

correspond to the estimate of	
γ

(1)
l,b



l∈L

,
	
γ

(2)
l,b



l∈L

, respectively.

For q ∈ Q, if all the elements of (kq,i)i∈�1,|Gq|�
appears exactly once in (�γ(2)

l,b )l∈L in positions indexed by

(�li,q)i∈�1,|Gq|� ∈ L|Gq|, then define

�σ�li,q,b � �rq ⊕
��

||
i∈�1,|Gq|�

�γ(2)�li,q,b

�
||
�

||
i∈�1,|Gq|�

�γ(1)�li,q,b

��
,

(40)

where �rq is defined as the sum
�

i∈�1,|Gq|� �r�li,q ,b with the first
|Gq|n∗ bits replaced by zeros. Let

mL,b � (ml,b)l∈L , (41)

rL � (rl)l∈L , (42)

γL � (γl)l∈L , (43)

be the messages encoded by the legitimate transmitters in
Block b ∈ B. For q ∈ Q, let (li,q)i∈�1,|Gq|� ∈ L|Gq|

be such that ||i∈�1,|Gq|� γ
(2)
li,q

= fq[�1, |Gq|n∗�]. We define
for q ∈ Q,

γq �
�

||
i∈�1,|Gq|�

γ
(2)
li,q

�
||
�

||
i∈�1,|Gq|�

γ
(1)
li,q

�
, (44)

σq � rq ⊕ γq = fq, (45)

where rq is defined as the sum
�
l∈Gq

rl with the first n∗|Gq|

bits replaced by zeros.
The opponent chooses his strategy to maximize his suc-

cess, given its observations Zb−1 for an impersonation
attack, or given its observations Zb for a substitution attack.

Hence, averaging over the opponent’s observations the prob-
abilities of successful impersonation and substitution attacks
are

PI,b(τb)

= EZb−1 sup
e

⎧⎨⎩ �
γL,rL,mL,b

1 {A(e)} p
�
γL, rL, mL,b

**zb−1
�⎫⎬⎭ ,

(46)

PS,b(τb)

= EZb sup
e

⎧⎨⎩ �
γL,rL,mL,b

1 {A(e)} p
�
γL, rL, mL,b

**zb
�⎫⎬⎭ ,

(47)

where we have defined for any γL, for any rL, for any mL,b,
for any opponent’s attack e, the set

Iσ,�σ � {q ∈ Q : σq appears exactly |Gq| times in (�σl,b)l∈L},
(48)

and the event

A(e)

�
.
|Iσ,�σ| � τb and ∃q0 ∈ Iσ,�σ, (�ml,b)l∈Gq0

�= (ml,b)l∈Gq0

/
.

(49)

The realization of the event A(e) means that at least τb groups
of messages in P , are accepted as authentic and at least one
message has been modified among all the messages accepted
by the receiver.

B. Upper bound

We show the following upper bound on the probability
of successful attack for the authentication scheme defined in
Section III-B.

Proposition 3. Consider a sequence (SN )N∈N of authentica-
tion schemes as defined in Section III-B. For any RL ∈ R ∩
R

L
+, where R is defined in Theorem 1, the asymptotic probabil-

ity of a successful attack limN→∞ PA(SN ) is upper bounded
by a term equivalent, as |K| → ∞, to B(L, B,K,P , T ),
defined in Section IV-A.

Proof: Let b ∈ B. We define for any opponent’s attack e,
the event,

A�(e) � {|Iσ,�σ| � τb} , (50)

hence, by (46) and since 1 {A�(e)} � 1 {A(e)}, we have

PI,b(τb)

� EZb−1 sup
e

�
γL,rL,mL,b

1 {A�(e)} p
�
γL, rL, mL,b

**zb−1
�
.

(51)

Then, for any opponent’s attack e, for any i ∈ �τb, Q�, define
the event

A�
i(e) � {|Iσ,�σ| = i} , (52)
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so that

1 {A�(e)} = 1

�
Q�

i=τb

A�
i(e)

�
=

Q�
i=τb

1 {A�
i(e)} . (53)

We thus obtain from (51)

PI,b(τb)

�
Q�

i=τb

EZb−1 sup
e

�
γL,rL,mL,b

1 {A�
i(e)} p

�
γL, rL, mL,b

**zb−1
�
.

(54)

We next upper bound the first term in the sum in the right-hand
side of (54) in Lemma 4 when N → ∞. The other terms of
the sum in the right-hand side of (54) will be upper bounded
in Lemma 5.

