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Rémi A. Chou and Aylin Yener

Wireless Communications and Networking Laboratory
Department of Electrical Engineering

The Pennsylvania State University, University Park, PA 16802

Abstract—We consider strongly secure communication over a
discrete memoryless multiple access wiretap channel with two
transmitters – no degradation or symmetry assumptions are
made on the channel. Our main result is that any rate pair
known to be achievable with a random coding like proof, is
also achievable with a low-complexity polar coding scheme.
Moreover, if the rate pair is known to be achievable without
time-sharing, then time-sharing is not needed in our polar coding
scheme as well. Our proof technique relies on rate-splitting and
different cooperative jamming strategies. Specifically, our coding
scheme combines several point-to-point codes that either aim
at secretly conveying a message to the legitimate receiver or
at performing cooperative jamming. Each point-to-point code
relies on a chaining construction to be able to deal with an
arbitrary channel and strong secrecy. We assess reliability and
strong secrecy through a detailed analysis of the dependencies
between the random variables involved in the scheme.

I. INTRODUCTION

Recent efforts have been made to construct coding schemes
for the wiretap channel model [1], see, for instance, [2] for a
recent review. In this paper, we pursue this line of work by
developing a low-complexity coding scheme based on polar
codes for discrete memoryless multiple access wiretap chan-
nels (MAC-WT) with two transmitters under strong secrecy.
Note that this problem has also been considered in [3], and
in the independent work [4]. However, in contrast to [3], [4],
we deal with strong secrecy instead of weak secrecy. Conse-
quently, our proof for secrecy cannot rely on Fano’s inequality
and requires a detailed analysis of the dependencies between
all the random variables involved in the scheme. Additionally,
our coding approach is different from [3], [4], as [3] relies on
polar codes for channel coding, and [4] relies on monotone
chain rules for Slepian-Wolf coding [5], whereas we rely on (i)
rate-splitting, which involves virtual users, and (ii) cooperative
jamming, in the sense that one user, potentially virtual, does
not transmit information messages to the legitimate receiver
but transmits, instead, appropriately chosen codewords that
will help the other users to securely transmit their information
messages. Our result can be summarized as follows.

This work was supported in part by NSF grants CIF-1319338 and CNS-
1314719.

• Any rate pair known to be achievable for the two-user
MAC-WT is also achievable under strong secrecy with a
low-complexity polar coding scheme.

• Moreover, if the rate pair is known to be achievable
without time-sharing, then our polar coding scheme does
not require time-sharing.

Note that similar to polar coding schemes for the point-to-
point wiretap channel under strong secrecy [6], [7], our coding
scheme requires the transmitters to share secret randomness
with the legitimate receiver to be able to deal with strong
secrecy and arbitrary discrete memoryless channels. Fortu-
nately, the amount of shared randomness needed is negligible
compared to the blocklength of the coding scheme. Note
also that our coding scheme involves Block-Markov encod-
ing, which is critical to ensure (i) strong secrecy, as first
remarked in [6] for the wiretap channel, (ii) be able to deal
with asymmetric channels, as first remarked in [8]. Finally,
note that in our setting, reliability constraints only apply to
the legitimate receiver, consequently, complications for rate-
splitting in presence of multiple receivers discussed in [9] will
not apply.

The remaining of the paper is organized as follows. We
formally describe the problem studied in Section II. We
detail our coding strategies in Section III. We then provide
our coding scheme and its analysis in Section IV. Finally,
we propose concluding remarks in Section V. Due to space
constraints, we do not detail proofs.

II. PROBLEM STATEMENT

We first introduce some notation. Let Ja, bK denote the
integers between bac and dbe. For n ∈ N and N , 2n, let

Gn ,
[
1 0

1 1

]⊗n
be the source polarization transform defined

in [10]. The components of a vector, X1:N , of size N ∈ N,
are denoted by superscripts, i.e., X1:N , (X1, X2, . . . , XN ).
Moreover, for any set I ⊂ J1, NK, define X1:N [I] ,

(
Xi
)
i∈I .

