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Abstract—This paper studies age of information minimization
for a large network, where transmitters harvest energy from
power beacons and send time-sensitive updates to receivers. The
distributions of power beacons and energy harvesting nodes are
considered to be homogeneous Poisson point and binomial point
processes, respectively. We focus on probabilistic update policies
for energy harvesting nodes and derive a closed-form expression
for the average age of information of a node in the network
utilizing stochastic geometry. Specifically, the age of information
minimization is formulated as a stochastic optimization problem,
transformed to a convex program and solved by the projected
gradient descent algorithm.

I. INTRODUCTION

Timeliness of data delivery has become critical for various
real-time applications, such as health care, infrastructure and
environment monitoring, vehicular networks, etc. Require-
ments for such networks include, for example, periodically
updating information among peer nodes on a short timescale
in order to convey the states of the dynamic processes of the
underlying system. As a novel metric to measure the freshness
of information from a destination node’s perspective, age of
information (AoI) has been introduced recently [1].

The time elapsed since the generation of the latest suc-
cessfully received information is considered as AoI measure
in [1], and is characterized for single-source M/M/1, M/D/1,
and D/M/1 queues with first-come-first-served (FCFS) service.
The concept of peak AoI (PAoI) is introduced in [2], where a
packet management policy of replacing an old packet with a
new one is proposed to achieve a smaller average age in the
FCFS M/M/1 queue. A more general form of AoI is proposed
in [3], which measures the receiver’s dissatisfaction of the
information staleness. All of these works characterize AoI
from queueing theoretic perspective and show that AoI mini-
mization offers different insights from delay minimization.

Energy harvesting (EH) wireless networks [4] offer the
possibility of energy sustainable perpetual operation which is
imperative in many of the aforementioned monitoring appli-
cations. Given the intermittent and limited nature of harvested
energy, these networks rely on carefully designed energy man-
agement strategies to deliver on this promise [5]. For energy
harvesting systems, AoI minimization, taking into account the
intermittency of energy harvesting, has been studied in several
works recently [6]–[11]. Update policies for an EH node have
been investigated in [6]. The results show that an optimal
policy is lazy, leaving a certain idle period between updates

instead of transmitting as frequently as possible. Reference [7]
considers a single-hop model for offline and online schedules
of updates. Reference [8] studies the optimal renewal policy
for the case of finite battery, which is proved to hold an energy-
dependent multi-threshold structure. An energy harvesting
cognitive radio network (EH-CRN) is studied in [9], where
the optimal sensing and update policy for the secondary user
is solved by a partially observable Markov decision process
formulation and proved to have a threshold structure. For
wireless powered networks, where nodes harvest energy from
dedicated wireless energy sources, AoI has been characterized
and minimized in [10], [11]. In [10], energy and information
exchange between an access point (AP) and an EH device
are considered, where AoI and data rate are investigated. In
[11], a single EH node is considered to harvest energy from
a power beacon (PB). The expression of the average AoI in
terms of the battery size is derived for the greedy policy, and
the optimal battery size is solved for the minimum average
AoI.

Stochastic-geometry has been utilized to analyze wireless
energy harvesting cognitive radio networks in [12]–[14]. In
these works, primary users (PUs) and secondary users (SUs)
are distributed as independent point processes. SUs harvest
energy from PUs and also experience interference from them.
In [12] and [13], closed-form expressions for spatial through-
put of SUs are derived using tools from stochastic geometry.
In [14], AoI is considered as the performance metric for SUs
which send updates to their destinations, and the average AoI
is characterized under a greedy update policy.

Different from previous works on AoI in EH systems, in this
work, we consider a network of EH nodes harvesting energy
from PBs, where the PBs follow a homogeneous Poisson
point process (HPPP) and the EH nodes follow a binomial
point process (BPP). Our goal is to investigate the AoI for
status updates of EH nodes when there are dedicated energy
sources which offer energy beams to EH transmitters, albeit
causing interference to their receivers. Considering random
access update policies and small batteries for EH nodes,
we derive a closed-form expression for the average charging
time, which leads to the average AoI expression of a node
at a randomly selected location in the network. The optimal
policy is characterized by formulating the AoI minimization
problem as a stochastic optimization one and transforming it
to a convex program. Using the projected gradient descent
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Fig. 1. System model.