Lemma 4. An upper bound on

lim
N→∞

EZb−1 sup
e

�
γL,rL,mL,b

1
0
A�

τb
(e)
1

p
�
γL, rL, mL,b

**zb−1
�

is
max
ε∈E

h(ε, b)
|K|τb

, where

h(ε, b) �
�

lb∈Λb

�
d∈D

�
nd

ld,b

 �
	d

ld,b

 
ld,b!. (55)

Proof: See Appendix C.
Similar to (87e) in the proof of Lemma 4, we have the

following lemma.

Lemma 5. For i ∈ �τb + 1, Q�,

lim
N→∞

EZb−1 sup
e

�
γL,rL,mL,b

1 {A�
i(e)} p

�
γL, rL, mL,b

**zb−1
�

is upper bounded by a term in O(|K|−i).

Hence, by (54), Lemma 4, and Lemma 5, limN→∞ PI,b(τb)
is upper bounded by a term equivalent, as |K| → ∞,

to
max
ε∈E

h(ε, b)
|K|τb

. Replacing Zb−1 by Zb in the proof of
Lemmas 4, 5, we obtain the same upper bound for
limN→∞ PS,b(τb). We thus have, similar to Appendix B,

lim
N→∞

max
b∈B

max (PI,b(τb), PS,b(τb))

= max
b∈B

max
	

lim
N→∞

PI,b(τb), lim
N→∞

PS,b(τb)



(56a)

� max
b∈B

⎛⎝max
ε∈E

h(ε, b)

|K|τb
+ o

�
1

|K|τb

 ⎞⎠ (56b)

|K|→∞∼ max
b∈B

⎛⎝max
ε∈E

h(ε, b)

|K|τb

⎞⎠ . (56c)

VI. RESULTS AND DISCUSSION

The following result provides an asymptotically optimal
characterization of the probability of a successful attack by
combining Proposition 2 and Proposition 3.

Theorem 2. For any L, N, B, Q ∈ N
∗, for any partition P �

{Gq}q∈Q of L, for any sequence of decision thresholds T �
(τb)b∈B ∈ QB , for any RL ∈ R∩R

L
+, where R is defined in

Theorem 1,

(i) The sequence (SN )N∈N of (L, N, B,K,RL,RQ,P , T )
authentication schemes as defined in Section III-B is such
that the probability of a successful attack satisfies

lim
N→∞

PA(SN )

|K|→∞∼

max
ε∈E

�
lb∗∈Λb∗

�
d∈D

�
nd

ld,b∗

 �
	d

ld,b∗

 
ld,b∗ !

|K|τb∗
, (57)

where b∗, E , and Λb∗ are defined in Section IV-A.
(ii) Moreover, the convergence rate of the probability of a

successful attack with respect to |K| is optimal.

In the following, we write limN→∞ PA instead of
limN→∞ PA(SN ) to simplify notation, where (SN )N∈N is
defined in Theorem 2. We obtain the following corollary.

Corollary 1. Theorem 2 simplifies as follows in special cases.

(i) Assume that there exists b0 ∈ B such that τb0 = 1,
i.e., τb∗ = 1. Then,

lim
N→∞

PA
|K|→∞∼

max
ε∈E

�
d∈D

	dnd

|K| . (58)

(ii) Assume that for any b ∈ B, τb = Q, i.e., τb∗ = Q. Then,

lim
N→∞

PA
|K|→∞∼

�
d∈D

nd!

|K|Q . (59)

(iii) Assume that all parts of P have same size,
i.e., |{|Gq|}q∈Q| = 1. Then,

lim
N→∞

PA
|K|→∞∼

�
Q

τb∗

 2

τb∗ !

|K|τb∗
. (60)

Proof: Observe that

(i) When τb∗ = 1, lb∗ is a sequence of D−1 zeros and one
1, hence, in (57), (D − 1) terms in the product

�
d∈D

are equal to 1 and |Λb∗ | = D.
(ii) When τb∗ = Q, Λb∗ is the singleton {(nd)d∈D}, hence,

in (57), the sum
�

lb∗∈Λb∗
has only one term.

