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Abstract—We study the Gaussian multiple access channel
in presence of an adversary, who is simultaneously able to
eavesdrop and jam, i.e., an active wiretapper. We assume that
the adversary has a power constraint, which she can utilize to
have any arbitrary jamming strategy. The multiple access channel
between the legitimate transmitters and the receiver thus becomes
arbitrarily varying. We derive inner and outer bounds on the
secrecy rate region of our model. In the case of a degraded
channel, we characterize the optimal secrecy sum-rate, and within
0.5 bits per channel use the optimal individual rate constraints.
As a special case, we obtain the secrecy capacity of the point-to-
point Gaussian wiretap channel when the eavesdropper is able
to arbitrarily jam.

I. INTRODUCTION

We study secure communication over a Gaussian multiple
access wiretap channel [1], [2]. We assume an active ad-
versary who is not only able to eavesdrop but also is able
to perform jamming. The adversary is able to choose any
jamming strategy she wishes subject to a power constraint.
Consequently, the main channel between the legitimate users
becomes arbitrarily varying [3]. We study the fundamental
limits of information theoretically secure communication in
this multiple access channel.

Related works include [4]–[9] for the point-to-point and
discrete memoryless wiretap channel. Note that the proof tech-
niques used in these references, such as random binning [10],
resolvability/soft covering [9], [11], or typicality arguments
do not seem easily applicable to the Gaussian case, even
for the point-to-point scenario. Indeed, the known coding
mechanisms used to obtain reliability for an arbitrarily varying
point-to-point Gaussian channel [3] rely on a codebook whose
codewords are uniformly drawn on a unit sphere, so that the
components of the codewords cannot be considered indepen-
dent and identically distributed as it is the case in [4]–[9].

Related work for the point-to-point Gaussian channel in-
cludes [12], which considers a Gaussian channel model with
an arbitrarily varying eavesdropper channel. Our setting is
different in that the main channel between the legitimate users
is arbitrarily varying. The use of analyses similar to the ones
in [12] are not appropriate for the present model for the same
reasons described above.

This work was supported in part by NSF grants CIF-1319338 and CNS-
1314719.

Several other works have considered continuous channel
models with active adversaries who are able to jam, includ-
ing the Gaussian MIMO wiretap channel [13], the Gaussian
multiple access wiretap channel [14], where deviating users
can be viewed as active adversaries, point-to-point wiretap
channels [15], [16], where the adversary can choose between
eavesdropping or jamming. These references differ from refer-
ences [4]–[9] on arbitrarily varying channels as they assume a
specific strategy for the jammer. By contrast, our model only
foresees a power constraint for the jamming signal and does
not assume any specific jamming strategy.

Our contribution can be summarized as follows. We propose
a model for secure communication over Gaussian multiple
access channels in presence of an eavesdropper who is able
to arbitrarily jam the multiple access channel between the
legitimate parties. We determine inner and outer bounds on
the secrecy capacity region. For the case when the resulting
multiple access wiretap channel is degraded the secrecy capac-
ity region is determined up to a constant gap. Our achievability
scheme relies on point-to-point codes developed in [3], time
sharing, and an extension of the successive decoding method
for multiple access channels without secrecy constraint [17,
Appendix C] to multiple access wiretap channels. As a special
case, we obtain the secrecy capacity of the point-to-point
Gaussian wiretap channel when the eavesdropper is able to
arbitrarily jam. Note that secrecy capacity results are already
known for the point-to-point discrete memoryless channels
when both the main channel and the eavesdropper channel
are arbitrarily varying [6].

The remainder of the paper is organized as follows. We
define the problem in Section II. We present our results in
Section III, and sketch our achievabilty proof in Section IV.
We end the paper with concluding remarks in Section V. Some
proofs are omitted due to space constraints.