(GD) algorithm, the optimal policy is found. Numerical results
highlight the impact of PBs density, the number of EH nodes,
and SINR threshold on the average AoI and demonstrate
that the optimal policy achieves much lower average AoI
compared to the always-update policy when the successful
update probability is relatively small.

II. SYSTEM MODEL

A. Network Model

We consider a large-scale network consisting of N EH
transmitters that are placed independent of each other, their
receivers, and multiple PBs in a disk of radius R, as shown in
Fig. 1. The EH nodes first harvest energy from the signals
radiated by the PBs, and then send status updates to the
associated receivers by consuming their harvested energy. The
PBs are distributed as a HPPP with intensity λb, and the
EH nodes are placed independently and uniformly in the
area following a BPP with a fixed number N . The point
processes for PBs and EH nodes are denoted by ΦX = {x}
and ΦY = {y}, respectively, with x, y ∈ R2 representing the
Cartesian coordinates of PBs and EH nodes. Each EH node
has a dedicated receiver separated by a fixed distance ds in
a random direction. Time is slotted with the slot duration
normalized to 1 second. In each time slot, the EH node
either harvests energy or transmits an update with power
Ps, while PBs transmit with continuously power Pb. We
assume Ps � Pb for practical applications with low-power
EH sensors. Considering a flat fading channel with Rayleigh
fading, the channel gain is an exponential random variable
with unit mean, and independent and identically distributed
(i.i.d.) over slots. Denote the channel gain associated with a
PB at x by gx for x ∈ ΦX , and denote the channel gain
associated with an EH node at y by gy for y ∈ ΦY . The path
loss are denoted by |x|−α and |y|−α for the PBs and the EH
nodes, respectively, where |·| represents the euclidean distance
to the origin and α ≥ 2 is the path loss exponent.

B. Energy Harvesting Model

We consider a finite battery for each EH node with the
capacity equal to the amount of energy required for one trans-
mission, which is denoted by E. This assumption is justified
for networks of small sensors, for example in infrastructure,

health, or environmental monitoring applications. The EH
node receives energy beams from the PBs and converts them
to energy to be stored in its battery. Let Pr(t) be the received
power by an EH node located at the origin at slot t, that is,

Pr(t) =
∑
x∈ΦX

Pbgx|x|−α. (1)

We assume that the energy conversion circuit can harvest a
fraction of the received power. The harvested power at slot t
is thus given by

Ph(t) = ηPr(t) =
∑
x∈ΦX

ηPbgx|x|−α, (2)

where 0 < η < 1 is the energy conversion efficiency. The
battery state at the beginning of slot t is

b(t) = min
{
b(t− 1)− u(t)E + (1− u(t))Ph(t), E

}
, (3)

where u(t) is a binary variable indicating whether the EH
node transmits in slot t or not, i.e., u(t) = 1 if the EH node
transmits and u(t) = 0 otherwise.

C. Transmission Model

Each EH node has two modes of operation: it can harvest
energy or it can transmit an update packet. We consider a
probabilistic (random access) update policy, where we define
the conditional update probability given a fully charged battery
as ω, i.e., ω , P[u = 1|b = E]. That is, once an EH node
fully charges its battery, it updates with probability ω. Let ρt ,
P[u = 1, b = E] and ρf , P[b = E], namely, the probability
of update and the probability of full charge, respectively. Thus,
we have ρt = ωρf . For the EH node at ys, its intended receiver
at yo experiences inference from PBs and other transmitting
EH nodes, which are denoted by I1 and I2, respectively.

I1 =
∑
x∈ΦX

Pbgx|x− yo|−α, (4)

I2 =
∑

y∈ΦY \ys

1yPsgy|y − yo|−α, (5)

where 1y denotes the event that the EH node at y transmits
and ρt = P[1y = 1]. The received signal to interference plus
noise ratio (SINR) is given by

γyo =
Psgysd

−α
s

σ2 + I1 + I2
, (6)

where σ2 is the noise variance.