(iii) When |{|Gq|}q∈Q| = 1, in (57), the product
�

d∈D
has only one term, Λb∗ is the singleton {τb∗}, and the
maximum over E is achieved for ε = Q.

From Theorem 2, we observe a trade-off between the
acceptance parameter τb and the probability of a successful
attack. If τb is large, the receiver might refuse up to τb − 1
correctly authenticated groups of messages (which might not
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be desirable since it represents wasted transmissions), on the
other hand, if τb is small the probability of a successful attack
increases by a factor |K| each time τb is decreased by one.

Observe also that the decay of the probability of successful
attack with respect to |K|, is independent of the choice of
the partition P , and only depends on the minimum value τb∗

in T . The choice of P does, however, influence the constant
coefficient, i.e., the numerator, in (57). We thus remark that

except for the cases Q = 1, for which lim
N→∞

PA
|K|→∞∼ 1

|K| ,
and the case τb∗ = 1, for which

lim
N→∞

PA
|K|→∞∼

max
ε∈E

�
d∈D

	dnd

|K| ,

all the transmitters benefit from a multiuser setting compared
to a single-user setting, for which the probability of successful

attack scales at best as
1
|K| as N goes to infinity [11].

Finally, assuming τb∗ = Q, remark that the anonymity
constraints benefit the opponent since Q is maximal and equal
to L when no anonymity constraint holds.

Example 6. Consider Examples 2–5 with the assumption
τb∗ = 1.

• For Example 2, we have

lim
N→∞

PA
|K|→∞∼ L2

|K| . (61)

• For Examples 3 and 5, we have

lim
N→∞

PA
|K|→∞∼ 1

|K| . (62)

• For Example 4, assume that P � {G1,G2}. We then have

lim
N→∞

PA

|K|→∞∼
(1 + 1{|G1| = |G2|})

2
L

min(|G1|, |G2|)

3
|K| . (63)

Example 7. Consider Examples 2–5 with the assumption
τb∗ = Q.

• For Example 2, we have

lim
N→∞

PA
|K|→∞∼ L!

|K|L . (64)

• For Examples 3 and 5, we have

lim
N→∞

PA
|K|→∞∼ 1

|K| . (65)

• For Example 4, assume that P � {G1,G2}. We then have

lim
N→∞

PA
|K|→∞∼ 1 + 1{|G1| = |G2|}

|K|2 . (66)

Note that we also recover the case L = 1, i.e., authentica-
tion when there is only one transmitter [11], for which the

probability of successful attack scales as
1
|K| when N goes to

infinity.

Remark 9. If one chooses log |K| = ωN , where
limN→∞ ωN = +∞ and limN→∞ ωN

N = 0, then in
Section III-B the rates (Rq)q∈Q all go to zero as N goes
to infinity.

VII. CONCLUSION

We have considered authentication of multiple messages
sent by L transmitters over a noisy multiple access channel,
where each transmitter shares a secret key with the legitimate
receiver. The presence of a computationally unbounded oppo-
nent able to perform a substitution or impersonation attacks
is assumed. Our model also considers anonymity constraints,
i.e., when groups of individuals must remain anonymous
despite being authenticated. Our main result is the design of
an authentication scheme for the proposed model, associated
with the derivation of an asymptotic characterization of the
probability of successful attack, that optimally scales with the
length of the secret keys shared between each transmitter and
the legitimate receiver.

APPENDIX A
ONE-TIME PAD

Lemma 6. Consider the random variables A, B, C, defined
over {0, 1}N , N ∈ N. Assume that I(AB; C) = 0 and
H(C) = N , i.e., C is uniformly distributed. We then have
I(AB; B ⊕ C) = 0.

Proof: We have

I(AB; B ⊕ C) = H(B ⊕ C) − H(B ⊕ C|AB) (67a)

� N − H(B ⊕ C|AB) (67b)

= N − H(C|AB) (67c)

= N − H(C) (67d)

= 0. (67e)

APPENDIX B
PROOF OF (35)

For |K| large enough, we have

b∗ ∈ argmax
b∈B

�
max
ε∈E

g(|K|, ε, b)
 

, (68)

where b∗ is defined in (29), hence,

max
b∈B

max
ε∈E

g(|K|, ε, b) =
max
ε∈E

h(ε, b∗)

|K|τb∗
, (69)

where we have defined

h(ε, b) �
�

lb∈Λb

�
d∈D

�
nd

ld,b

 �
	d

ld,b

 
ld,b!. (70)

