
A Game Theoretic Treatment for Pair-wise
Secret-Key Generation in Many-to-One Networks

Remi A. Chou and Aylin Yener

Wireless Communications and Networking Laboratory (WCAN)
The School of Electrical Engineering and Computer Science

The Pennsylvania State University, University Park, PA 16802.
remi.chou@psu.edu yener@engr.psu.edu

Abstract—We consider secret-key generation between several
agents and a base station that observe independent and identically
distributed (i.i.d.) realizations of correlated random variables.
Each agent wishes to generate the longest possible individual
key with the base station by means of public communication. All
keys must be jointly kept secret from all external entities. We
do not require them to be kept secret among the agents. In this
many-to-one secret-key generation setting, it can be shown that
the agents can take advantage of a collective protocol to increase
the sum-rate of all the generated keys. However, when each
agent is only interested in maximizing its own secret-key rate,
agents may be unwilling to participate in a collective protocol.
Furthermore, when such a collective protocol is employed, how
to fairly allocate individual key rates arises as a valid issue.
We study this tension between cooperation and self-interest with
a game-theoretic treatment. We establish that cooperation is in
the best interest of all agents and that there exists individual
secret-key rate allocations that incentivize the agents to follow the
protocol. Additionally, we propose an explicit and low-complexity
coding scheme based on polar codes and hash functions that
achieves such allocations.

Index Terms—Multiterminal secret-key generation, strong se-
crecy, coalitional game theory, hash functions, polar codes

I. INTRODUCTION

Multiuser communication settings subject to limited total
resources bring about issues pertaining to conflict of interests,
competition, and fairness among users. Such issues are typi-
cally studied by means of game theory - we refer to [1] and
references therein for a comprehensive survey.

In this paper, we study a multiterminal secret-key generation
problem that involves conflict of interests between users, and
propose a solution based on cooperative game theory, more
specifically, based on forming coalitions. We refer to [2] for
an introduction to coalitional game theory, and to [3] for
a review of some of its applications to telecommunications.
Our setting can be explained as follows. Each agent wishes
to generate an individual key of maximal length with the
base station to securely and individually report information
– by means of a one-time pad for instance. There are many
such agents and a single base station. The generated keys
must be jointly kept secret from all external entities, however,
they are not required to be kept secret among agents, i.e,
we consider a setting where it is not critical for any agent
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to learn about the information reported by the other agents.
We consider a source model for secret-key generation, i.e.,
the agents and the base station observe i.i.d. realizations of
correlated random variables, and can communicate over a
public noiseless channel. It can be shown that the agents
increase the sum of all key lengths by agreeing to participate
in a joint protocol, in contrast to operating separately on their
own. However, each agent is interested in maximizing its own
key length only. Consequently, there exists a tension between
cooperation and the sole interest of a given agent. Moreover,
assuming that the agents collaborate to maximize the sum of
their key lengths, another issue is to determine a fair allocation
of individual key lengths.

Note that when the agents are not assumed selfish and when
fairness issues are ignored, the secret-key generation model
we consider is similar to the one studied in [4] and related to
multiple-key generation in a network with trusted helpers [5].

Our contributions are three-fold. (i) In Section II, we
formally define the problem and cast it as a coalitional game,
for which we derive properties and propose rate allocations as
candidates for fair solutions in Section III. (ii) By adding the
constraint that the agents are selfish, compared to the model
in [4], we are able to derive a secret-key capacity region for an
arbitrary number of agents, whereas without this consideration,
the secret-key capacity region of the model we consider is
unknown, even for two agents [4], [5]. (iii) We provide in
Section IV an explicit and low-complexity coding scheme
based on polar codes for source coding and hash functions
to implement the solutions proposed in Section II.

Proofs are omitted for brevity. We provide concluding
remarks in Section V.

II. PROBLEM STATEMENT

We define in Section II-A a secret-key generation model,
and in Section II-B a coalitional game associated with this
model when the agents are selfish. In the following, for reals
a, b, we define Ja, bK , [a, b] \ N.

A. Secret-key generation model
Define XL as the Cartesian product of L finite alphabets

Xl, l 2 L , J1, LK. Consider a discrete memoryless source
(DMS) (XL ⇥ X0, pXLX0), where X0 is a finite alphabet and
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Fig. 1. Many-to-one secret-key generation setting.

