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Abstract—Consider a sequence S of length n emitted by a Dis-
crete Memoryless Source (DMS) with unknown distribution p.
We wish to construct a lossless source code that maps S to a
sequence S′ of minimal length m such that S′ approximates
in terms of Kullback-Leibler divergence a sequence emitted by
another DMS with known distribution q. Our main result is the
existence of a coding scheme that performs such a task with an
asymptotically optimal compression rate, i.e., such that the limit
of m/n is H(p)/H(q) as n goes to infinity. Our coding scheme
overcomes the challenges created by the lack of knowledge
about p by relying on a sufficiently fine estimation of H(p),
followed by an appropriately designed type-based compression
that jointly performs source resolvability and universal lossless
source coding. Our result recovers several previous results that
either assume p uniform, or q uniform, or p known. The price
paid for these generalizations is the use of common randomness
with vanishing rate. We further determine that the length of
the latter roughly scales as the square root of n, by an analysis
of second order asymptotics and error exponents.

I. INTRODUCTION

Given n realizations Xn of a DMS (X , pX), where X is
a finite alphabet and pX is an unknown distribution, we wish
to form a sequence Ŷ m of minimal lengh m, which, approx-
imates a sequence emitted from the DMS (Y, pY ) in terms
of Kullback-Leibler divergence, where Y is a finite alphabet
and pY is a given target distribution. Additionally, we require
that Xn be losslessly reconstructed from Y m. We refer to this
problem as universal covertness for DMSs, since a warden
observing Ŷ m cannot distinguish it from m realizations of
the DMS (Y, pY ). The formal relation between the closeness
of Y m, in terms of Kullback-Leibler divergence, to the target
distribution and the probability of detection by a warden
follows by standard results on hypothesis testing [1], [2].
We implicitly assume that all parties share the same estimate
of pY , obtained from a finite number of publicly available
samples of (Y, pY ). The problem is depicted in Figure 1.

Closely related settings have been studied in the litera-
ture. The closest is information-theoretic steganography [3].
Specifically, [3, Section 4] considers a similar model but does
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Fig. 1. Universal source covertness: problem description.

not address the problem of obtaining an optimal compression
rate m/n. [3, Section 5] deals with a model in which pY
is unknown but H(Y ) is known, and in which comparison
of distributions is in terms of normalized Kullback-Leibler
divergence.

Our setting is also related to steganography as introduced
in [4], yet with notable differences, including the sublinear-
ity of the secret-key length used, the assumption that the
source (X , pX) is not necessarily uniform and has unknown
statistics, our strict information-theoretic treatment without
consideration of a distortion constraint between the encoder
output Ŷ m and the covertext Y m, and the assumption that
all parties, including the warden, only have an estimate of
pY preventing the exact non-asymptotic requirement pYm =
pŶm , called perfect undetectability in [4].

Our model also recovers several notions including uniform
lossless source coding [5] (by assuming pX known and pY
uniform), source resolvability [6] (by assuming pX known
and uniform, and by removing the reconstruction constraint),
and random number conversion [7] (by assuming pX known,
and by removing the reconstruction constraint).

Finally, we stress that the special case of uniform lossless
source coding for DMSs with unknown distributions, i.e., the
case when pY is uniform, is of independent interest since
uniformity of messages transmitted over a network is often
a key assumption to establish secrecy results [8], [9].

The remainder of the paper is organized as follows. We
formally describe the problem in Section II. We study the
special case of uniform lossless source coding for DMSs
with unknown distribution in Section III. Parts of the tech-
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Fig. 2. Universal source covertness assisted with a seed.

nical proofs associated with Section III are relegated to the
appendix to streamline presentation. Building on the results
of Section III, we present our main result for universal source
covertness in Section IV. Finally, we provide concluding
remarks in Section V.

II. PROBLEM STATEMENT

A. Notation

We define Ja, bK , [bac, dbe] ∩ N. For two distributions
pX and pX′ defined over a finite alphabet X , we define
V(pX , pX′) ,

∑
x∈X |pX(x) − pX′(x)| and refer to this

quantity as the variational distance between pX and pX′ .
We denote the Kullback-Leibler divergence between two
distributions by D(·||·). Unless specified otherwise, capital
letters designate random variables, whereas lowercase letters
designate realizations of associated random variables, e.g., x
is a realization of the random variable X . We denote the
set of all the distributions over X by P(X ). We denote
the indicator function by 1{ω}, which is equal to 1 if the
predicate ω is true and 0 otherwise. For any x ∈ R, we define
[x]+ , max(0, x). Finally, we let p-lim denote convergence
in probability.