Then,

lim
|K|→∞

max
b∈B

max
ε∈E

f(|K|, ε, b)

max
b∈B

max
ε∈E

g(|K|, ε, b)
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= lim
|K|→∞

max
b∈B

max
ε∈E

(f(|K|, ε, b)|K|τb∗ )

max
ε∈E

h(ε, b∗)
(71a)

=
max
b∈B

max
ε∈E

lim
|K|→∞

(f(|K|, ε, b)|K|τb∗ )

max
ε∈E

h(ε, b∗)
(71b)

=
max
b∈B

max
ε∈E

h(ε, b∗)

max
ε∈E

h(ε, b∗)
(71c)

= 1, (71d)

where (71a) holds by (69), (71b) holds because, provided that
the limits exist, for a finite subset J of N, and for convergent
sequences

	
(a(j)

n )n∈N



j∈J

,

lim
n→∞max

j∈J
a(j)

n = max
j∈J

lim
n→∞ a(j)

n , (72)

which is obtained by induction from the case |J | = 2,
which in turn is obtained by continuity remarking that
max

	
a
(1)
n , a

(2)
n



= 1

2 (a(1)
n + a

(2)
n + |a(1)

n − a
(2)
n |), (71c) holds

because for any b ∈ B,
�

d∈D ld,b = τb � τb∗ .

APPENDIX C
PROOF OF LEMMA 4

We start by showing the following upper bound.

Lemma 7. For any b ∈ B, for any zb−1, for any opponent’s
strategy e, we have�

γL

�
rL

�
mL,b

1
0
A�

τb
(e)
1

p
�
γL, rL, mL,b

**zb−1
�

� |K|n(v∗) max
γv∗ ,rv∗

p
�
γv∗ , rv∗

**zb−1
�
max
ε∈E

h(ε, b), (73)

where we have defined

• Λb, E as in (27), (28) in Section IV-A;
• For lb ∈ Λb,

v(lb) �
�
vld,b

�
d∈D , (74)

where for d ∈ D, vld,b
is a set of ld,b distinct elements

of {q ∈ Q : |Gq| = cd}. We let V(lb) be the set of all
possible v(lb);

• For lb ∈ Λb, for v(lb) ∈ V(lb),

n(v(lb)) �
�
d∈D

ld,bcd, (75)

γv(lb) � (γl)l∈Gq ,q∈vld,b
,d∈D, (76)

rv(lb) � (rl)l∈Gq,q∈vld,b
,d∈D; (77)

• And

(l∗,v∗) ∈

argmax
lb,v(lb)

�
|K|n(v(lb)) max

γv(lb),rv(lb)
p
�
γv(lb), rv(lb)

**zb−1
� 

.

(78)

Proof: Define for any cd ∈ C, the set

Iσ,�σ(cd) � {q ∈ Q : |Gq| = cd and

σq appears exactly |Gq| times in (�σl,b)l∈L} . (79)

Define the set �Σb �×
d∈D

�Σd,b, where × denotes the Carte-

sian product, for d ∈ D, �Σd,b is the set of sequences made of
ld,b distinct elements that appear exactly cd times in (�σl,b)l∈L.
Let ab � (ad,b)d∈D denote an element of �Σb. From these
definitions and (74), we first show (80e) and (81d). The set
Λb defined in Section IV-A will be used to indicate how many
groups of size cd are accepted. We have for any γL, for any
rL, for any opponent’s attack e,

1
0
A�

τb
(e)
1

(80a)

= 1

��
lb

$
cd

{|Iσ,�σ(cd)| = ld,b}
�

(80b)

= 1

⎧⎨⎩�
lb

�
v(lb)

$
cd

0
Iσ,�σ(cd) = vld,b

1⎫⎬⎭ (80c)

= 1

⎧⎨⎩�
lb

�
v(lb)

�
ab

$
cd

.
(σq)q∈vld,b

= ad,b

and |Iσ,�σ(cd)| = ld,b

/�
(80d)

�
�
lb

�
v(lb)