Notation: Define for a, b ∈ R, Ja, bK , [bac, dbe] ∩ N. The
components of a vector, Xn, of size n ∈ N, are denoted by
subscripts, i.e., Xn , (X1, X2, . . . , Xn). For x ∈ R, define
[x]+ , max(0, x). The power set of S is denoted by 2S .
Unless specified otherwise, capital letters designate random
variables, whereas lowercase letters designate realizations of
associated random variables, e.g., x is a realization of the
random variable X .
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Fig. 1: G-AV-MAC-WT

II. PROBLEM STATEMENT

We consider a Gaussian multiple access channel with two
legitimate transmitters, and an adversary who can simul-
taneously jam and eavesdrop on the communication. The
adversary is a full-duplex node that can perfectly cancel the
self-interference, i.e., its own jamming signal. Jamming is
prescribed by a power constraint but no specific jamming
strategy is assumed. Note that the adversary could represent
an entity made of an eavesdropper and several non-collocated
jammers, as long as the jamming signals are shared within the
entity and can be canceled out from the eavesdropped signal.

Specifically, as depicted in Figure 1, we consider the fol-
lowing channel model (put under standard form similar to [2]),

Y n , Xn
1 +Xn

2 + Sn +Nn
Y , (1a)

Zn ,
√
h1X

n
1 +

√
h2X

n
2 +Nn

Z , (1b)

where Y n is the channel output observed by the legitimate
receiver, Zn is the channel output observed by the adversary,
Sn is an arbitrary jamming sequence emitted by the adversary
satisfying the power constraint ‖Sn‖2, ∑n

i=1 S
2
i 6 nΛ,

for l ∈ {1, 2}, Xn
l is the signal of transmitter l satisfying

the power constraint ‖Xn
l ‖2,

∑n
i=1(Xl)

2
i 6 nΓl, and Nn

Y

and Nn
Z are sequences of i.i.d. Gaussian noises with vari-

ances σ2
Y = 1, σ2

Z = 1, respectively. We define a coding
scheme and achievable rates for our channel model following
the scheme over multiple blocks of [18] to allow time-sharing.

Definition 1. Let n, k ∈ N. A
(
2nR1 , 2nR2 , n, k

)
code Cn

for the Gaussian arbitrarily varying multiple access wiretap
channel (G-AV-MAC-WT) consists for each block j ∈ J1, kK of

• Two messages sets M(j)
l , J1, 2nR

(j)
l K, l ∈ {1, 2};

• Two stochastic encoders, e(j)
l : M(j)

l → Bn
0 (
√
nΓl),

l ∈ {1, 2}, where Bn
0 (
√
nΓl) is the ball of radius

√
nΓl

centered in 0 in Rn under the Euclidian norm;
• One decoder, g(j) : Rn →M(j)

1 ×M
(j)
2 ;

where for any l ∈ {1, 2}, Rl = 1
k

∑k
j=1R

(j)
l , and operates as

follows. For each block j ∈ J1, kK, transmitter l ∈ {1, 2} en-
codes with e(j)

l a uniformly distributed message M (j)
l ∈M(j)

l

to a codeword of length n, which is sent to the legitimate
receiver over the channel described by (1a), (1b) with power
constraint nΛ for the jamming signal. Then, the legitimate
receiver forms from his n channel output observations an es-

timate (M̂
(j)
1 , M̂

(j)
2 ) of the messages (M

(j)
1 ,M

(j)
2 ). We define

M̂ ,
(
M̂

(j)
1 , M̂

(j)
2

)
j∈J1,kK

and M ,
(
M

(j)
1 ,M

(j)
2

)
j∈J1,kK

.

Definition 2. A rate pair (2nR1 , 2nR2) is achievable, if there
exists a sequence of

(
2nR1 , 2nR2 , n, k

)
codes for the G-AV-

MAC-WT such that
lim
n→∞

P[M̂ 6= M ] = 0 (reliability), (2a)

lim
n→∞

1

nk
H(M |Zkn) >

1

nk
H(M) (equivocation). (2b)

The largest achievable rate region constitutes the secrecy
capacity region. Note also that our model recovers the model
in [18] in the absence of the security constraint (2b).

