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Abstract—We determine the capacity of a discrete memoryless
communication channel with an energy harvesting transmitter
and the energy arrival information available at the receiver as
well as the transmitter. We obtain an n-letter capacity expression
and prove that the capacity is achieved by an encoding scheme
that depends only on the current battery state. Moreover, the ca-
pacity is invariant to the non-causal knowledge of energy arrivals.
Finally, we show that the capacity expression is equivalently
the maximum directed mutual information and that the channel
output feedback does not increase the capacity in this case. We
obtain upper and lower bounds on the capacity and numerically
evaluate them for comparison.

I. INTRODUCTION

In this paper, we study a communication channel with an
energy harvesting transmitter where energy arrival information
is available at the receiver in addition to the transmitter as
shown in Fig. 1. In this channel, the energy of each transmitted
code symbol is constrained to the available battery energy in
that channel use. The exogenous energy arrival process replen-
ishing the battery energy at the transmitter is independent of
the message. The capacity of this channel with only transmitter
side information has been determined in recent work for two
extreme cases in the Gaussian setting: When the battery size is
unlimited, [1] showed that the capacity is equal to the capacity
of the same system with an average power constraint equal
to the average recharge rate. When the battery size is zero,
[2] showed that the capacity is achieved by using Shannon
strategies [3]. Moreover, the recent work [4] explored the
capacity of the energy harvesting channel with battery state
information at both sides. In this paper, we complement the
results in [4] by determining the capacity of the same system
when energy arrival information is available at both sides.

The energy harvesting channel is a state-dependent channel
where state process has memory and is input dependent.
We follow previous work in [4]–[7] and model the energy
arrivals as multiples of a fixed quanta. Consequently, we
obtain a physical layer which has a discrete alphabet based
on this quanta. Unlike the case of battery state information
at the receiver side [4], resulting channel is not a Markov
channel when energy arrival side information is available at
the receiver. In addition, the state information of this non-
Markov channel is available at both the transmitter and the
receiver.
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Fig. 1. The channel with an energy harvesting transmitter with a finite-sized
battery. The energy arrival information is available at both sides.

In this paper, we determine the capacity of this channel
as the limit of an n-letter maximum information rate. This
expression reveals two crucial characteristics regarding the
best achievable rate when energy arrival information is made
available to the receiver: It suffices to use only current battery
energy level in the encoding to achieve capacity. Reference
[7] conjectures that for an energy harvesting channel with
only the transmitter side energy arrival information, coding
based only on the current battery energy level is optimal. Our
results show that when both the transmitter and the receiver
have the energy arrival information, coding based only on
the current battery energy level is optimal. Secondly, non-
causal knowledge of energy arrivals at the transmitter does not
improve the best achievable rate. Our work also relates to the
recent work [8], [9]. In particular, bounds for the capacity with
and without energy arrival side information are studied in [8].
Moreover, when the energy arrivals are deterministic as in [9],
the receiver automatically has the energy arrival information
and hence our results apply to the setting in [9].

In energy harvesting communications, there are inherent
energy causality constraints on the transmitted code symbols.
These constraints have been well studied in the literature on
transmission scheduling, see e.g., [10]–[12]. In our current pa-
per, we explicitly use these causality constraints and resulting
directionality of energy at the channel use level. We determine
that the capacity expression is equivalently expressed as the
maximum directed mutual information between the channel
input and the channel output and energy. This enables us to
determine the impact of feedback on the capacity of the energy
harvesting channel. Note that available side information at
the receiver side can be viewed as a delayed feedback. As
the energy arrival and real channel output form an extended
output, only partial output feedback is available in this case.
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We find that additional channel output feedback does not
increase the capacity.

II. THE CHANNEL MODEL

We consider a channel with an energy harvesting transmitter.
The battery in the transmitter can store at most Emax units
of energy. Input symbols lie in the set {0, 1, . . . ,K} with the
convention that each symbol k has k-unit energy cost where
K ≤ Emax. When channel input Xi is transmitted in the ith
channel use, the receiver gets Yi. Underlying physical channel
is a DMC and is determined by the stochastic mapping p(y|x).