D. Average AoI

The average AoI is adopted as the performance metric for
the EH nodes. The AoI measures the time that elapsed since
the latest received update was generated. More specifically,
the AoI of a receiver at yo associated with an EH node at ys

at current time t is defined as

ayo(t) = t− θ(t), (7)

where θ(t) is the generation time of the most recent success-
fully received update. We consider a target SINR γ∗, beyond

2020 54th Annual Conference on Information Sciences and Systems (CISS)

Authorized licensed use limited to: Penn State University. Downloaded on May 26,2020 at 20:39:52 UTC from IEEE Xplore.  Restrictions apply. 



3

2

1

AoI

Xk
T	

Y1																														YM

Qk QK+1

Fig. 2. AoI evolution.

which the update packet can be decoded successfully at the
receiver, that is, the update is successful. Hence, the age keeps
increasing when the EH node is harvesting energy or fails
to update. The generation and transmission for each update
takes one slot, assuming small packets. A successful update
is achieved as long as γyo > γ∗, thus, ayo(t) drops to 1. The
long-term average AoI of the EH node’s receiver at yo is

∆yo = lim
T→∞

1

T

T∑
t=1

ayo(t). (8)

III. PROBLEM FORMULATION

A. AoI Analysis

Let Xk be the random variable denoting the time interval
between the (k− 1)-th and k-th successful updates. Also, we
define Y to be the interval between two successive transmis-
sions. Hence, Xk =

∑M
i=1 Yi, where M denotes the number of

transmissions till a successful update. Note that M follows a
geometric distribution with parameter ρu(yo) , P[γyo ≥ γ∗],
which is the successful update probability. Thus,

E[X] = E[M ]E[Y ] =
E[Y ]

ρu(yo)
, (9)

E[X2] = E[M ]E[Y 2] + (E[M2]− E[M ])E[Y ]2

=
E[Y 2]

ρu(yo)
+

2(1− ρu(yo))

ρu(yo)2
E[Y ]2. (10)

Let K be the number of received updates up to time T . The
average AoI, ∆T,yo , can be calculated by averaging the area
of Fig. 2,

∆T,yo =
K

T

1

K

K∑
i=1

1

2
Xi(Xi + 1) +

1

T
QK+1. (11)

As T→∞, KT →
1

E[X] and 1
TQK+1→0. Hence,

∆yo = lim
T→∞

∆T,yo =
1

2

1

E[X]
(E[X2] + E[X])

=
E[Y 2]

2E[Y ]
+

1− ρu(yo)

ρu(yo)
E[Y ] +

1

2
. (12)

Next, we derive expressions for E[Y ] and E[Y 2]. Between
two successive transmissions, the EH node first fully recharge
its battery, then transmits with probability ω. Let el be the

accumulated energy over l slots after one transmission, and L
be the random variable representing the number of slots for
completely recharging the battery. Thus,

E[Y ] =

∞∑
k=2

k

k−1∑
l=1

P[el−1 < E, el ≥ E](1− ω)k−(l+1)ω

=

∞∑
l=1

∞∑
k≥l+1

kP[el−1 < E, el ≥ E](1− ω)k−(l+1)ω

=

∞∑
l=1

∞∑
i=0

(l + i+ 1)P[el−1 < E, el ≥ E](1− ω)iω

= E[L] +
1

ω
. (13)

Similarly, the second moment of Y is given by

E[Y 2]=

∞∑
k=2

k2
k−1∑
l=1

P[el−1 < E, el ≥ E](1− ω)k−(l+1)ω

= E[L2] +
2E[L]− 1

ω
+

2

ω2
(14)

To obtain the first and second moments of L in (13) and (14),
we characterize the probability mass function (PMF) of L for
α = 4, which can be expressed as

P[L = k] = erf

(
π2λb

4
√
zkE

)
− erf

(
π2λb

4
√
zk−1E

)
, (15)

for k = 1, 2, . . . , where zk , 1

k
α
2 ηPb

and erf(x) =
1√
π

∫ x
−x exp (−t2)dt. The derivation is given in Appendix A.