III. RESULTS

A. Special case: point-to-point channels

As a special case of our model, we study the point-to-
point Gaussian arbitrarily varying wiretap channel (G-AV-
WT), i.e., we consider the model described in Section II with
the substitutions h2 ← ∅, R2 ← ∅, X2 ← ∅. For convenience,
we drop the subscript 1 for h1, Γ1.

Theorem 1. Define hΛ , (1 + Λ)−1. The secrecy capacity of
the G-AV-WT is given by

C(Λ) = 1{Γ > Λ}
[

1

2
log

(
1 + hΛΓ

1 + hΓ

)]+

, (3)

where 1{Γ > Λ} = 1 if Γ > Λ and 0 otherwise.

Observe that C(Λ) is non zero if and only if Γ > Λ
and hΛ > h. Theorem 1 follows as special cases of the
achievability and converse bounds derived for the G-AV-MAC-
WT in Theorems 2 and 3, respectively.

B. General case
We derive in Theorems 2 and 3, inner and outer bounds for

the G-AV-MAC-WT, respectively. We assume in Theorems 2
and 3 that transmitters are not altruistic in the sense that a user
that cannot achieve a positive secrecy rate will not use power
to help the other user, as it is done in [2].

Theorem 2 (Achievability). Define hΛ as in Theorem 1 and,
for x ∈ R+, define h1,2(x) , h1(1 + h2x)−1, h2,1(x) ,
h2(1 + h1x)−1. We consider three cases.
• Assume Γ1 > Λ and Γ2 6 Λ. Then, R1 is achievable,

where
R1 =

{
(R1, 0) : R1 6

[
1

2
log

(
1 + Γ1hΛ

1 + Γ1h1

)]+
}
. (4)

• Assume Γ2 > Λ and Γ1 6 Λ. Then, R2 is achievable,
where R2 is defined as R1 by exchanging the role of the
transmitters.

• Assume min(Γ1,Γ2) > Λ. Then, the convex hull of
R1 ∪R2 ∪

⋃
Λ<P16Γ1
Λ<P26Γ2

R1,2(P1, P2) is achievable, where

R1,2(P1, P2)

,

{
(R1, R2) : R1 6

[
1

2
log

(
1 + P1hΛ

1 + P1h1,2(P2)

)]+

,
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R2 6

[
1

2
log

(
1 + P2hΛ

1 + P2h2,1(P1)

)]+

,

R1 +R2 6

[
1

2
log

(
1 + (P1 + P2)hΛ

1 + P1h1 + P2h2

)]+
}
. (5)

Observe that the region achievable when min(Γ1,Γ2) > Λ
is the same as the best known achievable region when Λ← 0
and σ2

Y ← 1 + Λ [2], which means that the arbitrary
jamming signal is no more harmful than a Gaussian noise with
variance Λ. Coding schemes to actually obtain this result are,
however, more involved than those when the jamming signal
is indeed Gaussian.

Theorem 3 (Converse). We have the following outer bounds.

(i) If max(Γ1,Γ2) 6 Λ, then no positive rate is achievable.
(ii) For min(Γ1,Γ2) 6 Λ, the achievability regions of

Theorem 2 are tight.
(iii) For min(Γ1,Γ2) > Λ and when max(h1, h2) < hΛ, the

individual rate bounds described in (5) are tight within
a constant gap of 0.5 bits per channel use.

(iv) For min(Γ1,Γ2) > Λ and when h1 = h2, the sum-rate
bound of R1,2(Γ1,Γ2) described in (5) is tight.

Hence, for the degraded G-AV-MAC-WT, i.e., when h1 =
h2 [1], the capacity region is determined up to a constant gap
of 0.5 bits per channel use on the individual rate bounds, and
the secrecy capacity is obtained for point-to-point channels.
The proof of Theorem 2 is sketched in Section IV. The proof
of Theorem 3 relies on [3], [19] and is omitted for brevity.