At each channel use, the transmitter both harvests energy
and transmits a symbol. The order of harvesting and trans-
mission in a channel use is as follows: Si denotes the energy
available in the battery at channel use i. The transmitter ob-
serves the available battery energy Si and transmits a symbol
Xi. The energy of this symbol is constrained by the battery
energy: Xi ≤ Si. After sending the symbol, the transmitter
harvests energy. Energy arrivals (harvesting) is modeled as an
i.i.d. process with Ei ∈ {0, 1, . . . , |E|} and Pr[Ei = e] = qe
for e ∈ {0, 1, . . . , |E|}. Incoming energy Ei is first stored in
the battery, if there is space, before it is used for transmission.
Since the battery has a finite size, energies may overflow and
get wasted. The battery state is updated as:

Si+1 = min{Si −Xi + Ei, Emax} (1)

Initial battery state is S1 = Emax as it is always possible
to fill up the battery and start communication without losing
from the rate.

The energy arrival Ei is available at the receiver. In view
of (1) and the physical channel model, the energy arrival Ei

and the channel output Yi evolve according to the following
joint distribution:

p(ei, yi|xi, ei−1) = p(ei)p(yi|xi), xi ≤ si (2)

where si is the battery energy level at the ith channel use. We
note that the product form p(yi|xi)p(ei) in (2) suggests that
the channel and the energy arrivals are independent; however,
due to the constraint xi ≤ si, there is a time correlation in the
transmitted input sequence, i.e., the battery imposes memory
constraint in the channel input sequence.

III. MAIN RESULT

We state the main result of this paper in the following
theorem:

Theorem 1 The capacity of the energy harvesting channel
with energy arrival side information at the receiver in addition
to the transmitter is:

C = lim
n→∞

max
p(xi|si)

1

n
I(Xn;Y n|En) (3)

Moreover, the capacity is invariant to the availability of non-
causal knowledge of energy arrivals.

Before proving Theorem 1, we provide the following corol-
lary:

Corollary 1 The following rate R is achievable with energy
arrival side information at both sides:

R = lim
n→∞

max
p(xi|si)

1

n

n∑
i=1

I(Xi;Yi|Si) (4)

We, next, comment on the capacity expression in (3) and
achievable rate in (4). Note that the capacity achieving input
sequence is obtained by using an input distribution at channel
use i, p(xi|si), that depends only on the current battery level
si. In fact, this could be viewed as an extension of [13,
Theorem 3] where current state information is sufficient for
encoding; however, realization of the whole energy arrival
sequence is needed for decoding. Battery state information
is inherently available at the transmitter; therefore, this is
a feasible encoding scheme. However, note that the battery
state information is not available at the receiver side. That
is, even when the battery state information is not available
at the receiver, the rate R in (4) and possibly higher rates
are achievable. The conditioning on the battery state Si in
the mutual information in (4) should not be interpreted as the
battery state information being available at the receiver. In fact,
when the battery state information is available at the receiver,
the capacity is found as in [4].

IV. PROOFS OF THEOREM 1 AND COROLLARY 1
A. Proof of Theorem 1

We start the proof with the converse part and assume
that the energy arrival sequence En is available at both the
transmitter and the receiver non-causally. Note that non-causal
knowledge of energy arrivals is stronger than the original
system assumptions, yielding an upper bound for the rate
achievable under them. First, define F(En) as the support
set of the Xn sequence lies in a constrained set defined by
the battery dynamics:

Fn(E
n) , {p(xn) with supoort set xi ≤ si,

si+1 = min{si − xi + Ei, Emax},
s1 = Emax} (5)

The code is generated based on the non-causal knowledge of
the energy arrivals: For any given En sequence, the codewords
are constrained to lie in the set Fn(E

n). Note that this is
equivalent to causal conditioning for the code symbol energy
at each channel use. We have the following inequalities:

nR−H(W |Y n, En) = I(W ;Y n, En) (6)
≤ I(Xn;Y n|En) (7)
≤ sup

p(xn)∈Fn(En)

I(Xn;Y n|En) (8)

where (7) follows from the data processing inequality and the
fact that message W is independent of the energy arrivals
En. Taking the limit as n tends to infinity and using Fano’s
inequality, we reach the following inequality:

R ≤ lim inf
n→∞

1

n
sup

p(xn)∈F(En)

I(Xn;Y n|En) (9)
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Now, define Cn = supp(xn)∈F(En) I(X
n;Y n|En). We next

show that Cn is a sub-additive sequence. Note the following
relation:

Fn+m(En+m)