Thus, E[L] and E[L2] can be calculated and we denote them
by µl and µl2 , respectively.

B. Probability of a Successful Update

As discussed, an update for a receiver at yo connected to
an EH node located at ys is received reliably when γyo≥γ∗,
and ρu(yo) = P[γyo ≥ γ∗] is the probability of a successful
update. In this section, following [14], we derive ρu(yo).

ρu(yo)=P
[ Psgysd

−α
s

σ2+I1+I2
≥γ∗

]
=P
[
gys ≥

γ∗dαs
Ps

(σ2+I1+I2)
]

(a)
= E

[
exp

(
− γ∗dαs (σ2 + I1 + I2)

Ps

)]
(b)
= exp

(
−sσ2

)
LI1(s)LI2(s), (16)

where (a) is from the CDF of gys and (b) is from the definition
of Laplace transform for s, γ∗dαs

Ps
. By the homogeneity of the

HPPP distribution of PBs and the displacement theorem [15],
LI1(s) can be obtained by considering a receiver at the origin,
i.e., letting yo = (0, 0) in (4). Thus, by Eq. 3.21 in [15],

LI1(s) = exp

(
−πλb

sinc( 2
α )

(Pbs)
2
α

)
(17)
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For the aggregate interference I2 in (5),

LI2(s)=E

[ ∏
y∈ΦY \ys

exp
(
−s1yPsgy|y − yo|−α

) ]
(c)
= E

[ ∏
y∈ΦY \ys

1

1 + s1yPs|y − yo|−α

]
(d)
= E

[
1

1 + s1yPs|y − yo|−α

]N−1

(e)
=
(

1−ρt+ρtE
[
(1 + sPs|y − yo|−α)−1

])N−1

, (18)

where (c) is from the Laplace transform of gy , (d) is by
the independency of the EH nodes placement, (e) is by the
expectation of 1y . Due to the rotation invariance property of
uniform BPP, we only need to consider the distance between
the receiver and the origin, which is denoted by the random
variable v. Let vo be a realization of v. From [16], the
conditional probability density function (PDF) of the distance
between a random point to a reference point located at a
distance v from the origin, given v = vo, is given by

f(q|v= vo)=

{
2q
R2 , 0≤q≤R−vo,
2q
πR2 cos

−1
(
q2+v2o−R

2

2qvo

)
, R−vo≤q≤R+vo.

(19)
Hence, for a receiver located at a distance vo from the origin,

E
[
(1 + sPs|y − yo|−α)−1

]
=

∫ R+vo

0

1

1 + sPsq−α
f(q|v = vo)dq = φ(vo). (20)

As 0 < 1
1+sPsq−α

< 1, and by the monotonicity property of
the expectation, we can conclude that 0<φ(vo)<1 for every
vo ∈ [0, R]. By substituting (18) in (16), we have

ρu(vo) = A(1− ωρf(1− φ(vo)))
N−1, (21)

where A , exp(−sσ2)LI1(s), ρf = 1
µl
< 1.

C. Average AoI Minimization
The average AoI at a receiver node located at a distance

vo from the origin can be written as a function of ω and vo.
That is ∆(ω, vo) = ∆1(ω) + ∆2(ω, vo) + 1

2 , where

∆1(ω) =
2
ω2 + 2µl−1

ω + µl2

2(µl + 1
ω )

, (22)

∆2(ω, vo) =

(
(1−ωρf(1−φ(vo)))

1−N

A
−1

)(
µl+

1

ω

)
. (23)

We aim to find the optimal random access update probability
ω such that the long-term average AoI for a random
located transmitter-receiver pair is minimized. By taking
the expectation of the receiver’s location, the optimization
problem is described as

min
0<ω≤1

Ev[∆(ω, v)]. (24)

Since the EH nodes are uniformly distributed, so
are the associated receivers. Hence, the PDF of v is
fv(vo) = 2vo

R2 , 0 ≤ vo ≤ R.