XL , (Xl)l2L. For l 2 L, Agent l observes the component Xl

of the DMS, and the base station observes the component X0.
In this paper, the source is assumed to follow the following
Markov chain: for any S, T ⇢ L such that S \ T = ;,

XS � X0 � XT . (1)

Assuming all random variables are binary, an instance of
this model is Xl , X0 � Bl, 8l 2 L, where the Bl’s are
independent Bernoulli random variables and � is the modulo-
two addition. The source’s statistics are assumed known to all
parties, and communication is allowed over an authenticated
noiseless public channel.

Definition 1. For i 2 L, let Ki be a key alphabet of size
2

NRi and define KL as the Cartesian product of Ki, i 2 L. A
((2

NRi
)i2L, N) secret-key generation strategy is as follows.

1) The base station observes XN
0 and Agent l, l 2 L,

observes XN
l .

2) The agents in L and the base station communicate,
possibly interactively, over the public channel. The global
public communication is denoted by AL 2 AL, for some
discrete alphabet AL.

3) Agent i, i 2 L, computes Ki(X
N
i , AL) 2 Ki.

4) The base station computes bKi(X
N
0 , AL) 2 Ki, i 2 L.

In the following, we use the notation KL , (Ki)i2L.

Definition 2. A secret-key rate tuple (Ri)i2L is achievable if
there exists a sequence of ((2

NRi
)i2L, N) secret-key genera-

tion strategies such that

lim

N!1
P[

bKL 6= KL) = 0 (Reliability), (2)

lim

N!1
I(KL; AL) = 0 (Collective Secrecy), (3)

lim

N!1
log|KL|�H(KL) = 0 (Key Uniformity). (4)

The secrecy constraint (3) ensures that the keys generated
by the agents are independent from the public communication.
By (4), the keys generated are almost jointly independent [4],
so that the simultaneous use of the keys by the agents is secure.

B. Game definition

We consider a coalitional game [2] for the secret-key
generation problem of Section II-A where the agents are
the players. The players are selfish, i.e., solely interested in
maximizing their payoffs, which we define as their individual
secret-key rates. The base station is not a player but is merely
a passive entity. The agents can potentially form coalitions
to maximize their payoffs, in the sense that subsets of agents
can agree on a collective protocol to follow before the actual
secret-key generation protocol occurs. However, we do not
assume any privilege for coalitions, in particular, if the mem-
bers of a given coalition need to communicate with each other,
they can only use the public channel. We define our coalitional
game by associating with each coalition of cooperating agents
S ✓ L a certain worth v(S), which we define as the maximal
secret-key sum-rate that coalition S can obtain regardless of
the strategies adopted by the member of Sc. The questions
we are interested in are the following. (i) Can selfish agents
find a consensus about which coalitions to form? (ii) If such
consensus exists, how should the value, i.e., the secret-key
sum-rate, of each coalition be allocated among its agents?

This game formulation follows a framework analogous to
the one for the Gaussian multiple access channel problem
studied in [6], and the Gaussian multiple access wiretap
channel problem studied in [7]. This framework is generically
termed as alpha theory [8].

III. GAME ANALYSIS

We study the properties of v in Section III-A and propose
candidates for secret-key rate allocations in Section III-B.

A. Properties of the game and characterization of its core

We start by giving the following characterization of v(S)

defined in Section II-B.

Theorem 1. For S ✓ L, we have v(S) = I(XS ; X0|XSc
).

We readily observe that the game defined in Section II-B
is superadditive in the sense that any two disjoint coalitions
S, T ✓ L, S \ T = ;, obtain secret-key sum-rate capacities
that cannot add up to a quantity strictly larger than the secret-
key sum-rate capacity of the coalition S [ T . One can indeed
show that the secrecy constraints for coalitions S and T , with
S\T = ;, implies a secrecy constraint for the coalition S[T ;
we omit details for brevity. Superadditivity implies that there is
an interest in forming a large coalition to obtain a larger secret-
key sum-rate, however, large coalition might not be in the
individual interest of the agents. A useful concept to overcome
this complication is the core of the game.

Definition 3 (e.g. [2]). The core C(v) of a superadditive game
(L, v) is defined by
(

(Rl)l2L :

X

l2L
Rl = v(L) and

X

i2S
Ri > v(S), 8S ⇢ L

)
.

(5)
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Observe that for any point in the core, the grand coalition,
i.e., the coalition L, is in the best interest to all agents,
since the set of inequalities in (5) ensures that no coalition
of agents can increase its secret-key sum-rate by leaving the
grand coalition. Observe also that for any point in the core the
maximal secret-key sum-rate v(L) for the grand coalition is
achieved.

We now introduce the notion of convexity for a game to
better understand the structure of the core of our game.