�
ab

1

�$
cd

.
(σq)q∈vld,b

= ad,b

/�
, (80e)

where in (80b) the union is over lb ∈ Λb and the intersection
is over cd ∈ C, in (80c) we have used the definition in (74)
and the union is over v(lb) ∈ V(lb), in (80d) the union is
over ab ∈ �Σb. Then, for any lb ∈ Λb, for any v(lb) ∈ V(lb),
for any ab ∈ �Σb, using the definitions in (76) and (77) for
(γv(lb), rv(lb)), we have

�
γv(lb)

�
rv(lb)

1

� $
cd∈C

.
(σq)q∈vld,b

= ad,b

/�
× p

�
γv(lb), rv(lb)

**zb−1
�

=
�

γv(lb)

�
rv(lb)

1

�$
cd∈C

.
(γq)q∈vld,b

= ad,b ⊕ (rq)q∈vld,b

/�
× p

�
γv(lb), rv(lb)

**zb−1
�

(81a)

�
�

rv(lb)

max
γv(lb)

p
�
γv(lb), rv(lb)

**zb−1
�

(81b)

�
�

rv(lb)

max
γv(lb),rv(lb)

p
�
γv(lb), rv(lb)

**zb−1
�

(81c)

= |K|n(v(lb)) max
γv(lb),rv(lb)

p
�
γv(lb), rv(lb)

**zb−1
�
, (81d)

where (81a) holds because by (45) (σq)q∈vld,b
=�

γq ⊕ rq

�
q∈vld,b

, (81b) holds by definition of γv(lb) and

because at most one term is non zero in the sum
�

γv(lb)
for

a fixed rv(lb), (81d) holds by (75).
Define for an opponent’s strategy e, the sequence ε �

(	d)d∈D, where for d ∈ D, 	d, is the number of elements
of (�σl,b)l∈L that appears exactly cd times. ε is an element
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of E defined in Section IV-A. We now use (80e) and (81d)
as follows. For any b ∈ B, for any zb−1, for any opponent’s
strategy e, we have�

γL

�
rL

�
mL,b

1
0
A�

τb
(e)
1

p
�
γL, rL, mL,b

**zb−1
�

=
�
γL

�
rL

1
0
A�

τb
(e)
1

p
�
γL, rL

**zb−1
�

(82a)

�
�
γL

�
rL

�
lb

�
v(lb)

�
ab

1

�$
cd

.
(σq)q∈vld,b

= ad,b

/�
× p

�
γL, rL

**zb−1
�

(82b)

=
�
lb

�
v(lb)

�
ab

�
γv(lb)

�
rv(lb)

1

�$
cd

.
(σq)q∈vld,b

= ad,b

/�
× p

�
γv(lb), rv(lb)

**zb−1
�

(82c)

�
�
lb

�
v(lb)

�
ab

|K|n(v(lb)) max
γv(lb),rv(lb)

p
�
γv(lb), rv(lb)

**zb−1
�

(82d)

�
�
lb

�
v(lb)

�
ab

|K|n(v∗) max
γv∗ ,rv∗

p
�
γv∗ , rv∗

**zb−1
�

(82e)

=|K|n(v∗) max
γv∗ ,rv∗

p
�
γv∗ , rv∗

**zb−1
�

×
�
lb

�
d∈D

�
nd

ld,b

 �
	d

ld,b

 
ld,b! (82f)

�|K|n(v∗) max
γv∗ ,rv∗

p
�
γv∗ , rv∗

**zb−1
�

× max
ε∈E

�
lb

�
d∈D

�
nd

ld,b

 �
	d

ld,b

 
ld,b!, (82g)

where (82a) holds by marginalization over mL,b since A�
τb

(e)
is independent of mL,b, (82b) holds by (80e), (82c) holds by
marginalization over γL\γv(lb), and rL\rv(lb), (82d) holds by
(81d), in (82e) we have used the Definition in (78), (82f) holds
because

|V(lb)| =
�
d∈D

�
nd

ld,b

 
, |�Σb| =

�
d∈D

	d!
(	d − ld,b)!

1{	d � ld,b},

(83)

in (82g) we maximize the right hand side over ε ∈ E to obtain
an upper bound valid for any opponent’s strategy e.
We now use Lemma 8 to simplify the upper bound found in
Lemma 7 when N → ∞.

Lemma 8. Let A and B be two randoms variables over the
finite alphabets A and B, jointly distributed according to pAB.
For any 	 � 0, if I(A; B) � 	, then

0 � 2−H∞(A|B) − 2−H∞(A) � 2 (2 ln 2)1/4 	1/4, (84)

where H∞(A) � − log (maxa∈A pA(a)) is the min-entropy of
A, and H∞(A|B) � − log

��
b∈B pB(b)maxa∈A pA|B(a|b)

�
is the average min-entropy of A given B.