⊆ {p(xn+m) : p(xn
1 ) ∈ Fn(E

n), p(xn+m
n+1 ) ∈ Fm(En+m

n+1 )}
(10)

where (10) follows from the fact that in the definition of
Fn(E

n) in (5), initial battery energy is Emax. Define the set
on the right hand side of (10) as F̃(En+m). We reach the
following inequalities:

Cn+m = sup
p(xn+m)∈F(En+m)

I(Xn+m;Y n+m|En+m) (11)

≤ sup
p(xn+m)∈F̃(En+m)

I(Xn+m;Y n+m|En+m) (12)

≤ sup
p(xn)∈F(En)

I(Xn;Y n|En)

+ sup
p(xm)∈F(En+m

n+1 )

I(Xm;Y m|En+m
n+1 ) (13)

= Cn + Cm (14)

where (12) follows from the relation in (10) and (13) is
due to the fact that p(xn) and p(xn+m

n+1 ) could be inde-
pendently selected in F̃(En+m). Finally, (14) follows from
the fact that the Ei sequence is i.i.d. and hence Cm =
supp(xm)∈F(En+m

n+1 ) I(X
m;Y m|En+m

n+1 ) is independent of the
time index n. By Fekete’s lemma, we have

lim inf
n→∞

1

n
Cn = inf

n

Cn

n
= lim

n→∞

1

n
Cn (15)

We now show that the rate R = limn→∞
Cn

n is achiev-
able with non-causal knowledge of the energy arrivals. Fix
n and consider all possible En = en sequences. Find
supp(xn)∈Fn(en) I(X

n;Y n|en) for all en. Then, we perform
the encoding over blocks of n channel uses and insert zero
symbols o(n) channel uses so that the battery returns to the
full energy state. That is, each block is of length n + o(n)
and consider k such blocks: the ith block consists of n
code symbols generated from the distribution that achieves
sup

p(xn)∈Fn(e
(i−1)(n+o(n))+n

(i−1)(n+o(n))+1
)
I(Xn;Y n) and they are followed

by o(n) zero symbols. Since e
(i−1)(n+o(n))+n
(i−1)(n+o(n))+1 are independent

for all i, we conclude that as the number of blocks k grows to
infinity, by multiplexing over different codebooks as in [14],
the rate supp(xn)∈Fn(En) I(X

n;Y n|En) is achieved provided
that the initial full battery state is guaranteed at the beginning
of each block. However, by selecting o(n) such that o(n)→∞
as n→∞, (e.g., o(n) = log(n)), we conclude that

lim
n→∞

Cn

n+ o(n)
(16)

is indeed achievable. This proves that limn→∞
Cn

n is achiev-
able. Note that [9] uses a similar achievable scheme when the
energy arrivals are deterministic. However, the waiting time is
finite in that case as the energy arrivals are deterministic and
battery is finite.

We have just shown that limn→∞
Cn

n is the capacity with
non-causal knowledge of energy arrivals. To complete the
proof, we prove that in the above achievable scheme, only
causal knowledge of the energy arrivals is sufficient. In other
words, we prove the following equality:

sup
p(xn)∈F(En)

I(Xn;Y n|En) = sup
p(xi|si)

I(Xn;Y n|En) (17)

To this end, we express the objective as:

I(Xn;Y n|En)

= H(Y n|En)−H(Y n|Xn, En) (18)

=

n∑
i=1

H(Yi|Y i−1, En)−H(Yi|Y i−1, Xn, En) (19)

≤
n∑

i=1

H(Yi|Y i−1, Ei−1)−H(Yi|Xi, Ei−1) (20)

=

n∑
i=1

H(Yi|Y i−1, Ei−1)−H(Yi|Xi, Si) (21)

where (20) follows from conditioning reduces entropy and the
fact that channel is DMC, i.e., p(yi|xi, yi−1) = p(yi|xi) with
xi ≤ si = f(xi−1, ei−1); (21) also follows from the fact that
si = f(xi−1, ei−1), a deterministic function. Next, we show
that it suffices to consider input distributions in the form of
p(xi|si) to maximize (21).