Define also [x]+ , max(x, 0). The indicator function 1{ω} is
equal to 1 if the predicate ω is true and 0 otherwise. The power
set of S is denoted by 2S . Finally, unless specified otherwise,
capital letters designate random variables, whereas lowercase
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letters designate realizations of associated random variables,
e.g., x is a realization of the random variable X .

The model considered is as follows. Let N ∈ N. A
(2NR1 , 2NR2 , N) code CN for a discrete memoryless MAC-
WT (X1 × X2,WY Z|X1X2

,Y × Z) consists of two message
sets Mi , J1, 2nRiK associated with two stochastic encoders,
f
(i)
N : Mi → XNi , i ∈ {1, 2}, which maps a uniformly

distributed message Mi ∈ Mi to a codeword of length N ,
and one decoder, gN : YN → M1 × M2, which maps a
sequence of N channel outputs to an estimate

(
M̂1, M̂2

)
of

(M1,M2). A rate pair (R1, R2) is achievable, if there exists
a sequence of (2NR1 , 2NR2 , N) codes {CN}N∈N∗ , such that

lim
N→∞

P
[(
M̂1, M̂2

)
6= (M1,M2)

]
= 0 (Reliability),

lim
N→∞

I
(
M1M2;Z1:N

)
= 0 (Strong Secrecy).

It is known from [11] that the convex hull of the rate-pair
region R is achievable, where R ,

⋃

pX1
pX2

(R′ ∪R′′ ∪R′′′),

with

R′ ,





(R1, R2) :

R1 6 [I(X1;Y |X2)− I(X1;Z)]
+

R2 6 [I(X2;Y |X1)− I(X2;Z)]
+

R1 +R2 6 [I(X1X2;Y )− I(X1X2;Z)]
+




,

R′′ ,
{

(R1, 0) : R1 6 [I(X1;Y |X2)− I(X1;Z|X2)]
+
}
,

R′′′ ,
{

(0, R2) : R2 6 [I(X2;Y |X1)− I(X2;Z|X1)]
+
}
.

III. ACHIEVABILITY OF R
In this section, we describe our coding strategies to achieve

any rate of R. We will use the following result.

Lemma 1. For a fixed p , (pX1
, pX2

), define the set functions

gp : 2{1,2} → R,S 7→ I(XS ;Y |XSc)− I(XS ;Z),

g∗+p : 2{1,2} → R+,S 7→ min
A⊂M

s.t. A⊃S
[gp(A)]

+
.

When the context is clear, we will drop the dependence on p
in our notation. We have the following properties.

(i) g is submodular.
(ii) P (g∗+) ,

{
(R1, R2) : g∗+(S) 6

∑
i∈S Ri,∀S ⊂M

}

is a polymatroid [12, Definition 3.1], [13].
(iii) R′ = P (g∗+).

Fix p , (pX1
, pX2

). Achievability of R′′ and R′′′ is similar
to the one of R′ and is thus omitted due to space con-
straints – see Remark 1. Moreover, we only need to consider
achievability of R′ when min(g({1}), g({2})) > 0, since if
g({1, 2}) 6 0, then R′ = {(0, 0)}, and if g({1})g({2}) 6 0,
then it can be shown with (i) of Lemma 1 that R′ ⊂ R′′. We
thus assume in the following min(g({1}), g({2})) > 0.

We propose in Lemma 2 a rate-splitting strategy [14] to
achieve any rate pair of R′ using Property 1. The latter can
be obtained with Lemma 1 and [12, Lemma 3.2], [13].

Property 1. Fix p , (pX1 , pX2). To achieve R′, it is sufficient
to achieve for any R1 ∈ Ip, the rate pair [R1, g({1, 2})−R1],
where

Ip , [[g({1, 2})− g({2})]+,min(g({1}), g({1, 2}))].

