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Abstract—A noiseless binary energy harvesting channel with
on-off fading is considered. When causal fading state information
is available at the transmitter only, an equivalent timing channel
with additive geometric noise and noise information known at the
transmitter is obtained. In this channel, the transmitter’s strategy
is a stopping rule with respect to the channel fade levels given
the message and the additive noise. Next, capacity when energy
arrival information is available at the receiver and capacity when
both energy arrival and fading information are available at the
receiver are obtained. Additionally, several achievable schemes
are proposed and evaluated.

I. INTRODUCTION

We consider a noiseless binary channel with an energy
harvesting transmitter with unit battery. The channel is on-
off fading as shown in Fig. 1, that is, the channel nulls out the
transmitted symbol if it is in the off state. The energy of each
transmitted symbol is constrained by the energy available in
the battery in that channel use. The energy arrival and fading
processes are independent and identically distributed (i.i.d.)
in time and independent of the message. The transmitter has
causal knowledge of the channel fading state. This model is
a generalization of the model in [1], [2] with the presence
of on-off fading. In [1], binary energy harvesting channel is
introduced and achievable strategies based on a timing channel
are proposed along with upper bounds. In [2], bounds and
schemes are improved.

Related work to this paper includes [3]–[9] in addition to
[1], [2]. Reference [3] has considered the discrete memorlyess
energy harvesting channel with finite battery and obtained n-
letter expressions. References [4]–[7] consider the Gaussian
energy harvesting channel. When the battery size is unlimited,
[4] has shown that the capacity is equal to the capacity of the
same system with an average power constraint equal to the
average recharge rate. On the other hand, when the battery size
is zero, [5] has shown that the capacity is achieved by using
Shannon strategies [10]. More recently, [6] has characterized
the capacity in the Gaussian setting for the finite battery regime
when energy arrivals are deterministic and [7] has determined
the capacity within a certain gap when energy arrivals are
binary. Other recent works include capacity in the presence of
receiver side battery [8] and energy arrival [9] information.
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Fig. 1. The binary energy harvesting channel with on-off fading. Fading state
information is causally available at the transmitter only.

In this paper, we build on [1], [2] and study the binary
energy harvesting channel with on-off fading. In essence,
on-off fading introduces the need to balance the impact of
the channel impairment with that of the potential energy
shortage. On the one extreme when channel is non-fading,
optimal coding is performed by i.i.d. Shannon strategies in
a timing channel to combat the effect of the timing noise
related to the randomness in the battery energy level [1]. On
the other extreme when energy is always available, optimal
coding is by i.i.d. Shannon strategies in the classical state
dependent channel [10]. The pattern dependence in a timing
channel conflicts with the memoryless Shannon strategies in
the classical state dependent channel. We address this inherent
conflict to incorporate the effects of channel fading and energy
uncertainty.

Since the fading state information is available at the trans-
mitter causally, the decision to transmit an energy carrying
symbol is taken at a channel use when fading state is on. We
show that this channel is equivalent to a timing channel [11]
with additive geometric noise and noise information at the
transmitter. In this timing channel, the transmitter’s strategy is
a stopping time1 with respect to the channel fade levels given
the message and the additive noise. We determine the capacity
of the equivalent timing channel using an auxiliary random
variable. Next, we determine the capacity when energy arrival
information is available at the receiver and the capacity when
both energy arrival and fading information are available at the
receiver. In addition, we propose a finite cardinality timing
based achievable scheme and compare its performance with
rates achievable by Shannon strategies in the classical setting
[3]. Through numerical evaluations, we provide performance
comparisons and discuss the value of side information in
various energy and fading regimes.

1See [12, Definition 1] for the definition of a stopping time.
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II. THE CHANNEL MODEL

We consider an energy harvesting transmitter, with i.i.d.
binary energy arrivals, i.e., Ei ∈ {0, 1}, i = 1, 2, . . . with
Pr[Ei = 1] = q. The battery in the transmitter can store at
most one unit of energy. Input alphabet is also binary, i.e.,
Xi ∈ {0, 1}. Symbol 1 requires one unit energy while symbol
0 needs no energy. Underlying physical channel is noiseless
with a multiplicative fading hi ∈ {0, 1}. That is, the input Xi

and received signal Yi are related as:

Yi = hiXi (1)

where hi ∈ {0, 1} is i.i.d. Bernoulli process with Pr[hi =
1] = pon. Channel state information hi and the energy arrival
are available at the transmitter causally. In Section III, we
assume that the receiver has no state information. In Section
IV, the receiver has the energy arrival information while in
Section V, the receiver has both energy arrival and fading
state information.

At each channel use, the transmitter can harvest energy and
transmit a symbol. The order of harvesting and transmission
in a channel use is as follows: Si denotes the energy available
in the battery at channel use i. The transmitter observes the
available battery energy Si and the channel fade level hi
before transmitting a symbol Xi. The energy of this symbol
is constrained by the battery energy. If Si = 0, only 0 is
feasible. If Si = 1, both symbols are feasible. In this regard,
Xi is a function of the past and current states such that it is
feasible with respect to Si: Xi = fi(W,h

i, Si). After sending
the symbol, the transmitter harvests energy. Incoming energy
Ei is first stored in the battery, if there is space, before it is
used for transmission. Next battery state is expressed as:

Si+1 = min{Si −Xi + Ei, 1} (2)

We determine the channel capacity in the timing domain [1].