B. Model for universal source covertness

Consider a discrete memoryless source (X , pX). Let n ∈
N, dn ∈ N, and let Udn be a uniform random variable over
Udn , J1, 2dnK, independent of Xn. In the following we
refer to Udn as the seed and dn as its length. As illustrated in
Figure 2, our objective is to design a source code to compress
and reconstruct the source (X , pX), whose distribution is
unknown, with the assistance of a seed Udn and such that
the encoder output approximates a target distribution with
respect to the Kullback-Leibler divergence.

Definition 1. An (n,m, 2dn) universal covert code with
respect to the DMS (Y, pY ) for n realizations of the DMS
(X , pX) with unknown distribution pX consists of
• A seed set Udn , J1, 2dnK,
• An encoding function φn : Xn × Udn → Ym,
• A decoding function ψn : Ym × Udn → Xn,

where φn and ψn do not depend on prior knowledge
about pX .

The performance of the code is measured in terms of
(i) reliability, i.e., average probability of error P[Xn 6=
ψn(φn(Xn, Udn), Udn)], (ii) covertness, i.e., closeness of the
encoder output to a target distribution D

(
pφn(Xn,Udn )||pYm

)
,

where pYm ,
∏m
i=1 pY with pY a given distribution over

Y , (iii) its output length m, which should be minimal, i.e.,
asymptotically close to nH(X)/H(Y ), and (iv) the seed
length dn, which should be negligible compared to n.

III. SPECIAL CASE: UNIFORM LOSSLESS SOURCE CODING
FOR DMSS WITH UNKNOWN DISTRIBUTION

In this section, we first study a special case of the problem
described in Section II-B, where pY is the uniform distribu-
tion over Y . We refer to this special case as uniform lossless
source coding for DMSs with unknown distributions. We will
build upon the solution proposed for this special case to
provide a solution for the general case in Section IV. The
specific contributions of this section are the following.
• When the entropy of the source is known but its distribu-

tion is unknown, we show that uniform lossless source
coding is possible if the shared seed has length on the
order of n1/2+β , β > 0, where n is the length of the
sequence to compress.

• When lower and upper bounds on the entropy of the
source are known but its distribution is unknown, and
without allowing the encoder to refine the estimate of
the entropy, we show that uniform lossless source coding
requires a seed of length αn, where α > 0 decreases
with the gap between the lower and upper bounds.

• When the entropy and the distribution of the source
are unknown and if one allows the encoder to estimate
the former with the sequence to compress, e.g., with a
plug-in estimate [10], uniform lossess source coding is
possible with probability arbitrarily close to one as n
goes to infinity, when the length of the seed is on the
order of n1/2+β , β > 0.

Our results generalize and complement an earlier result for
DMSs with known distributions, which shows that uniform
lossless source coding is possible if encoder and decoder
share a seed [5], [8].

In the presence of sources with unknown distributions, the
problem of uniform lossless source coding aims at jointly
performing universal lossless source coding [11], [12] and
universal randomness extraction [13]. The main technical
challenges are (i) the design of an appropriate type-based
source code that can support both reliability and uniformity
constraints (see Section III-B and the proof of Theorem 1),
(ii) the simplification of error exponents expressed as opti-
mization problems (see Appendices A-C and A-D), (iii) the
combination of entropy estimation and the coding scheme of
Section III-B (see Theorem 3).

We describe our model, coding scheme, and results in
Sections III-A, III-B, and III-C, respectively.

A. Model

As in Section II-B, consider a DMS (X , pX), let n ∈ N,
dn ∈ N, and let Udn be a uniform random variable over
Udn , J1, 2dnK, independent of Xn.
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Definition 2. A (2nRn , n, 2dn) uniform compression code
is an (n, nRn, 2

dn) universal covert code with respect to
the DMS ({0, 1}, (1/2, 1/2)), for n realizations of the DMS
(X , pX) with unknown distribution pX .

B. Coding Scheme

We first recall some known facts about the method of
types [11]. Let n ∈ N. For any sequence xn ∈ Xn, the
type of xn is its empirical distribution

(∑n
i=1 1{xi = x}

n

)

x∈X
.

Let Pn(X ) denote the set of all types over X , and Tn
X̄

denote
the set of sequences xn with type pX̄ ∈ Pn(X ). We will
make use of the following lemma.

Lemma 1 ( [11]). The following properties hold.

1) |Pn(X )|6 (n+ 1)|X |;
2) (n+ 1)−|X|2nH(X̄) 6 |Tn

X̄
|6 2nH(X̄);

3) For xn ∈ Tn
X̄

, pXn(xn) = 2−n(H(X̄)+D(pX̄ ||pX)),
where H(X̄) denotes the entropy of the type pX̄ ∈ Pn(X ).