Proof: See Appendix D.
Consider v∗ in Definition (78), we write it as v∗ = v∗(l∗b)

with l∗b = (l∗d,b)d∈D, and define

Γv∗ � (Γl)l∈Gq,q∈v∗
l∗
d,b

,d∈D , (85)

Rv∗ � (Rl)l∈Gq,q∈v∗
l∗
d,b

,d∈D . (86)

We then have

EZb−1

⎡⎣sup
e

⎧⎨⎩ �
γL,rL,mL,b

1
0
A�

τb
(e)
1

p
�
γL, rL, mL,b

**zb−1
�⎫⎬⎭
⎤⎦

� EZb−1

8
|K|n(v∗) max

γv∗ ,rv∗
p
�
γv∗ , rv∗

**zb−1
�
max
ε∈E

h(ε, b)
9
(87a)

= |K|n(v∗)2−H∞(Γv∗Rv∗ |Zb−1) max
ε∈E

h(ε, b) (87b)

� |K|n(v∗)
	
2−H∞(Γv∗Rv∗ ) + 2 (2 ln 2)1/4

δ(N)(1/4)



× max
ε∈E

h(ε, b) (87c)

=
�

1
|K|τb

+ 2 (2 ln 2)1/4
δ(N)(1/4)|K|n(v∗)

 
max
ε∈E

h(ε, b)

(87d)

N→∞−−−−→
max
ε∈E

h(ε, b)

|K|τb
, (87e)

where (87a) holds by Lemma 7, (87c) holds by Lemma 8
and strong secrecy – see (24f) in the proof of Proposition 1,
(87d) holds because Γv∗ contains

�
d∈D l∗d,b = τb independent

sequences uniformly distributed over K, which are indepen-
dent of Rv∗ , which in turn, is a sequence of

�
d∈D l∗d,bcd =

n(v∗) sequences uniformly distributed over K.

APPENDIX D
PROOF OF LEMMA 8

We define the variational distance between pAB and pApB

as V(pAB, pApB) �
�

a∈A,b∈B |pAB(a, b) − pA(a)pB(b)|.
For any b ∈ B, define v(b) �

�
a∈A |p(a|b) − p(a)| so

that V(pAB, pApB) = EB [v(b)]. Note that, for any α > 0,
by Markov’s inequality, we have

P[v(B) � α] � V(pAB, pApB)
α

. (88)

We then have

2−H∞(A|B)

=
�
b∈B

p(b)max
a∈A

p(a|b) (89a)

=
�
b∈B

v(b)<α

p(b)max
a∈A

p(a|b) +
�
b∈B

v(b)�α

p(b)max
a∈A

p(a|b) (89b)

�
�
b∈B

v(b)<α

p(b)
�

v(b) + max
a∈A

p(a)
 

+
�
b∈B

v(b)�α

p(b) (89c)

� α + 2−H∞(A) +
V(pAB, pApB)

α
(89d)

� 2V(pAB, pApB)1/2 + 2−H∞(A) (89e)

� 2
	√

2 ln 2
:

D(pAB||pApB)

1/2

+ 2−H∞(A) (89f)

= 2 (2 ln 2)1/4
I(A; B)1/4 + 2−H∞(A), (89g)

where (89c) holds because ∀b, |p(a∗|b)−p(a∗)| � v(b) where
a∗ ∈ arg maxa∈A p(a|b), and because ∀a, b, p(a|b) � 1,
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(89d) holds because
�

b∈B
v(b)<α

p(b) � 1 and by (88), (89e) is

obtained by choosing the α that minimizes α + V(pAB ,pApB)
α ,

i.e, α = V(pAB, pApB)1/2, (89f) holds by Pinsker’s inequality
and letting D(·||·) denote the Kullback-Leibler divergence.
Finally, to show 0 � 2−H∞(A|B) − 2−H∞(A), we remark that

H∞(A|B) = − log

��
b∈B

p(b)max
a∈A

p(a|b)
�

(90a)

� − log

�
max
a∈A

�
b∈B

p(b)p(a|b)
�

(90b)

= H∞(A). (90c)
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