Lemma 2. As in [14, Example 3], we choose f : X2×X2 →
X2, (u, v) 7→ max(u, v), and split (X2, pX2

) to form (X2 ×
X2, pUεpVε), ε ∈ [0, 1], such that for any ε > 0, pf(Uε,Vε) =
pX2

, for fixed (x, u), pf(Uε,Vε)|U (x|u) is a continuous function
of ε, and Uε=0 = 0 = Vε=1, Uε=1 = f(Uε=1, Vε=1), Vε=0 =
f(Uε=0, Vε=0).1

Then, we have g({1, 2}) = RU +RV +R1, where we have
defined the functions

RU :ε 7→ I(U ;Y )− I(U ;Z|V X1), from [0, 1] to R,
RV :ε 7→ I(V ;Y |UX1)− I(V ;Z), from [0, 1] to R,
R1 :ε 7→ I(X1;Y |U)− I(X1;Z|V ), from [0, 1] to R.

Moreover, ε 7→ R1(ε) is continuous and [g({1, 2}) −
g({2}), g({1})] is contained in its image.

Although rate-splitting is well understood for models
without secrecy constraints [14], some complications arise
for the MAC-WT: While ∀ε ∈ [0, 1], (RU + RV + R1)(ε) =
g({1, 2}) > 0, choosing ε0 ∈ [0, 1] such that R1(ε0) ∈ Ip
does not necessarily imply that RU (ε0) > 0 and RV (ε0) > 0.
We indeed have (RU + RV )(ε0) > 0 but we might also
have min(RU (ε0), RV (ε0)) < 0 for some values of ε0; see
Example 1.

Our coding approach, which is detailed in Section IV-B, can
be summarized as follows. When the rate associated with one
of the three variables X1, U , or V , is positive, we use the
encoding procedure of a point-to-point wiretap code, whereas
for a “negative rate”, we perform cooperative jamming. In
the following, due to space constraints, we only treat the case
(RU < 0 and RV > 0). All other cases can be treated similarly
or more easily. In particular, because the codewords associated
with V are not needed to decode the ones associated with
U and X1, the eventuality (RV 6 0 and RU > 0) can be
handled with a relatively simple cooperative jamming scheme,
compared to the one of Section IV-A.

Remark 1. Achievability of R′′ or R′′′ follows the same idea
as the one described above. The transmitter with a secret
communication rate of zero performs cooperative jamming,
whereas the other transmitter makes use of a point-to-point
wiretap code.

Example 1. Assume X1 = X2 = Y = Z = {0, 1}, and
X1, X2, independent and uniformly distributed. Assume Y ,
X1⊕X2 and Z , Y ⊕B, where B is independent of (X1, X2)
and follows a Bernoulli distribution with parameter α. Define
v0 , (2− ε)−1, v1 = 1− v0, u0 , 1− ε/2, u1 = 1− u0, and

1When the context is clear we do not explicitly write the dependence of U
and V with respect to ε.
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α = 1− α. After some computations, one can show

Hb(α) = min(g({1, 2}, g({1})),
0 = [g({1, 2} − g({2})]+,

RU = v0 [Hb(α)−Hb (αu0 + αu1)] ,

RV = u0Hb (v0) ,

R1 = v0Hb (αu0 + αu1) + v1Hb(α)− u0Hb (v0) ,

Hb(α) = R1 +RU +RV .

We fix α = 1/4 and choose ε = 0.674 to equally split the sum
rate between Transmitters 1 and 2. We obtain

RU ∈ [−0.128,−0.127], RV ∈ [0.533, 0.534],

R1 ∈ [0.405, 0.406], RU +RV −R1 6 10−4,

min(g({1, 2}, g({1})) ∈ [0.811, 0.812].

IV. CODING SCHEME FOR MAC-WT

Our coding scheme for the MAC-WT is presented in
Section IV-B. It makes use of the encoding scheme for the
point-to-point wiretap channel described in [7, Section V,
§Confidential message encoding], which will be referred to as
encoding scheme EWT. It also makes use of the generic coop-
erative jamming encoding scheme presented in Section IV-A,
which will be referred to as encoding scheme ECJ.