Let Rn > 0 and define γ(n) , |X |log(n+1). The encoder
consists of a deterministic map

φn : Udn ×Xn → J1, 2nRnK× J1, 2γ(n)K

(u, xn) 7→
(
φ(1)
n (u, xn), φ(2)

n (u, xn)
)
,

where for any seed u, φ(1)
n (u, xn) is an injective mapping

whenever H(X̄) 6 Rn, thus ensuring error-free compression
in such a case, and φ(2)

n (u, xn) is an injective mapping that
uniquely identifies the type pX̄ of xn. The decoder consists
of a deterministic map

ψn : Udn × J1, 2nRnK× J1, 2γ(n)K→ Xn
(u, i, j) 7→ ψn(u, i, j),

where ψn(u, i, j) is the unique xn such that φn(u, xn) =
(i, j) when H(X̄) 6 Rn or an arbitrary sequence x̂n

otherwise.
We randomly generate φn described next. First, choose a

mapping φ(1)
n as follows.

• For all types pX̄ such that H(X̄) 6 Rn and for
each u ∈ Udn , choose φ

(1)
n (u, ·) : Xn → J1, 2nRnK

uniformly at random among the
∏|Tn

X̄
|−1

k=0

(
2nRn − k

)

possible injective mappings – this is possible by Lemma
1.

• For all types pX̄ such that H(X̄) > Rn and for each
u ∈ Udn , choose φ(1)

n (u, ·) : Xn → J1, 2nRnK uniformly
at random among the (2nRn)|X |

n

possible mappings.

Then, for each u ∈ Udn , choose a mapping φ(2)
n (u, ·) : Xn →

J1, 2γ(n)K independently and uniformly at random among the∏|Pn(X )|−1
k=0

(
2γ(n) − k

)
possible injective mappings.

Denote the random variables corresponding to these ran-
domly generated mappings by Φn, Φ

(1)
n , Φ

(2)
n . The following

lemma will prove useful later on.

Lemma 2. For any m , (i, j) ∈ J1, 2nRnK× J1, 2γ(n)K,

EΦn [1{φn(u, xn) = m}] = 2−(nRn+γ(n)). (1)

The proof of Lemma 2 is omitted due to space constraints.

C. Results

Theorem 1. For any H > 0, there exists a sequence
of (2nRn , n, 2dn) uniform compression codes {Cn}n>1 with
Rn , H + dn

2n such that for any DMS with known entropy
equal to H but unknown distribution, we have

lim
n→∞

Pe(φn, ψn) = 0, lim
n→∞

Ue(φn) = 0,

dn =Θ(n1/2+β),

where β > 0 is arbitrary.

The proof of Theorem 1 is presented in Appendix A. Note
that the entropy of the source to compress is only needed
to specify the rates Rn of the codes. We next consider the
case for which the entropy of the source to compress is not
perfectly known.

Theorem 2. For any H > 0, there exists a sequence
of (2nRn , n, 2dn) uniform compression codes {Cn}n>1 with
Rn , H + εn and εn , dn1/2+βe

n , β > 0, such that for any
discrete memoryless source with entropy known to belong
to the interval [H0, H], where H0 < H , but with unknown
distribution, we have

lim
n→∞

Pe(φn, ψn) = 0, lim
n→∞

Ue(φn) = 0,

dn =2nεn + n(H −H0).

Theorem 2 is a consequence of Theorem 1, its proof is
omitted due to space constraints. The bound in Theorem 2 is
rather pessimistic, as the penalty paid, in terms of seed length,
for not exactly knowing the entropy of the source is Θ(n).
The following theorem shows how to mitigate this caveat.

Theorem 3. For any n ∈ N, there exists a set Sn of
uniform compression codes, there exist two functions fn :
(Xn,Sn) 7→ φn, gn : (M,Sn) 7→ ψn, where (φn, ψn) ∈ Sn
and M is the compressed sequence observed by the decoder,
such that for any DMS with unknown distribution, if the
encoder chooses fn(Xn,Sn) = φn to encode Xn into M
and the decoder chooses gn(M,Sn) = ψn to recover Xn

from M , then

lim
n→∞

Pe(φn, ψn) = 0, p-lim
n→∞

Ue(φn) = 0,

p-lim
n→∞

Rn = H(X), dn = Θ(n1/2+β),
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where Rn is the rate of φn and β > 0. Note that Rn
is estimated from Xn. More precisely, for any r > 0, the
following uniformity condition is satisfied

lim
n→∞

P
[
Ue(φn) 6 n−r

]
= 1.