IV. PROOF OF THEOREM 2

It is sufficient to prove the achievability of the dominant face

D(P1, P2) , {(R1, R2) ∈ R1,2(P1, P2) :

R1 +R2 =

[
1

2
log

(
1 + (P1 + P2)hΛ

1 + P1h1 + P2h2

)]+
}

(6)

of R1,2(P1, P2) to prove achievability of R1,2(P1, P2) when
min(Γ1,Γ2) > Λ. The achievability of R1 and R2 is ob-
tained as special cases. Observe that the rate constraints in
R1,2(P1, P2) can be expressed as [g({1})]+, [g({2})]+, and
[g({1, 2})]+, with g : 2{1,2} → R, T 7→ I(XT ;Y |XT c) −
I(XT ;Z), where Y , X1 + X2 + NY , Z ,

√
h1X1 +√

h2X2 + NZ , and X1, X2, NY , NZ are independent zero-
mean Gaussian random variables with variances P1, P2,
(1 + Λ), 1 respectively. As remarked in [20], g is submodular
but not necessarily non-decreasing, which is the main reason
why achieving the corner points of R1,2(P1, P2) by means of
point-to-point codes via the successive decoding method [17,
Appendix C] does not easily translate to our setting. We
summarize our proof strategy in the three following cases.

Case 1: Assume g({1, 2}) > max(g({1}), g({2})). The
corner points ofR1,2 are given by (g({1, 2})−g({2}), g({2}))
and (g({1}), g({1, 2})−g({1})). We will achieve each corner
point with point-to-point coding techniques and perform time-
sharing to achieve D(P1, P2).

Case 2.a: Assume g({1, 2}) > g({1}) and
g({1, 2}) < g({2}). The corner points of R1,2 are
C1 , (g({1}), g({1, 2}) − g({1})) and C2 , (0, g({1, 2})).
While C1 can be achieved as in Case 1, C2 does
not decompose to allow single-user coding. Instead of
achieving C2, we will achieve the virtual corner point
C̃2 , (g({1, 2}) − g({2}), g({2})), keeping in mind that
g({1, 2})− g({2}) < 0.

Case 2.b: Assume g({1, 2}) > g({2}) and g({1, 2}) <
g({1}). This case is handled as Case 2.a by exchanging the
role of the two transmitters.

Case 3: Assume g({1, 2}) < min(g({1}), g({2})). The cor-
ner points of the region are (0, g({1, 2})) and (g({1, 2}), 0).
We will show achievability of a point R ∈ D(P1, P2), where
R has strictly positive components. All the other points of
D(P1, P2) can then be achieved as in Case 2 by time sharing
between R and the virtual corner points C̃1, C̃2 defined as
in Case 2.

A. Case 1

We show achievability of (g({1, 2})−g({2}), g({2})). The
achievability of (g({1}), g({1, 2}) − g({1})) is obtained by
exchanging the role of the transmitters.

Codebook construction: For transmitter i ∈ {1, 2}, con-
struct a codebook C(i)

n with d2nRied2nR̃ie codewords drawn
independently and uniformly on the sphere of radius

√
Pi in

Rn. The codewords are labeled xni (mi, m̃i), where mi ∈
J1, 2nRiK, m̃i ∈ J1, 2nR̃iK. We define Cn , (C

(1)
n , C

(2)
n )

and choose R1 , g({1, 2}) − g({2}) − δ = I(X1;Y ) −
I(X1;Z|X2)−δ, R̃1 , I(X1;Z|X2)−δ, R2 , g({2})−δ =
I(X2;Y |X1)− I(X2;Z)− δ, R̃2 , I(X2;Z)− δ, δ > 0.

Encoding: For Transmitter i ∈ {1, 2}, given (mi, m̃i),
transmit xni (mi, m̃i). In the remainder of the paper, we term
m̃1 and m̃2 as randomization sequences.