A. Generic encoding scheme ECJ

In this section, we propose a generic cooperative jamming
scheme which operates over L blocks of length N ; we will
make the appropriate subsitutions of random variables in
Section IV-B. Consider a discrete memoryless source with
joint probability pXY Z over X × Y × Z with |X |= 2, and
such that I(X;Z)− I(X;Y ) > 0. Define the polar transform
of X1:N as A1:N , X1:NGn, and for δN , 2−N

β

with
β ∈]0, 1/2[, the “very high entropy” and “high entropy” sets
(we refer to [7] and [15] for an interpretation of these sets)

VX ,
{
i ∈ J1, NK : H(Ai|A1:i−1) > 1− δN

}
, (1)

VX|Z ,
{
i ∈ J1, NK : H(Ai|A1:i−1Z1:N ) > 1− δN

}
, (2)

HX|Y ,
{
i ∈ J1, NK : H(Ai|A1:i−1Y 1:N ) > δN

}
, (3)

VX|Y ,
{
i ∈ J1, NK : H(Ai|A1:i−1Y 1:N ) > 1− δN

}
. (4)

The idea of the encoding scheme ECJ is as follows.
Provided that the transmitter and the legitimate receiver share
(L−1)(|VX|Y |−|VX|Z |) uniformly distributed bits, the scheme
aims at making available at the legitimate receiver the code-
words sent at the input of the channel while concealing in each
block |VX|Z | bits from the eavesdropper. These codewords do
not contain information but will help the other users to secretly
share their information messages with the legitimate receiver.
Note that in Section IV-B, we combine in an appropriate
manner for two virtual users, the encoding schemes ECJ and
EWT , so that the shared randomness required by ECJ can be
transmitted using EWT .

In Block i ∈ J1, LK, let Ki be a sequence of randomness
shared with the legitimate transmitter, and Ti be the sequence
of local randomness used by the encoder.

{{{

VX\VX|Z

VX\(VX|Z[KXY Z)

KXY Z ⇢ VX|Y KXY Z ⇢ VX|Y

VX|Z VX|Z

Vc
XVc

X Vc
X

VX\(VX|Z[KXY Z)

VX|Z

�1 �2 (�L, L)

 1  L�1

contains K1 contains K2

contains T2contains T1

contains TL

contains  L�1contains  1contains  0

eA1:N
1

eA1:N
2

eA1:N
L

Negligible rate of information secretly transmitted to the legitimate receiver

contains almost
determinstic
information

contains almost
determinstic
information

contains almost
determinstic
information

Fig. 1. Chaining construction for the encoding scheme ECJ .

We define CXY Z to be a subset of VX|Y ∩ VcX|Z with size
|VcX|Y ∩ VX|Z |, and the set

KXY Z , (VX|Y ∩ VcX|Z)\CXY Z ,
whose size is

|VX|Y ∩ VcX|Z |−|VcX|Y ∩ VX|Z |= |VX|Y |−|VX|Z |.
The encoding procedure is depicted in Figure 1.

In Block i ∈ J1, L− 1K, the encoder forms X̃1:N
i as follows.

Let Ki be a vector of |VX|Y |−|VX|Z | uniformly distributed
bits and Ti be a vector of |VX\(VX|Z ∪ KXY Z)| uniformly
distributed bits that represent randomness shared with the
legitimate receiver and a randomization sequence, respectively.
Define ψ0 as a local randomization sequence of |VX|Z | uni-
formly distributed bits. Given ki, ti, ψi−1, the encoder draws
ã1:Ni from the distribution p̃A1:N

i
defined by

p̃Aji |A
1:j−1
i

(aji |a1:j−1i )

,





1
{
aji = kji

}
if j ∈ KXY Z

1
{
aji = ψji−1

}
if j ∈ VX|Z

1
{
aji = tji

}
if j ∈ VX\(VX|Z ∪ KXY Z)

pAj |A1:j−1(aji |a1:j−1i ) if j ∈ VcX
where the components of ki, ψi−1, and ti have been indexed
by the set of indices KXY Z , VX|Z , and VX\(VX|Z ∪KXY Z)
respectively, so that

Ki = Ã1:N
i [KXY Z ],

Ψi−1 = Ã1:N
i [VX|Z ],

Ti = Ã1:N
i [VX\(VX|Z ∪ KXY Z)].