Definition 4 ([9]). A game (L, v) is convex if v is supermod-
ular, i.e., 8U ,V ✓ L, v(U) + v(V) 6 v(U [ V) + v(U \ V).

The intuition behind this definition is that supermodularity
provides a stronger incentive to form coalition than superad-
ditity. Indeed, supermodularity of a function can equivalently
be defined as follows [9]

8l 2 L, 8T ✓ L\{l}, 8S ✓ T ,

v(S [ {l}) � v(S) 6 v(T [ {l}) � v(T ), (6)

which means that, in addition to superaddivity, the contribution
of a single agent to a given coalition increases with the size
of the coalition it joins.

Proposition 1. The game (L, v) defined in Section II-B is
convex.

Corollary 1. By [9] any convex game has non-empty core.
Hence, by Proposition 1, the game defined in Sectoin II-B has
a non-empty core C(v).

We provide an alternative characterization of the core that
will turn out to be useful to show that any point of the core
can be achieved. It can also be viewed as a converse for our
problem since the secret-key rate-tuples in the core are upper-
bounded.

Theorem 2. The core C(v) of the game (L, v) defined in
Section II-B is given by

{(Rl)l2L : 8S ✓ L,

I(XS ; X0) >
P

i2S Ri > I(XS ; X0) � I(XS ; XSc
)

 
.

B. Candidates for secret-key rate allocations
Although C(v) has been shown to be non-empty in Sec-

tion III-A, a remaining issue is now to choose a specific rate-
tuple allocation in the core. Shapley introduced a solution
concept to ensure fairness according to the following axioms.
(i) Efficiency: The secret-key sum-rate capacity for the grand
coalition L is achieved. (ii) Symmetry: Any two agents that
equally contribute to any coalition in the sense that for any
i, j 2 L, for any S ✓ L such that i 6= j and i, j /2 S ,
v(S [ {i}) = v(S [ {j}), obtain the same individual secret-
key rate. (iii) Dummy axiom: Any agent that does not bring
value to any coalition he can join, in the sense, for any i 2 L,
for any S ✓ L such that i /2 S , v(S [ {i}) = v(S), receives
a null secret-key rate. (iv) Additivity: For any two games v
and u played by the agents, the individual secret-key length
obtained by an agent for the game u + v, is the sum of

secret-key lengths when u and v are played separately. In
our setting, the later axiom could correspond to several key
generation protocols performed by the same agents with the
source statistics varying for each protocol. Moreover, it would
mean that even if the agents do not know in advance the
number P of secret-key generation protocols they are going
to be involved in and which particular source statistics will
be associated with each protocol, they are going to obtain
the same individual key lengths as if they had to perform the
P protocols simultaneously, in the sense of performing one
protocol whose value function is the sum of P value functions.

The unique secret-rate tuple that satisfies the previous four
axioms is called the Shapley value.

Proposition 2. The Shapley value of (L, v) defined in Sec-
tion II-B is in C(v) and is given by (RShap

l )l2L, where for l 2 L

RShap
l = I (Xl; X0) � 1

L

X

S✓L\{l}

✓
L � 1

|S|
◆�1

I (Xl; XS) .

(7)

The fact that the Shapley value belongs to the core follows
by [9] from the convexity of (L, v) proved in Proposition 1.
Observe that (7) quantifies the difference of key length ob-
tained for Agent l, l 2 L, between the case L = 1 and the
case L > 1.

Other solution concepts than the Shapley value can be
considered to choose a “fair” point in the core. In particular,
the additivity axiom might not always be relevant in our
problem, for instance, if the agents only perform a unique
secret-key generation protocol. We do not intend to provide an
exhaustive list of such concepts, we will, however, describe a
solution concept that has attracted a certain interest in many
studies, the nucleolus.

Definition 5 (e.g. [2]). Define the set of preimputation Y ,
{y = (yi)i2L 2 RL

+ :

P
i2L yi = v(L)}. For y 2 Y , for S 2

2

L, define the excess e(y,S) , v(S)�Pi2S yi, and define the
vector ✓(y) = (✓i(y))i2J1,2LK 2 R2L

+ as (e(y,S))S22L sorted
in nonincreasing order, i.e., for i, j 2 J1, 2LK, i < j =)
✓i(y) > ✓j(y). The nucleolus is defined as {y0 2 Y : ✓(y0) �
✓(y), 8y 2 Y}, where “ � ” denote the lexicographic order,
i.e., for y(1),y(2) 2 Y ,

�
y(1) � y(2)

� () �
y(1)

= y(2) or ,
9i0,

⇣
8j < i0, y

(1)
j = y

(2)
j and y

(1)
i0

< y
(2)
i0

⌘⌘
.