Decoding: The receiver performs minimum distance decod-
ing to first estimate (m1, m̃1) and then estimate (m2, m̃2), i.e.,
given yn, determine (m̂1, ˆ̃m1) = φ1(yn, 0), and (m̂2, ˆ̃m2) =
φ2(yn, xn1 (m̂1, ˆ̃m1)) where for i ∈ {1, 2}
φi : (yn, x) 7→

(mi, m̃i) if ‖yn − x− xni (mi, m̃i)‖2
< ‖yn − x− xni (m′i, m̃

′
i)‖2 for (m′i, m̃

′
i) 6= (mi, m̃i)

0 if no such (mi, m̃i) ∈ J1, 2nRiK× J1, 2nR̃iK exists
(7)

Average probability of error: The term e(Cn, s
n) ,

P
[
(M̂1, M̂2) 6= (M1,M2)|Cn

]
is upper-bounded by

P
[
(M̂1, M̂2) 6= (M1,M2) or (

̂̃
M1,

̂̃
M2) 6= (M̃1, M̃2)|Cn

]
= e1(Cn, s

n, xn2 (m2, m̃2)) + e2(Cn, s
n, 0),

where for i ∈ {1, 2}
ei(Cn, s

n, x) ,
1

d2nRied2nR̃ie
∑
mi

∑
m̃i

P
[
‖xni (mi, m̃i) + sn + x+Nn

Y − xni (m′i, m̃
′
i)‖2
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6 ‖sn + x+Nn
Y ‖2 for some (m′i, m̃

′
i) 6= (mi, m̃i)

]
.

Next, we have

ECn
[e1(Cn, s

n, xn2 (m2, m̃2))]

6 ECn [e1(Cn, s
n, xn2 (m2, m̃2))|C(1)

n ∈ C∗1 ] + P[C(1)
n /∈ C∗1 ]

6 αn, (8)

where in the first inequality C∗1 represents all the sets of
unit norm vectors scaled by

√
P1 that satisfy the technical

conditions of [3, Lemma 1], where in (8) αn
n→∞−−−−→ 0 because

C
(1)
n ∈ C∗1 with probability one when n → ∞ by [3], and

because ECn [e1(Cn, s
n, xn2 (m2, m̃2))|C(1)

n ∈ C∗1 ]
n→∞−−−−→ 0

by [3] using the definition of R1 + R̃1 and by interpreting
the signal of Transmitter 2 as noise, which is indeed possible
by remarking that the result in [3] is valid for a noise model
N + U , where N is Gaussian and U is uniformly distributed
on a sphere of Rn. Note that this argument has also been used
in [18]. With similar justifications and by using the definition
of R2 + R̃2, we have for some (βn) such that βn

n→∞−−−−→ 0,
ECn

[e2(Cn, s
n, 0)] 6 βn, hence, ECn

[e(Cn, s
n)]

n→∞−−−−→ 0.
Equivocation: We first study the average error probabil-

ity ẽ(Cn) of decoding (m̃1, m̃2) given (zn,m1,m2) with a
procedure similar to (7). We omit the details due to space
constraints. We define M , (M1,M2). Similar to the justifi-
cations to obtain (8), one can show that ECn

[ẽ(Cn)]
n→∞−−−−→ 0,

which leads with standard arguments to I(M ;Zn|Cn) = o(n).

B. Case 2

We only consider Case 2.a since Case 2.b will follow by
exchanging the role of the transmitters. Let R , (R1, R2)
belong to D(P1, P2). There exists α ∈ [0, 1[ such that R =
(1 − α)C1 + αC̃2. The corner point C1 can be achieved as
in Case 1, however, recall that the first component of C̃2 is
negative, it thus cannot be achieved similarly.