Proof. We first describe the code construction. Let n ∈ N∗.
Let t < 1/2 and define

q , dnte, δ ,
log|X |
nt

.

We also define ai , i × δ, i ∈ J0, q − 1K, aq , log|X |,
a−1 , a0, and aq+1 , aq such that {[ai, ai+1]}i∈J0,q−1K is
a partition of [0, log|X |]. For every pair

(H0, H) ∈ H , {(ai−2, ai+1) : i ∈ J1, qK},
we construct a uniform compression code for sources with
entropy known to belong to the interval [H0, H] using The-
orem 3. Let Sn denote the set of the q uniform compression
codes constructed {(φ(i)

n , ψ
(i)
n )}i∈J1,qK, i ∈ J1, qK, and as-

sume that encoder and decoder share the sequence {Sn}n∈N∗ .
Note that this sequence is deterministic and shared before any
observation of the sequence to compress.

We now describe the encoding/decoding process. Let xn

denote a realization of Xn and let Ĥ(xn) denote the plug-in
estimate [10] of H(X) using xn. There exists I0 ∈ J1, qK
such that Ĥ(xn) ∈ [aI0−1, aI0 ]. Define the mean and
variance of the plug-in estimator

µ , E[Ĥ(xn)], σ2 , E[(Ĥ(xn)− µ)2],

which are shown to be µ = H(X) + δn and σ2 = O(n−1),
with δn = O(n−1) in [10]. Also define the events

E , {(H(X) > aI0+1) or (H(X) 6 aI0−2)} ,

Ẽ ,
{(
H(X) > H(n)

)
or
(
H(X) 6 H

(n)
0

)}
,

where

H
(n)
0 , Ĥ(xn)− δn − n−2t,

H(n) , Ĥ(xn)− δn + n−2t.

We then have

P[E ]
(a)

6 P[Ẽ ]

= P[|Ĥ(xn)− δn −H(X)|> n−2t]

= P[|Ĥ(xn)− µ|> n−2t]

(b)

6
σ2

n−4t2

= O(n−1+4t2), (2)

where (a) holds because for n large enough, (δn + n−2t) =
o(aI0−1 − aI0−2) = o(n−t), (−δn + n−2t) = o(aI0+1 −
aI0) = o(n−t), and [H

(n)
0 , H(n)] is thus a subinterval of

[aI0−1, aI0+2], (b) holds by Chebyshev’s inequality.

Since [aI0−2, aI0+1] ∈ H, there exists a code (φ
(I0)
n , ψ

(I0)
n )

in Sn that has been designed for (H0, H) = (aI0−2, aI0+1).
The encoder uses φ(I0)

n to encode xn. The decoder knows
which code to choose in Sn via the length of the compressed
sequence, which embeds the code rate and uniquely identifies
one code in Sn.

Finally, remembering that I0 depends on xn, define the set

En , {xn ∈ Xn : H(X) ∈ [aI0−2, aI0+1]}.

We have

EXn [Ue(φ
(I0)
n )]

=
∑

xn∈En
p(xn)Ue(φ

(I0)
n ) +

∑

xn /∈En
p(xn)Ue(φ

(I0)
n )

6 Ue(φ
(I0)
n ) + 2P[Xn /∈ En]

n→∞−−−−→ 0,

where the limit holds by design of φ(I0)
n , i.e., Theorem 2, and

by (2). We thus have convergence in the mean, which implies
convergence in probability. By the law of total probability,
we also have limn→∞ Pe(φ

(I0)
n , ψ

(I0)
n ) = 0 by (2).

Observe that H(X) dictates the rate of the source code,
and an underestimated H(X) will prevent reliability, whereas
an overestimated H(X) will prevent a correct approximation
of the target distribution pY by the encoder output. Conse-
quently, a fine enough estimation of the entropy of the source
is crucial, and makes our coding scheme variable-length,
since this estimation depends on the sequence to compress.

IV. COVERTNESS FOR DMSS WITH UNKNOWN
DISTRIBUTION

Our coding scheme for universal covertness makes use
of two building blocks, which are two special cases of the
model described in Section II-B. (i) Uniform compression
for DMS with unknown distribution, studied in Section III.
(ii) Source resolvability [6] with a reliability constraint,
which corresponds to the case where pX is known to be the
uniform distribution. We show in the following result how to
combine (i) and (ii) to obtain universal source covertness.