We then define X̃1:N
i , Ã1:N

i Gn and

Ψi , Ã1:N
i [CXY Z ∪ (VX|Y ∩ VX|Z)],

Φi , Ã1:N
i [HX|Y ∩ VcX|Y ].

The following remark is formally justified by Section IV-C.
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Remark 2. Observe that |Ψi|= |VX|Z | and that
(Ψi,Ki,Φi) = Ã1:N

i [HX|Y ] will allow reconstruction
of Ã1:N

i given Ỹ 1:N
i . Note also that Ψi is uniformly

distributed but Φi is not. Consequently, we reuse Ψi in the
next block but we will not reuse Φi. We instead share Φi
secretly between the transmitter and the legitimate receiver,
and one can show that this may be accomplished with
negligible rate cost.

In Block L, the encoder forms X̃1:N
L as follows. Let TL be a

vector of |VX\VX|Z | uniformly distributed bits that represents
a randomization sequence. Given tL, ψL−1, the encoder draws
ã1:NL from the distribution p̃A1:N

L
defined by

p̃AjL|A
1:j−1
L

(ajL|a1:j−1L )

,





1
{
ajL = ψjL−1

}
if j ∈ VX|Z

1
{
ajL = tjL

}
if j ∈ VX\VX|Z

pAj |A1:j−1(ajL|a1:j−1L ) if j ∈ VcX
where the components of ψL−1, and tL have been indexed by
the set of indices VX|Z , and VX\VX|Z respectively, so that

ΨL−1 = Ã1:N
L [VX|Z ], TL = Ã1:N

L [VX\VX|Z ].

We then define X̃1:N
L , Ã1:N

L Gn and

ΨL , Ã1:N
L [VX|Y ], ΦL , Ã1:N

L [HX|Y ∩ VcX|Y ].

Finally, in Block L, the transmitter securely shares (ΨL,Φ1:L)
with the legitimate receiver by means of a one-time pad.

B. Coding scheme for achieving R′
Fix (pX1 , pX2). As explained in Section IV, one can

assume g({1})g({2}) > 0. We fix R1 ∈ Ip. Observ-
ing that [g({1, 2}) − g({2})]+ > g({1, 2}) − g({2}) and
min(g({1}), g({1, 2})) 6 g({1, 2}), by Lemma 2, there exists
ε0 ∈ [0, 1] such that

R1 = I(X1;Y |U)− I(X1;Z|V ),

RU +RV = g({1, 2})−R1 > 0.

By Property 1 and Lemma 2, it is sufficient to achieve
(R1, RU +RV ) to show achievability of R′. Let pUVX1X2Y Z

denote the joint distribution of the random variables
(U, V,X1, X2, Y, Z). As explained in Section III, we assume
RU < 0 and RV > 0. Our coding scheme operates over L
blocks of length N as follows.

1) Encoding:
M

(1)
1:L and M

(V )
1:L are the binary, uniformly distributed, and

mutually independent secret messages to be transmitted
over L blocks by Transmitters 1 and 2, respectively. Define
A1:N , U1:NGn, B1:N , V 1:NGn, C1:N , (X1)1:NGn.
The encoding procedure, whose functional dependence graph
is depicted in Figure 2, is as follows.

Transmitter 2:
The approach for Transmitter 2 is to securely transmit at rate

M
(1)
i

M
(V )
i

eU1:N
i

eV 1:N
i

( eX1)
1:N
i

( eX2)
1:N
i

eZ1:N
i

 
(1)
i

 
(V )
i

 
(U)
i

 
(U)
i�1

 
(V )
i�1

 
(1)
i�1

M
(1)
i+1

 
(U)
i+1

 
(V )
i+1

 
(1)
i+1

eZ1:N
i+1

( eX2)
1:N
i+1

eU1:N
i+1

eV 1:N
i+1

( eX1)
1:N
i+1

M
(V )
i+1

T
(U)
i+1

T
(V )
i+1

T
(1)
i+1

T
(U)
i

T
(V )
i

T
(1)
i

M
(V )

i M
(V )

i+1

Block i�1 Block i+1Block iBlock i�1

Fig. 2. Functional dependence graph of the block encoding scheme when
RU < 0 and RV > 0.