IV. OPTIMAL TRANSMISSION POLICY

In this section, we transform ∆(ω, v) into an equivalent
convex function and solve (24). Define ω̃ , 1

ω , then the
expressions in (22) and (23) can be written as

∆̄1(ω̃) =
2ω̃2 + (2µl − 1)ω̃ + µl2

2(µl + ω̃)
, (25)

∆̄2(ω̃, v) =

(
1

A

(
1− B(v)

ω̃

)1−N

− 1

)
(ω̃ + µl), (26)

where B(v)
∆
=ρf(1−φ(v))<ρf . We now consider the problem

min
1≤ω̃<∞

Ev[∆̄(ω̃, v)]=Ev[∆̄1(ω̃) + ∆̄2(ω̃, v)]+
1

2
. (27)

By using the facts that 0<B(v)<ρf and µl> 1, the second
derivatives of ∆̄1(ω̃) and ∆̄2(ω̃, v) can be easily shown to
be non-negative. Hence, ∆̄(ω̃, v) is convex with respect to
ω̃, and Ev[∆̄(ω̃, v)] is convex as a nonnegative weighted sum
of ∆̄(ω̃, v) [17]. We conclude that (27) is a convex program.
From (25) and (26) we have,

|g(ω̃, v)| ∆
= |∂∆̄(ω̃, v)

∂ω̃
| = |2ω̃

2+µl(−1+4ω̃+2µl)−µl2

2(µl+ω̃)2

+
ω̃(ω̃−B(v)N)+ B(v)(1−N)

µ−1
l(

1−B(v)
ω̃

)N
Aω̃2

| ≤ 2ω̃2+µl(4ω̃+2µl) +µl2

2ω̃2

+
ω̃(ω̃+B(v)N)+ B(v)(1+N)

µ−1
l(

1−B(v)
ω̃

)N
Aω̃2

∆
= h(ω̃, v). (28)

One can easily find that

Ev[h(ω̃, v)]
(f)
<

2ω̃2+ 4ω̃+2µl

µ−1
l

+µl2

2ω̃2
+

ω̃+ρfN
ω̃−1 + ρf (1+N)

µ−1
l(

1− ρf
ω̃

)N
Aω̃2

<∞,

(29)

where (f) is by replacing B(v) with its upper bound ρf and
evaluating the integral, while the last inequality is by the facts
that the expression is bounded for ω̃ ∈ [1,∞) and ρf < 1.
From (28) and (29), it can be found that the conditions of the
dominated convergence theorem are satisfied and hence,

∂Ev[∆̄(ω̃, v)]

∂ω̃
= Ev

[∂∆̄(ω̃, v)

∂ω̃

]
= Ev

[
g(ω̃, v)

]
. (30)

From (30) and due to the convexity of (27), one can apply
the projected GD algorithm to find the optimal policy ω∗ as
in Algorithm 1, where an is the step size.

V. NUMERICAL RESULTS

In this section, we present the numerical results for ds = 2
m, σ2= -115 dBm, Pb = 1 W, Ps = 0.2 W, α=4, η=0.1,
R=50 m and an = 0.5

n+100 . The impact of the number of EH
nodes N , the PBs density λb, and the SINR threshold γ∗ is
demonstrated. We compare the optimal update policy with the
always-update policy, i.e., ω = 1.
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Algorithm 1 Projected GD algorithm
1: Initialize: ω̃1 = 1, n = 1.
2: repeat
3: ω̃n+1 = max{1, ω̃n − anEv[g(ω̃n, v)]}
4: n = n+ 1
5: until convergence
6: ω∗ = 1

ω̃n
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1

Fig. 3. Optimal policy vs. SINR threshold, N=500, λb = 0.005.

A. The SINR Threshold

Fig. 3 and Fig. 4 demonstrate that the optimal policy is
always-update when γ∗ is small. For large γ∗, the optimal
policy tends to be a probabilistic one and achieves a per-
formance gain compared to the always-update one. This is
because when γ∗ is high and thus ρu is low, EH nodes prefer
to take probabilistic update actions in order to decrease the
interference to peer nodes and not waste the harvested energy.