We achieve R with time-sharing as follows. We define
k, k′ ∈ N such that k′/k = (1 − α)−1 − 1 + ε, ε > 0, it is
possible by density of Q in R. We realize a first transmission
T1 as in Case 1 of a pair of confidential messages with
length nkC1. We then realize a second transmission T2 of
a pair of confidential messages with length nk′(0, g({2}))
with the help of a secret key, shared between Transmitter 1
and the receiver, of length nk′(g({2}) − g({1, 2})) > 0,
which is interpreted as achieving the virtual corner point C̃2

since the overall transmission rate of confidential messages is
k

k+k′C1 + k′

k+k′ C̃2. Note that Transmitter 1 and the receiver
share a secret key of sufficient length from the first transmis-
sion because (1−α)C1 +αC̃2 = R has positive components.
We now explain how transmission T2 is done. We repeat k′

times the following coding scheme.
Codebook construction: Perform the same codebook con-

struction as in Case 1 for Transmitter 2. For Transmit-
ter 1, construct a codebook with d2nR̆1ed2nR̊1e codewords
drawn independently and uniformly on the sphere of radius√
P1 in Rn. The codewords are labeled xn1 (m̆1, m̊1), where

m̆1 ∈ J1, 2nR̆1K, m̊1 ∈ J1, 2nR̊1K. We define the rates R̆1 ,

I(X1;Y )− δ, R̊1 , g({2})− g({1, 2})− δ = I(X1;Z|X2)−
I(X1;Y )− δ, and R̃1 , R̆1 + R̊1 = I(X1;Z|X2)− 2δ.

Encoding at Transmitters: Encoding for Transmitter 2 is as
in Case 1. Given (m̆1, m̊1) Transmitter 1 forms xn1 (m̆1, m̊1),
where m̊1 is assumed to be known at the receiver by the
transmission T1 described above. In the following, we define
m̃1 , (m̆1, m̊1).

Decoding and average probability of error: Similar to
case 1, using minimum distance decoding, one can show that
on average over the codebooks, the receiver can reconstruct
xn1 (m̆1, m̊1) with vanishing average probability of error be-
cause m̊1 is known at the receiver and by definition of R̆1.
The receiver can then reconstruct xn2 as in Case 1.

Equivocation: The computation of the equivocation is sim-
ilar to Case 1 by remarking that it is possible on average
over the codebooks to reconstruct with vanishing average
probability of error first xn2 given (zn,m2) and then xn1 given
(zn, xn2 ) by definition of R̃1.

Finally, to conclude that R is achieved, we need to show
secrecy over the joint transmissions T1 and T2. We use the
notation ′ to designate random variables associated with trans-
mission T2. We define M , (M1\M̊1,M2), the confidential
messages sent during transmission T1, where we exclude M̊1,
all the confidential messages sent during transmission T1 and
used during transmission T2. We define M ′ , (∅,M ′2) the
confidential messages sent during transmission T2. Similarly,
we define M̃ , (M̃1, M̃2) and M̃ ′ , (M̃ ′1, M̃

′
2) the random-

ization sequences used by both transmitters in transmissions
T1 and T2, respectively. We also define Xkn , (Xkn

1 , Xkn
2 ),

Xk′n , (Xk′n
1 , Xk′n

2 ). We have

I(MM ′;ZnkZnk′ |CnC
′
n)

= I(XknXk′n;ZnkZnk′ |CnC
′
n)−H(M̃M̃ ′|CnC

′
n)

+H(M̃M̃ ′|ZnkZnk′
MM ′CnC

′
n)

6 I(XknXk′n;ZnkZnk′
)− n(k + k′)I(X1X2;Z) + o(n)

= o(n),

where in the inequality we have used (CnC
′
n)−(XknXk′n)−

(ZnkZnk′
) to obtain the first term, the definition of R̃1 + R̃2

to obtain the second term, and Fano’s inequality to obtain the
third term, indeed, using the analyses for transmissions T1,
T2, and a union bound, we have that on average over the
codebooks the average probability of error for reconstructing
(M̃M̃ ′) given (Znk, Znk′

,M,M ′) vanishes as n→∞. Note
that we have excluded M̊1 from M , but one can first determine
M̃ ′ from (Znk′

,M ′), and then M̃ from (Znk,M, M̊1), since
M̊1 is included in M̃ ′.