RV for the virtual user associated with input V , and to perform
cooperative jamming for the virtual user associated with input
U . More specifically, cooperative jamming is aided by secret
information with rate −RU , that has been secretly transmitted
to the legitimate receiver via the input V .

(i) Apply the encoding scheme EWT by doing the substitu-
tions Y ← Y UX1, S1:L ← (M

(V )
1:L ,M

(V )

1:L ) to encode a
secret message (M

(V )
1:L ,M

(V )

1:L ), where for all i ∈ J2, LK,

|M (V )

i | , |VU |Y |−|VU |ZVX1
|,

|M (V )
i | , |VV |Z\AV |Y UX1

|−|M (V )

i |,
|M (V )

i |+|M (V )
i | = |VV |Z\AV |Y UX1

|.

We also define |M (V )

1 |, 0, and |M (V )
1 |, |VV |Z |. Let

Ṽ 1:N
1:L denote the outputs of this encoding step. For i ∈

J1, LK, we add the superscript (V ) to Φi and Ψi defined
in EWT.

(ii) Apply the encoding scheme ECJ with the substitutions
X ← U , Z ← ZV X1, for i ∈ J1, L− 1K, Ki ←M

(V )

i+1.
For i ∈ J1, LK, we add the superscript (U) to Φi and
Ψi defined in ECJ. Let Ũ1:N

1:L denote the outputs of this
encoding step. Note that the virtual user associated with
input U does not transmit information messages.

(iii) Send over the channel (X̃2)1:Ni , f(Ũ1:N
i , Ṽ 1:N

i ) for
each encoding block i ∈ J1, LK.

Transmitter 1:

(i) Apply the encoding scheme EWT by doing the substitu-
tions V ← X1, Z ← ZV , Y ← Y U , S1:L ← M

(1)
1:L to

encode the secret messages M (1)
1:L and let (X̃1)1:N1:L denote

the outputs of this encoding step. For i ∈ J1, LK, we add
the superscript (1) to Φi and Ψi defined in EWT.

(ii) Send over the channel (X̃1)1:Ni for each encoding block
i ∈ J1, LK.

2) Decoding:
For i ∈ J1, LK, define Û1:N

i , Â1:N
i Gn, V̂ 1:N

i , B̂1:N
i Gn,
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(X̂1)1:Ni , Ĉ1:N
i Gn , where Â1:N

i , B̂1:N
i , and Ĉ1:N

i are esti-
mates of Ã1:N

i , B̃1:N
i , and C̃1:N

i , respectively, obtained using
the successive cancellation decoder for source coding with side

information [10] as follows. Set M̂
(V )

L+1 , ∅, Ψ̂
(U)
L , Ψ

(U)
L ,

Ψ̂
(V )
L , Ψ

(V )
L , Ψ̂

(1)
L , Ψ

(1)
L , Â1:N

L [HU |Y ] , Ã1:N
L [HU |Y ],

B̂1:N
L [HV |Y UX1

] , B̃1:N
L [HV |Y UX1

], Ĉ1:N
L [HX1|Y U ] ,

C̃1:N
L [HX1|Y U ], and iterate over i from L to 1. Form Â1:N

i

from (Ψ̂
(U)
i ,Φ

(U)
i , M̂

(V )