Theorem 4. For any n ∈ N, for any sequence Xn emitted
from a DMS with unknown distribution, there exists an
encoding function φn and a decoding function ψn, such that
if one defines Ŷ m , φn(Xn, Udn), then

lim
n→∞

P[Xn 6= ψn(Ŷ m, Udn)] = 0,

p-lim
n→∞

D
(
pŶm ||pYm

)
= 0,

p-lim
n→∞

m

n
= H(X)/H(Y ),

dn = Θ(n1/2+β),

where β > 0. Note that φn and thus m are determined given
the realization of the sequence Xn. More precisely, for any
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r > 0, the following covertness condition is satisfied

lim
n→∞

P
[
D
(
pŶm ||pYm

)
6 n−r

]
= 1.

Proof overview. Define RY , H(Y ) − ε, ε > 0, where
H(Y ) is the entropy associated with the target distribution
pY . Let β > 0, n ∈ N. We consider a set Sn of uniform
compression codes, and the functions fn : (Xn,Sn) 7→ φn,
gn : (M,Sn) 7→ ψn provided by Theorem 3, where
(φn, ψn) ∈ Sn and M is the compressed sequence that the
encoder outputs. We also consider q and I0 ∈ J1, qK as in the
proof of Theorem 3. We define I as the modulo-2 sum of
the binary representation of I0 and a uniformly distributed
sequence K̃ of log q bits. We assume that K̃ is shared by
the encoder and the decoder – note that, by definition of q,
this additional amount of shared randomness is negligible
compared to n1/2+β . We then define the integer

m ,

⌈ |M |+|I|
RY

⌉
,

where |·| denotes the length of a sequence, and the sequence

M ′ , [M ||C||I],

where || denotes concatenation and C is a uniformly dis-
tributed sequence of |C| bits, with |C|∈ J0, RY K such that

|M |+|C|+|I|= dmRY e .

Remark 1. Note that if one chooses m ,
⌈
|M |
RY

⌉
with I = ∅,

C = ∅, then only knowing m leads to an uncertainty on the
length of M . We have thus added the extra information I , to
allow the decoder to recover I0 and thus the length of M ,
which in turn allows to select the right code in Sn for the
reconstruction of Xn.

Then, by definition of m, and Theorem 2,

p-lim
n→∞

m

n
=

H(X)

H(Y )− ε .

Next, by means of random binning using, for instance,
the method in [14], it is possible to construct a map h
that performs source resolvability for (Y, pY ) with lossless
reconstruction, i.e., the output of the map has a distribution
close to pYm and the map input can be perfectly recon-
structed from its output. Note that standard resolvability
results [6] are insufficient for our purposes as we require
perfect recoverability of the input from the output.

Finally, the encoder forms Ŷ m , h(M ′), so that the
decoder can determine from Ŷ m, in this order, M ′, then I ,
then I0, then M , and finally approximate Xn using gn. Note
that we have obtained p-limn→∞V

(
pŶm , pYm

)
= 0, but by

the proof of [14, Theorem 1], which relies on strong typicality
and by the proof of Theorem 3 we also have for any r > 0,
limn→∞ P

[
V
(
pŶm , pYm

)
6 n−r

]
= 1. We consequently

get for any r > 0, limn→∞ P
[
D
(
pŶm ||pYm

)
6 n−r

]
= 1

by the following relation [15]

D (p‖q) 6 log

(
1

µq

)
V (p, q) ,

where p, q are two distributions over the finite alphabet X
with supports equal to X , µq , min

x∈X
q(x).

V. CONCLUDING REMARKS

Our proposed construction consists of the combination of
(i) a fine enough estimation of the source entropy via a
plug-in estimator [10], and (ii) an appropriately designed
type-based coding scheme able to simulatenously perform
universal lossless source coding and source resolvablity. To
simplify our analysis, we divide the problem into two simpler
problems, source resolvability with lossless reconstruction
and universal uniform lossless source coding. Our coding
scheme makes use of a seed, i.e., a uniformly distributed
sequence of bits, shared by the encoder and the decoder.
Although the seed rate vanishes to zero as n grows and has
a length in the order of O(n1/2+β), β > 0, that favorably
compares to the the seed length log(n! ) required in [4], the
question whether a seed is required at all for the convergence
speed proposed remains open.

A future challenge would be to propose a low-complexity
coding scheme for universal covertness. Note that in a non
universal setting, i.e., when the distribution of the sequence
to cover is known, it is possible to obtain a low-complexity
coding scheme with polar codes by combining the uniform
lossless source code of [9] and the source resolvability code
in [16].

APPENDIX A
PROOF OF THEOREM 1

We prove Theorem 1 for the uniformity constraint

Ue(φn) , V
(
pφn(Xn,Udn ), pUMn

)
,

where pUMn is the uniform distribution over Mn.
To obtain the result for the uniformity constraint in-
volving the Kullback-Leibler as in Definition 2, we
can make use of [11, Lemma 2.7], which ensures
that if limn→∞ nV

(
pφn(Xn,Udn ), pUMn

)
= 0, then

limn→∞D
(
pφn(Xn,Udn )||pUMn

)
= 0.