B. The Number of EH Nodes

In Fig. 5, we observe that for small γ∗, the optimal policy
is to always update for small number of EH nodes, and
a probabilistic one as N increases. Since the interference
from peer EH nodes for small N is small, the successful
update probability ρu is high. Thus, the nodes prefer to update
frequently to decrease the age. However, when N increases,
probabilistic updates take place to avoid high interference and
conserve energy. Furthermore, as γ∗ increases, we see that the
optimal policy is more likely to be a probabilistic one since
ρu decreases on higher γ∗. Fig. 6 shows the average AoI
resulting from the optimal and always-update policies. The
optimal policy outperforms the always-update one significantly
for large N and γ∗, as in this regime always-updating policy
results in excessive unsuccessful updates, leading to waste of
energy and aging of information.

C. The Density of Power Beacons

The impact of the PB density on the optimal policy and
the average AoI are shown in Fig. 7 and Fig. 8, respectively.
We see that in Fig. 7 the always-update policy is optimal
for small γ∗, similar to Fig. 5. For large γ∗, the optimal
update probability decays upon increasing λb. This is because

16 18 20 22 24 26 28 30

*
 (dB)

0

2

4

6

8

10

12
10

4

Always-Update

Optimal

Fig. 4. Average AoI vs. SINR threshold, N=500, λb = 0.005.
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*
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Fig. 5. Optimal policy vs. number of EH nodes, λb = 0.005.

when more PBs exist, the EH nodes suffer from more interfer-
ence which decreases the probability of successful decoding
per node. Hence, the nodes prefer to have a probabilistic
transmission in order not to waste the harvested energy and
decrease the interference. In Fig. 8, we observe that the two
policies have similar AoI trends versus λb. The optimal policy
performs better when there are many PBs interfering with EH
transmissions, in which case thus conservative updates results
in better average AoI. In particular, a best operating point
in PB density λb can be observed for moderate SINR target
values, e.g., γ∗ = 15dB, which balances the wireless power
supply to EH nodes and the interference to the receivers. For
very high target SINR values, e.g., γ∗ = 20dB, we can see
that densifying PBs does not improve the AoI performance.

VI. CONCLUSION

In this paper, we have studied age of information (AoI)
optimization in a wireless powered stochastic network with
power beacons. Considering small batteries and a random
access transmission policy for the energy harvesting transmit
nodes, we have derived the average AoI, utilizing stochastic
geometry tools. The minimum average AoI policy is found
by solving a stochastic optimization problem. The optimal
policy is shown to be persistent updates in the regime where
the update success probability is high. By contrast when high
QoS requirements on reliable reception of updates and high
levels of interference from power beacons and/or other nodes
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Fig. 7. Optimal transmission policy vs. PBs density, N=500.

result in small success probabilities for updates, choosing not
to update even when the node has energy is beneficial.

APPENDIX A
DISTRIBUTION OF CHARGING TIME L

Since ek is the amount of energy harvested up to slot k,
ek =

∑k
i=1 Ph(i). Note that Ph(i), i = 1, 2, . . . , are i.i.d.

over slots. Thus, for k = 1, 2, . . . ,

P[L = k] = P[ek ≥ E, ek−1 < E]

= P[ek ≥ E|ek−1 < E]P[ek−1 < E]

= P[ek−1 < E]− P[ek < E], (31)

where P[e0 < E] = 1. Since the PBs are assumed to be HPPP
distributed with intensity λb, referring to [15], the Laplace
transform of ek is given by

Lek(s) = (LPh
(s))k = exp

(
−πλb

sinc( 2
α )

(
s

zk
)

2
α

)
, (32)

where zk = 1

k
α
2 ηPb

. The PDF of ek can be obtained by the
inverse Laplace transform. By Eq. 3.22 in [15],

fek(x) =
λbzk

4

(
π

zkx

) 3
2

exp

(
− π4λ2

b

16zkx

)
, (33)

which gives the CDF of ek,

Fek(x) = 1− erf

(
π2λ2

b

4
√
zkx

)
. (34)
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Fig. 8. Average AoI vs. PBs density, N=500.

By substituting (34) in (31), the PMF of L is derived.
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