i+1) = Â1:N
i [HU |Y ], and Ỹ 1:N

i . The
decoder thus obtains an estimate Ψ̂

(U)
i−1 of Ψ

(U)
i−1. Then, form

Ĉ1:N
i from (Ψ̂

(1)
i ,Φ

(1)
i ) = Ĉ1:N

i [HX1|Y U ], and (Ỹ 1:N
i , Û1:N

i ).
The decoder thus obtains an estimate Ψ̂

(1)
i−1 of Ψ

(1)
i−1. Then,

form B̂1:N
i from (Ψ̂

(V )
i ,Φ

(V )
i ) = B̂1:N

i [HV |Y UX1
], and

(Ỹ 1:N
i , Û1:N

i , (X̂1)1:Ni ). The decoder thus obtains an estimate

Ψ̂
(V )
i−1 of Ψ

(V )
i−1, and an estimate M̂

(V )

i of M
(V )

i . Finally, from
(X̂1)1:N1:L and V̂ 1:N

1:L the decoder obtains estimates of M (1)
1:L, and

M
(V )
1:L , respectively.

C. Scheme analysis

In the following, we let δ(N) be a generic function of N
such that limN→∞ 2N

α

δ(N) = 0 for any α < β.
1) Induced distribution: A crucial step to assess reliability

and secrecy for our coding scheme is the study of the distri-
bution induced by the encoder of Section IV-B.

Lemma 3. Let p̃ denote the distribution induced by the
encoding scheme in Block i ∈ J1, LK, i.e., the joint distribution
of
(
Ũ1:N
i , Ṽ 1:N

i , (X̃1)1:Ni (X̃2)1:Ni , Ỹ 1:N
i , Z̃1:N

i

)
. We have

V
(
p̃, pU1:NV 1:N (X1)1:N (X2)1:NY 1:NZ1:N

)
6 δ(N),

where V(·, ·) denotes the variational distance.

2) Reliability: Using Lemma 3 and appropriate optimal
couplings [16, Lemma 3.6], one can show

P
[
(M̂

(V )
1:L , M̂

(1)
1:L) 6= (M

(V )
1:L ,M

(1)
1:L)

]
6 5Lδ(N).

3) Communication rates: Using [10] and [15, Lemma 1],
one can show that the rates of M (1)

1:L and M
(V )
1:L are R1 and

RU +RV , respectively. Moreover, one can also show that the
rates of the secret seeds shared by Transmitters 1, 2, and the
legitimate receiver – whose lengths are |Ψ(1)

L |+
∑L
i=1|Φ

(1)
i |

and |Ψ(V )
L |+

∑L
i=1|Φ

(V )
i |, respectively – vanish to zero as

N →∞, L→∞.
4) Strong secrecy: It is tempting to state that the following

security conditions hold by the result in [7],

max
[
I
(
M

(V )
1:LM

(V )

1:L ; Z̃1:N
1:L

)
, I
(
M

(1)
1:L; Z̃1:N

1:L Ṽ
1:N
1:L

)]
6 δ(N).

This assertion would, however, be incorrect. The result
from [7] does not apply due to the fact that the functional
dependence graphs that describes dependencies between ran-
dom variables across all blocks are different. In particular,
additional dependencies exist here because of our combina-
tion of two point-to-point wiretap codes and one cooperative
jamming code. Fortunately, using the functional dependence

graph depicted in Figure 2, one can show blockwise strong
secrecy, from which one can study strong secrecy across two
consecutive blocks, to finally obtain strong secrecy over all
blocks jointly, specifically,

I
(
M

(V )
1:LM

(1)
1:L; Z̃1:N

1:L

)
6 Lδ(N).

V. CONCLUDING REMARKS

In this paper, we have shown that rate-splitting for the
multiple access channel (MAC) without secrecy constraint [14]
can be adapted to the MAC wiretap channel, though, with
the caveat that a “negative rate” can be associated with a
virtual input. We have shown that such case can be handled
with appropriate cooperative jamming strategies that we have
implemented with polar codes.

We highlight two important technical points. First, the in-
duced distribution of the coding scheme should match the dis-
tribution for which the very high entropy and high entropy sets
are defined. In our scheme, this point is critical to assess relia-
bility and secrecy. Second, block Markov encoding creates de-
pendencies between random variables. In our coding scheme,
several chaining constructions are combined together and a
precise analysis of the dependencies of the involved random
variables is essential to assess reliability and strong secrecy.
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