We provide upper bounds on average over the choice of
Φn for the quantities Pe and Ue in Sections A-A and A-B. In
Sections A-C and A-D, we further simplify the upper bounds
proved in Sections A-A and A-B, which will allow us to study
second order asymptotics. Finally, in Section A-E, we derive
a sufficient condition on the seed length dn to ensure a nearly
uniform encoder output and near lossless reconstruction. To
simplify notation, we drop the subscript n for Ψn and Φn.
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A. Upper-bound on EΦ[Pe]

For any u ∈ Udn , for any xn ∈ Xn, we define

E(u, xn) , 1 {Ψ(Φ(u, xn), u) 6= xn} .
By using Lemma 1 and standard techniques for universal
compression via the method of types [11], one can show

EΦ[Pe]62

−n min
pX̄∈P(X )
H(X̄)>Rn

D(pX̄ ||pX) + γ(n)

. (3)

B. Upper-bound on EΦ[Ue]

We let M be the output of the encoder and define

A(Φ) ,
1

|Tn
X̄
|
∑

xn∈Tn
X̄

∑

u

p(u)1{Φ(u, xn) = m}.

For m ∈ J1, 2nRn+γ(n)K, it can be shown by (1),

EΦ [A(Φ)] = 2−(nRn+γ(n)). (4)

Hence, by defining pU as the uniform distribution over
J1, 2nRn+γ(n)K, it can be shown that,

EΦ[Ue]

= EΦ


∑

m

∣∣∣∣∣∣
∑

pX̄∈Pn(X )

P[TnX̄ ]
(
A(Φ)− 2−(nRn+γ(n))

)
∣∣∣∣∣∣


 .

(5)

Next, we have

EΦ[Ue]

(a)

6 EΦ


∑

m

∑

pX̄∈Pn(X )

P[TnX̄ ]
∣∣∣A(Φ)− 2−(nRn+γ(n))

∣∣∣




=
∑

pX̄∈Pn(X )

P[TnX̄ ]
∑

m

EΦ

[∣∣∣A(Φ)− 2−(nRn+γ(n))
∣∣∣
]

(b)

6
∑

pX̄∈Pn(X )

P[TnX̄ ]
∑

m

√
VarΦ (A(Φ)), (6)

where (a) holds by the triangle inequality and (5), (b) holds
by Jensen’s inequality and by Equation (4). We then have

EΦ





 ∑

xn∈Tn
X̄

∑

u

p(u)1{Φ(u, xn) = m}




2



=
∑

xn,x̂n

∑

u,û 6=u
p(u)p(û)EΦ[1{Φ(u, xn)=m}1{Φ(û, x̂n)=m}]

+
∑

xn,x̂n 6=xn

∑

u

p(u)2EΦ[1{Φ(u, xn)=m}1{Φ(u, x̂n)=m}]

+
∑

xn

∑

u

p(u)2EΦ

[
1{Φ(u, xn) = m}2

]

(a)

6
∑

xn,x̂n

∑

u,û

p(u)p(û)
1

22(nRn+γ(n))
+
∑

xn,u

p(u)2 1

2(nRn+γ(n))

(b)
=

|Tn
X̄
|2

22(nRn+γ(n))
+ |TnX̄ |2−dn2−(nRn+γ(n)), (7)

where in (a) the first expectation in the left-hand side (l.h.s.)
of the inequality is, by (1) and since the choice of xn 7→
φn(u, xn) is made independently for each u ∈ Udn ,

EΦ [1{Φ(u, xn) = m}1{Φ(û, x̂n) = m}]
= EΦ [1{Φ(u, xn) = m}]EΦ [1{Φ(û, x̂n) = m}]

= 2−2(nRn+γ(n)).

We differentiate two cases for the second expectation. If
H(X̄) 6 Rn, then by injectivity of Φ we have

EΦ [1{Φ(u, xn) = m}1{Φ(u, x̂n) = m}] = 0,

and if H(X̄) > Rn, we have

EΦ [1{Φ(u, xn) = m}1{Φ(u, x̂n) = m}]
= EΦ [1{Φ(u, xn) = m}]EΦ [1{Φ(u, x̂n) = m}]

= 2−2(nRn+γ(n)).