A possible interpretation of the nucleolus is to see the excess
e(y,S) for some y 2 Y , S 2 2

L, as an indicator of dissatisfac-
tion of coalition S associated with the preimputation y. One
thus might want to choose the preimputation y that minimizes
the maximal excess, i.e., the first component of ✓. If several
choices for y are possible, one can decide to select y such
that the second largest excess, i.e., the second component of
✓, is minimized. One can then continue until one obtains a
unique choice for y as stated in Proposition 3.

Proposition 3 ([10]). For a convex game, the nucleolus is a
singleton and belongs to the core.
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Fig. 2. Core, Shapley value, and nucleolus of the game described in
Example 1.

The nucleolus has, however, no closed-form formula and
involves the resolution of successive minimization problems.
We illustrate this concept in the following example.

Example 1. Let X0 be a Bernoulli random variable with
parameter q 2]0, 1/2[. Define Xl , X0 � Bl, 8l 2 L, where
the Bl’s are independent Bernoulli random variables with pa-
rameter pl 2]0, 1/2[. Let Hb(·) denote the binary entropy and
define for any x 2 [0, 1], x̄ = 1�x. One can show that, when
L = 3 and (q p1 p2 p3) = (0.40 0.20 0.27 0.25), we have
v({1}) ⇡ 0.17134, v({2}) ⇡ 0.08205, v({3}) ⇡ 0.10142,
v({1, 2}) ⇡ 0.28771, v({1, 3}) ⇡ 0.31679, v({2, 3}) ⇡
0.20155, v({1, 2, 3}) ⇡ 0.46921. Using Proposition 2, we
obtain the following secret-key rates

RNucl
1 2 [0.2109, 0.2110], RShap

1 2 [0.2165, 0.2166],

RNucl
2 2 [0.1172, 0.1173], RShap

2 2 [0.1142, 0.1143],

RNucl
3 2 [0.1410, 0.1411], RShap

3 2 [0.1384, 0.1385].

The core of the game, as well as the Shapley value and the
nucleolus are depicted in Figure 2.

IV. HOW TO ACHIEVE ANY POINT OF THE CORE

We have seen in Section III that the grand coalition, i.e.,
the coalition L, is in the best interest of all agents, and we
have characterized the acceptable operating points as the core
of the game. Assuming that the grand coalition agrees on an
operating point in the core, we now would like to answer
whether there exists a secret-key generation protocol for this
specific operating point. In Theorem 3, we claim that the
coding scheme presented in Section IV-A achieves for the
grand coalition, i.e., the coalition L, a region that contains
the core C(v). The proof is briefly sketched in Section IV-B.

Theorem 3. Consider a DMS (XL ⇥ X0, pXLX0) such
that 8l 2 L, |Xl|= 2. Any rate tuple in RL ,�
(Rl)l2L : 0 6 P

i2S Ri 6 I(XS ; X0), 8S ✓ L is achiev-
able by the grand coalition, in the sense of Definition 2, with
the coding scheme of Section IV-A. Moreover, by Theorem 2
we have RL ◆ C(v).

Note that Theorem 3 can be extended so as to not require
the Markov chain (1).

Remark 1. For L = 2, [4, Theorem 3] provides a cod-
ing scheme to achieve the region RL in Theorem 3. For
arbitrary L, [4, Theorem 1] provides a coding scheme that
achieves the sum-rate v(L). However, in contrast to our
solution, these coding schemes, which rely on existence results
from [11], are neither explicit nor low-complexity, require
time-sharing (for [4, Theorem 3]), and only provide weak-
secrecy.

A. Coding Scheme

The principle of the coding scheme is to separately deal
with reliability and secrecy, as it can be done for secret-
key generation between two users [12], albeit with addi-
tional complications. More specifically, a reconciliation step
is first performed to allow the base station to reconstruct
the observations XN

L of the agents. Then, during a privacy
amplification step, each agent extracts from its observations
a key that can be reconstructed at the base station. The
reconciliation step itself does not present any difficulty, the
main complications, compared to a two-user scenario, are (i)
to deal with a distributed setting in the privacy amplification
step and (ii) to analyze the combination of the reconciliation
and privacy amplification steps.