C. Case 3

We define g∗1 , g({2}) − g({1, 2}) > 0 and g∗2 ,
g({1}) − g({1, 2}) > 0. Assume g({1, 2}) > 0, otherwise
R1,2(P1, P2) = {(0, 0)}. We will need the following lemma,
whose proof is omitted due to space constraint.

Lemma 1. We have
(i) g∗1 6 g({1}) or g∗2 6 g({2}).
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(ii) h1 < hΛ or h2 < hΛ.
(iii) Assume g∗1 6 g({1}). There exists m,m′ ∈ N∗, such that

m′g({1})−mg∗1 > 0, and mg({2})−m′g∗2 > 0.

By (i) in Lemma 1, assume without loss of generality
that g∗1 6 g({1}) by exchanging the role of the transmitters
if necessary. We let m, m′ be as in (iii) of Lemma 1.
Achievability of D(P1, P2) is made in four steps.

Step 1. During a first transmission T0, Transmitter 2
transmits a confidential message with length nm′g∗2 to the
receiver. This is possible with a point-to-point wiretap code
(similar to Case 1) when Transmitter 1 remains silent and
when hΛ > h2. If hΛ 6 h2, then by (ii) in Lemma 1,
hΛ > h1 and Transmitter 2 can transmits a confidential
message with length nm′g∗2 as follows. Transmitter 1 transmits
a confidential message with length nkg∗1 , where k ∈ N∗ is
such that nkg({2}) > nm′g∗2 . Using this secret key shared by
Transmitter 1 and the receiver, Transmitter 2 can transmit a
confidential message with length nkg({2}) as in Case 2. Note
that Step 1 is operated in a fixed number of blocks of length n.

Step 2. Similar to Case 2, the transmitters achieve
a transmission T1 of confidential messages with length
(nm′g({1}), 0) by using the secret key exchange during T0

between Transmitter 2 and the receiver. Then, similar to Case 2
and because m′g({1}) −mg∗1 > 0 by (iii) in Lemma 1, the
transmitters achieve a transmission T2 of confidential mes-
sages with length (nm′g({1})−nmg∗1 , nmg({2})) by using a
secret key with length nmg∗1 exchange between Transmitter 1
and the receiver during T1.

Step 3. The transmitters can repeat T1 and T2 t times, where
t is arbitrary, since mg({2})−m′g∗2 > 0 by (iii) in Lemma 1.
Hence, after these t repetitions, the rate pair achieved is
arbitrarily close to R = 1

m+m′ (m
′g({1}) −mg∗1 ,mg({2}) −

m′g∗2) provided that t is large enough since Step 1 only
requires a fixed number of transmission blocks. Observe that
R ∈ D(P1, P2).

Step 4. Any point of D(P1, P2) can then be achieved as
in Case 2 by time sharing between R and one of the virtual
corner points C̃1, C̃2.

The proof that secrecy holds is similar to Case 2.

V. CONCLUDING REMARKS

We have defined a Gaussian multiple access wiretap channel
under simultaneous eavesdropping and jamming attack. Unlike
previous work, the jamming signal is arbitrary and, in particu-
lar, not restricted to be Gaussian. Our achievability scheme
relies on time-sharing and an extension of the successive
decoding method for multiple access channels to multiple
access wiretap channels. An open problem remains to provide
a scheme that avoids time-sharing. Rate-splitting [17] can be
adapted to our setting following [20] to avoid time-sharing,
however, the entire region in (5) cannot be achieved as splitting
the power of one user precludes reliable communication. It is
unclear whether or not the entire region of Section III can be
achieved without time-sharing and by solely relying on point-
to-point codes. If not, the design of multi-transmitter codes

for arbitrarily varying multiple access channels would be nec-
essary. Another open problem is to obtain tight outer-bounds
for non-degraded channels. This problem is as hard as finding
tight outer bounds for the general Gaussian multiple access
wiretap channel [2]. Lastly, we consider weak secrecy in this
work. Strong and semantic security regions for this scenario
are open. Although the scheme in [21] can be applied to point-
to-point channels, the analysis does not seem extendable in a
straightforward fashion to the multiple-access case.
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