Let us fix p(xi|xi−1, ei−1) for i = 1, . . . , n − 1 and max-
imize the objective over p(xn|xn−1, en−1). Note that fixing
p(xi|xi−1, ei−1) for i = 1, . . . , n− 1 fixes H(Yi|Y i−1, Ei−1)
and H(Yi|Xi, Si) for i = 1, . . . , n − 1 and p(si) for
i = 1, . . . , n. The remaining term, H(Yn|Y n−1, En−1) −
H(Yn|Xn, Sn), is a function of p(xn|xn−1, en−1). In particu-
lar, H(Yn|Xn, Sn) is just a function of p(xn|sn) when p(sn)
is fixed. Hence, it suffices to show that H(Yn|Y n−1, En−1) is
maximized by distributions of the form p(xi|si). To this end,
we note that for any given p(xn−1|en−1), Y n−1 = yn−1 and
En−1 = en−1, a distribution is generated on xn−1, denoted
as p(xn−1|yn−1, en−1), with the support set Fn−1(e

n−1). We
have:

p(yn|yn−1, en−1) =
∑
xn,sn

p(yn|xn)p(xn|sn, xn−1, en−1)

p(xn−1|yn−1, en−1) (22)

In addition, the next battery energy level distribution is:

p(sn+1) =
∑
xn,en

p(sn+1|xn, sn, en)p(xn|sn, xn−1, en−1)

p(xn−1, en) (23)

where p(sn+1|xn, sn, en) = 1 if and only if sn+1 = min{sn−
xn + en, Emax} and 0 otherwise.

We select p(xn|sn, xn−1, en−1) as in the following

p̂(xn|sn, xn−1, en−1) = p(xn|sn) =∑
xn−1,en−1

p(xn|sn, xn−1, en−1)p(xn−1, en−1) (24)
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As H(Yn|Y n−1, En−1) is a concave function of
p(yn|yn−1, en−1), we deduce from (22) and by Jensen’s
inequality that it yields higher H(Yn|Y n−1, En−1) value.
Moreover, this selection p̂(xn|sn, xn−1, en−1) does not change
the remaining energy distribution p(sn+1) in view of (23).
In particular, p(xn−1, yn−1, en) = p(en)p(x

n−1, yn−1, en−1)
Since this is true for any n, we prove that p(xi|si) is sufficient
for the optimization problem on the left hand side of (17).

To conclude, we have shown that even under non-causal
knowledge of En, the rate R = infn

Cn

n is the highest
achievable rate and it can be achieved by an encoding scheme
that determines the channel input xi as a stochastic function
of only the battery state si. This result and its proof could be
viewed as an extension of the coding theorem in [14].

We remark that the energy harvesting channel with deter-
ministic energy arrivals and no side information considered in
[9] is a special case of the problem we address in the current
paper. In view of Theorem 1, encoding based on the current
battery state si is sufficient for achieving the capacity when
energy arrivals are deterministic.

B. Proof of Corollary 1

In order to prove Corollary 1, it suffices to prove the
following inequality:

sup
p(xi|si)

I(Xn;Y n|En) ≥ sup
p(xi|si)

n∑
i=1

I(Xi;Yi|Si) (25)

We first observe from (21) that whenever p(xi|xi−1, ei−1) =
p(xi|si):

I(Xn;Y n|En) =

n∑
i=1

H(Yi|Y i−1, Ei−1)−H(Yi|Xi, Si)

(26)

Hence, it suffices to prove:

sup
p(xi|si)

n∑
i=1

H(Yi|Y i−1, Ei−1)−H(Yi|Xi, Si)

≥ sup
p(xi|si)

n∑
i=1

I(Xi;Yi|Si) (27)

We note that since Xi = fi(Si), the following Markov chain
holds:

Y i−1, Ei−1 ↔ Si ↔ Xi ↔ Yi (28)

Then, we have the following inequality due to the data
processing inequality:

H(Yi|Y i−1, Ei−1) ≥ H(Yi|Si) (29)

This proves the desired result in (27).

V. SOLUTION OF (4) VIA DYNAMIC PROGRAMMING

The optimization problem in (4) can be solved by dynamic
programming for fixed n. Assume sn is fixed and calculate

the value function for all sn ∈ {0, . . . , Emax} as follows:

Jn(sn) = max
p(xn|sn)

I(Xn;Yn|Sn = sn) (30)

Then, calculate the value function for i = 1, . . . , n− 1:

Ji(si) = max
p(xi|si)

I(Xi;Yi|Si = si) +

Emax∑
si+1=0

p(si+1|si)Ji(si+1)

(31)

Note that p(si+1|si) is calculated as:

p(si+1|si) =
∑

ei,xi,si+1

p(si+1|si, xi, ei)p(ei)p(xi|si) (32)

Since si+1 = min{(si − xi + ei)
+, Emax} is a deterministic

function, p(si+1|si, xi, ei) is just an indicator function.