Finally, the third expectation follows from (1). (b) holds by
marginalization over u and û, and because the sums over xn

have |Tn
X̄
| terms. We thus obtain

VarΦ (A(Φ))
(a)
= E[A(Φ)2]− 1

22(nRn+γ(n))

(b)
=

1

|Tn
X̄
|2
−dn2−(nRn+γ(n))

(c)

6 2−nH(X̄)+γ(n)2−dn2−(nRn+γ(n)), (8)

where (a) holds by (4), (b) holds by (7), (c) holds by
Lemma 1. Define

R(dn) , Rn − dn/n. (9)

We have
∑

m

√
VarΦ (A(Φ))

(a)
=
∑

m

√
2−nH(X̄)−dn−nRn

= 2−
n
2 (H(X̄)−Rn+dn/n)

(b)

6 2 · 2−n2 [H(X̄)−R(dn)]+ , (10)

where (a) holds by (8), and (b) holds because in the l.h.s.
of (6)

∑
m

∣∣A(Φ)− 2−(nRn+γ(n))
∣∣ is a variational distance

and is upper bounded by 2.
Finally, define

E(n) , min
pX̄∈P(X )

[[H(X̄)−R(dn)]+ + 2D(pX̄ ||pX)], (11)

such that we obtain

EΦ[Ue]
(a)

6
∑

pX̄∈Pn(X )

P[TnX̄ ] · 2 · 2−n2 [H(X̄)−R(dn)]+

(b)

6
∑

pX̄∈Pn(X )

2−nD(pX̄ ||pX)2 · 2−n2 [H(X̄)−R(dn)]+
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(c)

6
∑

pX̄∈Pn(X )

2 · 2−n2E(n)

(d)

6 2 · 2−n2E(n)+γ(n), (12)

where (a) holds by (6) and (10), (b) and (d) hold by
Lemma 1, (c) holds by (11) and because Pn(X ) ⊂ P(X ).

C. Simpler upper-bound on EΦ[Ue]

Let (εn)n∈N be a positive sequence decreasing and con-
verging to zero. For n ∈ N, let

Rn , dn/n+H(X)− εn.
We first show the following lemma.

Lemma 3. Making use of the definitions (9), (11), we have

E(n) > min
pX̄∈P(X )

H(X̄)6R(dn)

D(pX̄ ||pX). (13)

Proof. For any pX̄ ∈ P(X ), define

f(pX̄ , n) , H(X̄)−R(dn) + D(pX̄ ||pX).

First, note that by positivity of the divergence we have

E(n)

> min
pX̄∈P(X )

[H(X̄)−R(dn)]+ + D(pX̄ ||pX)

= min


 min

pX̄∈P(X )
H(X̄)6R(dn)

D(pX̄ ||pX), min
pX̄∈P(X )

H(X̄)>R(dn)

f(pX̄ , n)


 .

(14)

Observe also that f(pX̄ , n) is a linear function of pX̄ , since

H(X̄) + D(pX̄ ||pX) =
∑

x

pX̄(x) log
1

pX(x)
.

We then have,

min
pX̄∈P(X )

H(X̄)>R(dn)

f(pX̄ , n)
(a)
= max

pX̄∈P(X )
H(X̄)>R(dn)

[−f(pX̄ , n)]

(b)
= max

pX̄∈P(X )
H(X̄)=R(dn)

[−f(pX̄ , n)]

= min
pX̄∈P(X )

H(X̄)=R(dn)

D(pX̄ ||pX)]

> min
pX̄∈P(X )

H(X̄)6R(dn)

D(pX̄ ||pX)], (15)

where (a) can be seen as a maximization of a continuous
convex function over a convex compact set C, since (H(X̄)+
D(pX̄ ||pX)) is a linear function of pX̄ , and −H(X̄) is a
convex function of pX̄ . It can be shown, as in the proof of [17,
Proposition 5.2], that the maximum is attained at an extreme
point of C using the maximum principle [18]. Moreover, as
in [17, Proposition 5.2], one can show that the set of extreme

points of C is a subset of the set of points that satisfy the
constraint with equality, and consequently we obtain (b).
Finally, the result follows by combining (14) and (15).

The following lemma shows that the right hand side of
Equation (13) converges to zero as n goes to infinity.

Lemma 4. Consider the sequence
(
p

(n)

X̄

)
n∈N

, where for any
n ∈ N we have defined

p
(n)

X̄
, arg min

pX̄∈P(X )
H(X̄)6R(dn)

D(pX̄ ||pX).

We have
lim
n→∞

D
(
p

(n)

X̄
||pX

)
= 0.

Proof overview. To show the lemma, it is sufficient to upper
bound the sequence

(
min

pX̄∈P(X )
H(X̄)6R(dn)

D(pX̄ ||pX)
)

n∈N

with a sequence that goes to zero as n goes to infinity. By
definition of Rn and R(dn), we have for n ∈ N,

min
pX̄∈P(X )

H(X̄)6R(dn)

D(pX̄ ||pX) = min
pX̄∈P(X )

H(X̄)6H(X)−εn

D(pX̄ ||pX).