Our coding scheme operates over B blocks of length N ,
where N is a power of 2. We define B , J1, BK. We omit
indexation of the variables over blocks because encoding is
identical for all blocks. The reconciliation step, described
in Algoritm 1, makes use of polar codes. In particular we
introduce the following notation. For n 2 N and N , 2

n, let
Gn ,

h
1 0
1 1

i⌦n

be the source polarization transform defined
in [13]. For any l 2 L, we define the polar transform of XN

l by
UN

l , XN
l Gn, moreover, for any set I ✓ J1, NK, we define

UN
l [I] , ((Ul)i)i2I . For any l 2 L, for any S ✓ L, for

�N , 2

�N�

with � 2]0, 1/2[, we also define the following sets

HXl|X0
,
�
i 2 J1, NK: H

�
(Ul)i|(Ul)

i�1XN
0

�
> �N

 
.

The privacy amplification step, described in Algorithm 2,
relies on two-universal hash functions. For l 2 L, we let Fl :

{0, 1}N ! {0, 1}rl , be uniformly chosen in a family Fl of
two-universal hash functions. Note that rl represents the key
length obtained by Agent l.

B. Coding Scheme Analysis

The proof of Theorem 3 relies on [14, Lemma 1.1], [13],
[15, Lemma 7], and [16] combined with the following version
of the leftover hash lemma. One of the additional challenges
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Algorithm 1 Reconciliation protocol
1: for Agent l 2 L do
2: for Block b 2 B do
3: Compute UN

l , XN
l Gn

4: Transmit Al , UN
l [HXl|X0

] to the base station over
the public channel

5: end for
6: end for
7: Let AL , (Al)l2L denote the public communication in a

Block b 2 B.
8: for Block b 2 B do
9: Given Ab

L and XN
0 observed in Block b, the base

station reconstructs XN
L for Block b using the succes-

sive cancellation algorithm for source coding with side
information of [13].

10: end for

Algorithm 2 Privacy amplification protocol
1: for Block b 2 B do
2: for Agent l 2 L do
3: Compute Kl , Fl(X

N
l )

4: Publicly transmit the choice of Fl to the base station
5: end for
6: for l 2 L do
7: The base station computes Kl , Fl(X

N
l )

8: end for
9: end for

introduced by a distributed setting, compared to [12], is the
evaluation of the min-entropies appearing in Lemma 1.

Lemma 1 (Leftover hash lemma for concatenated hash func-
tions). Let XL , (Xl)l2L and Z be random variables
distributed according to pXLZ over XL ⇥ Z . For l 2 L, let
Fl : {0, 1}nl ! {0, 1}rl , be uniformly chosen in a family
Fl of two-universal hash functions. Define sL , Q

l2L sl,
where sl , |Fl|, l 2 L, and for any S ✓ L, define
rS , P

i2S ri. Define also FL , (Fl)l2L and FL(XL) ,
(F1(X1)||F2(X2)||. . . ||FL(XL)), where || denotes concate-
nation. Then, for any z 2 Z , we have

V(pFL(XL),FL|Z=z, pUKpUF ) 6
s X

S✓L,S 6=;

2

rS�H1(XS |Z=z),

where H1 denotes the min-entropy, V denotes the variational
distance, pUK and pUF are the uniform distribution over
J1, 2rLK, and J1, sLK, respectively.

V. CONCLUDING REMARKS

We have studied a pairwise secret-key generation source
model between L agents and a base station. Although coop-
eration among agents can increase their individual key length,
it can, at the same time, lead to conflict of interests between
agents. We have cast the problem as a coalitional game in
which the value function is determined under information-
theoretic guarantees, i.e., the value associated with a coalition

is computed with no restrictions on the strategies that the users
outside the coalition can adopt. We have showed that the game
associated with our problem is convex, and characterized its
core, which is interpreted as a converse for our setting. We
have concluded that the grand coalition is in the best interest
of all agents and stable, in the sense that no coalition of agents
has any incentive to leave the grand coalition. We have also
characterized the Shapley value, and identified it as a possible
solution concept to ensure fairness among agents. Finally, we
have proposed an explicit and low-complexity coding scheme
relying on polar codes for source coding and hash functions to
achieve any point of the core. Under the proposed coalitional
game theory framework, we thus obtain the secret-key capacity
region for our problem. It contrasts with the fact that no tight
outer bound is known for the model we consider when the
selfishness constraints are removed, even when L = 2.

The alpha theory framework for coalitional games is general
and could be applied to other security problems involving a
tension between cooperation and self-interest. The difficulty
is to characterize a value function for this framework. Our
problem without the degradation property (1) remains open
for this reason and is, unfortunately, at least as difficult as
determining the secret-key capacity for the two-user secret
generation model in [12].
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