VI. THE CHANNEL WITH OUTPUT FEEDBACK

In this section, we consider the capacity of the channel
under study when the channel output feedback is also present
at the transmitter. It is well-known that in non-anticipative
systems feedback does not increase capacity [15]. We will es-
tablish this result for our particular energy harvesting channel.

We first note that the n-letter mutual information in (3) is
the maximum directed information from the input Xn to the
output Y n given the energy arrivals En:

I(Xn;Y n|En) =

n∑
i=1

I(Xn;Yi|Y i−1, En) (33)

=

n∑
i=1

I(Xi;Yi|Y i−1, En)

+ I(Xn
i+1;Yi|Xi, Y i−1, En) (34)

=

n∑
i=1

I(Xi;Yi|Y i−1, En) (35)

= I(Xn → Y n|En) (36)

where (35) is due to the fact that the Markov chain Yi ↔
(Xi, Y (i−1), En) ↔ Xn

i+1 holds for all i. This Markov
chain holds in view of the fact that Xn

i+1 is determined
as a function of message W , Xi and Ei. Therefore, Yi is
independent of Xn

i+1 given Xi, Y (i−1), En. This renders the
term I(Xn

i+1;Yi|Xi, Y i−1, En) = 0. See also [16, Proposition
4.2.2].

Next, we observe that Xi is independent of Ei in view of
the fact that Ei is an i.i.d. sequence and the constraint set for
Xi is determined by Ei−1. Therefore, we have the following:

I(Xn;Y n|En) =

n∑
i=1

I(Xi;Yi|Y i−1, En) (37)

=

n∑
i=1

I(Xi;Yi|Y i−1, Ei−1) (38)

=

n∑
i=1

I(Xi;Yi, Ei|Y i−1, Ei−1) (39)

= I(Xn → Y n, En) (40)
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Fig. 2. Virtual channel model with feedback. Presence of the channel output
feedback Y does not affect the capacity.

Since limn→∞
1
n supp(xn)∈F(En) I(X

n;Y n|En) exists, we
conclude that limn→∞

1
n supp(xn)∈F(En) I(X

n → Y n, En)
also exists. In other words, the directed mutual information
spectrum of the channel in (2) consists of a single point only.
Note that the channel in (2) falls into the most general category
of channels with feedback in [16]. In view of the general
capacity formula for channels with feedback in [16, Theorem
4.4.1] and the fact that limn→∞

1
nI(X

n → Y n, En) exists,
we conclude that this limit is the capacity of the channel in
(2) with feedback.

Theorem 2 When energy arrival side information is causally
available at the transmitter and the receiver in the discrete
memoryless energy harvesting channel, the channel output
feedback does not increase the capacity.

We finally remark that in the case of an infinite-sized battery,
the capacity is not affected by the presence of energy arrival
side information at the receiver side, see also [1, Section IV].
Moreover, in view of Theorem 2, the presence of channel
output feedback does not affect the capacity either.

VII. NUMERICAL RESULTS

In this section, we evaluate the capacity bounds Cn and
achievable rates with and without receiver side information.
We consider a binary symmetric channel with crossover prob-
ability pe. We select Emax = 1 and i.i.d. energy arrivals with
P [Ei = 1] = 0.5. In Fig. 3, we plot the achievable rates with
and without receiver side information. We also include plots of
the capacity for Emax =∞. The achievable rate with energy
side information at the transmitter only is calculated by using
the method reported in [5], [7]. Moreover, we plot capacities
with battery state information at the receiver using [4]. Note
that capacity with energy side information and battery side
information match when channel is noiseless. Moreover, we
observe that Cn for n = 7 yields a tighter bound as it
lies below the capacity with battery state information at the
receiver for most pe values.

VIII. CONCLUSION

We determined the capacity of an energy harvesting channel
with an energy harvesting transmitter and energy arrival side
information available at the transmitter and receiver sides. We
first found an n-letter capacity expression and showed that the
optimal coding is based on only current battery state si. Next,
we showed that the capacity is expressed as maximum directed
information between the input and the output. Moreover, we
proved that the channel output feedback does not increase the
capacity.
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