(16)

Let x0, x1 be arbitrary elements of X , define p0 , pX(x0)
and p1 , pX(x1), and assume p0 > p1. We define a
probability distribution pX̃ as follows. Define for any n ∈ N,
for any x ∈ X\{x0, x1}, for any δn ∈]0,min(p1, 1− p0)[,

pX̃(x) , pX(x),

pX̃(x0) , p0 + δn, pX̃(x1) , p1 − δn.
It can be shown that

D(pX̃ ||pX)6
δn
µX

, (17)

where µX , minx∈Supp(pX) pX(x), and

H(X)−H(X̃) > εn, (18)

where we have chosen δn , εn

(
log p0

p1

)−1

.
Hence, we obtain

min
pX̄∈P(X )

H(X̄)6R(dn)

D(pX̄ ||pX)
(a)

6 D(pX̃ ||pX)

(b)

6
δn
µX

(c)

6
εn
µX

(
log

p0

p1

)−1

n→∞−−−−→ 0,

where (a) holds by (16) and (18), (b) holds by (17), (c) holds
by definition of δn.
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Using Lemma 4, we can now obtain the following lower
bound for the right-hand side of Equation (13).

Lemma 5. For any β > 0, we have for n large enough

min
pX̄∈P(X )

H(X̄)6R(dn)

D(pX̄ ||pX) > ε2+β
n .

Proof. We define for any n ∈ N, p(n)

X̄
as in Lemma 4, and

let X̄(n) be a random variable distributed according to p(n)

X̄
.

We have by Lemma 4 and by Pinsker’s inequality

V
(
p

(n)

X̄
, pX

)
6
√

2 ln 2

√
D(p

(n)

X̄
||pX)

n→∞−−−−→ 0. (19)

For any α > 0, for any C > 0, for n large enough, we
have

εn
(a)

6 H(X)−H(X̄(n))

(b)

6 V
(
p

(n)

X̄
, pX

)
log

|X |
V
(
p

(n)

X̄
, pX

)

(c)

6 CV
(
p

(n)

X̄
, pX

)1−α
, (20)

where (a) holds by definition of X̄(n) and Rn, (b) holds
by [11][Lemma 2.7], then observe that for α > 0,
x log 1

x

x1−α
x→0+

−−−−→ 0+ and thus for any C > 0, for n large
enough, (c) holds by Equation (19).

Hence, for n large enough, we have

C−1/(1−α)ε1/(1−α)
n

(a)

6 V
(
p

(n)

X̄
, pX

)

(b)

6
√

2 ln 2

√
D
(
p

(n)

X̄
||pX

)
,

where (a) holds by Equation (20), (b) holds by Pinsker’s
inequality. We have thus obtained for n large enough

C−2/(1−α)

2 ln 2
ε2/(1−α)
n 6 D

(
p

(n)

X̄
||pX

)
.

We conclude by choosing C , (2 ln 2)(α−1)/2 and α , (1 +
2/β)−1.

Hence, combining Equation (12), Lemma 3, and Lemma 5,
we have obtained for β > 0, for n large enough

EΦ[Ue] 6 2 · 2−nε2+β
n +γ(n). (21)

D. Simpler upper-bound on EΦ[Pe]

Let (εn)n∈N be a positive sequence decreasing and con-
verging to zero. For n ∈ N, let Rn , H(X) + εn. Similar to
Section A-C, it can be shown for β > 0,

EΦ[Pe] 6 2−nε
2+β
n +γ(n). (22)

E. Sufficient condition for lossless compression with nearly
uniform output

Let β > 0. For n ∈ N, we define εn , dn1/2+βe
n .

We then have by Equation (22) for n large enough, for
Rn , H(X) + εn

EΦ[Pe] 6 2−nε
2+β
n +γ(n) 6 2−n

3β/2+γ(n).

We also have by Equation (21), for n large enough, for
R′n , dn/n+H(X)− εn

EΦ[Ue] 6 2 · 2−nε2+β
n +γ(n) 6 2 · 2−n3β/2+γ(n).

Hence, by choosing dn such that Rn = R′n, i.e., such that
dn = 2nεn = 2dn1/2+βe, we have

EΦ[Pe + Ue] = EΦ[Pe] + EΦ[Ue]
n→∞−−−−→ 0,

and by Markov Lemma, there exists a choice of en-
coders/decoders (φn, ψn) for which Pe + Ue

n→∞−−−−→ 0.
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