III. THE CHANNEL CAPACITY

The receiver can decode by calculating the length of in-
tervals between two 1s in the received sequence, as in [1].
Since the transmitter has causal fading state information, it
puts symbol 1 when fading coefficient is 1. In particular, the
transmitter observes the time length Zi between the events 1 is
transmitted and next unit of energy arrives. During this time,
battery is empty and the channel input is 0. After the energy
arrival, transmitter observes the fading levels and decides to
put the 1 symbol at the Vith channel use. This yields:

Ti = Vi + Zi (3)

where Zi is additive geometric noise with support set
{0, 1, . . .} and parameter q, representing the waiting time of
the transmitter for energy to enter the system. Vi represents
the time the transmitter decides to put the energy carrying
symbol. We denote the sequence of fading over the Vi portion
of the ith channel use as Gi = {hk, k =

∑i−1
j=1 tj + zi +

1, . . . ,
∑i

j=1 tj}. The variables that define a channel use in
this equivalent timing channel are shown in Fig. 2.

G2 G3G1

V1 Z2 V2 V3

T2 T3

Z1

T1

. . .

hi 0 0 1 1 1 0 1 0 1 0 1

Fig. 2. The variables Vi, Zi, Gi and Ti in the timing channel.

In the equivalent channel, the channel input is V and the
channel output is T . Similar to the channel model in [1],
additive noise Z is available at the transmitter before deciding
V ; that is, Z is a channel state which is causally available to
the transmitter. Note that, irrespective of fading state, channel
input is zero when battery is empty. In addition to the model in
[1], the input V is determined based on the causal observation
of the fading process after Z is obtained. That is, V is a
deterministic stopping time with respect to the fading process
given Z. For completeness, we provide a simplified definition
of a deterministic stopping time, c.f. [12, Definition 1]:

Definition 1 An integer random variable R is a stopping time
with respect to a random process {Li} if the event {R = r}
is determined by the random variables L1, L2, . . . , Lr. The
stopping time R is called deterministic if Pr[R = r|L1 =
`1, L2 = `2, . . . , Lr = `r] ∈ {0, 1}.

Due to the causal observation of the fading pattern and the
noise in the timing channel (3), the transmitter decides whether
V = v based on hz+1, hz+2, . . . , hz+v ∈ G given Z = z.
Therefore, the channel input V in the timing channel (3) is a
stopping time with respect to the fading process {hi} given
Z. Indeed, it could be taken as a deterministic stopping time
without losing optimality since extra randomness in encoding
does not increase achievable rate.

As the transmitter has causal fading state information,
energy carrying symbol 1 is released from the energy queue
only when channel fading is in the on state. Hence, capacities
of the channel described in Section II and the timing channel
are equal; see also [1, Lemma 1]. This follows from the fact
that the encoders and decoders use different representations of
the same object (except when the battery is empty) and the
rates in the channels are defined according to the time cost of
codewords. Since the channel output is 0 whenever the battery
is empty and since fading process is i.i.d., use of fading state
information when battery is empty does not increase capacity.

Lemma 1 The timing channel capacity with additive causally
known noise and causally observed fading pattern is equal to
the capacity of the classical state dependent channel.

Note that the channel index in which energy carrying 1
symbol is released is determined based on the progression of
the fading process after 1 unit energy arrives, whereas in [1]
this decision is taken as soon as 1 unit energy arrives. In the
following theorem, we generalize [1, Theorem 1] and provide
a characterization of the capacity.
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Theorem 1 The timing channel capacity is:

C = max
p(u),v(u,z,g)

I(U ;T )

E[T ]
(4)

where v(u, z, g) is a deterministic stopping time with respect
to the fading process for fixed u, z.

Proof: Let W be uniform over {1, . . . ,M}. Transmitter has
W , T i−1, Zi, Gi−1 and it causally observes the fading process
to determine Vi. We define Ui = (W,T i−1, Zi−1,Gi−1). Note
that Ui is independent of Zi and the fading process in the ith
channel use and that Vi is a stopping time with respect to the
fading given Zi and Ui. We have:

log(M)−H(W |Tm) = H(W )−H(W |Tm) (5)
= I(W ;Tm) (6)

=

m∑
i=1

I(W ;Ti|T i−1) (7)

≤
m∑
i=1

I(W,T i−1;Ti) (8)

≤
m∑
i=1

I(W,T i−1, Zi−1,Gi−1;Ti) (9)

≤ n∑m
i=1E[Ti]

m∑
i=1

I(Ui;Ti) (10)

≤ n max
p(u),v(u,z,g)

I(U ;T )

E[T ]
= nC (11)

where (8) and (9) follow from the nonnegativity of mutual in-
formation and (10) holds due to the fact that

∑m
i=1E[Ti] ≤ n.

Finally, (11) follows from the facts that Ui is independent
of Zi and the fading process in the ith channel use and∑

i ai∑
i bi
≤ maxi

ai

bi
for ai, bi > 0. Here, v(u, z, g) denotes the

deterministic stopping time of the transmitter given u and z.
H(W |Tm)→ 0 by Fano’s inequality. Thus, R = log(M)

n ≤ C.
To achieve C, generate 2nC sequences of realizations of

Ui such that
∑m

i=1E[Ti] ≤ n. Each time Zi is observed, the
stopping rule is set as v(u, z, g). Given u and z, transmitter
releases 1 based on v(u, z, g) as it causally observes the
fading. This way, we obtain m channel uses in the timing
channel. As m grows, probability of error goes to zero by
using a joint typicality decoder in the timing channel. �

IV. ENERGY ARRIVAL INFORMATION AT THE RECEIVER

In this section, we consider the case when energy arrival
information is available at both sides while fading is available
only at the transmitter.

Theorem 2 The channel capacity with causal energy arrival
information at the transmitter and the receiver is:

CESI = max
p∈[0,pon]

h(p)
p −

h(pon)
pon

1
p + 1

q − 1
(12)

Proof: Let W be uniform over {1, . . . ,M}. Define Ui =

(W,V i−1, Zi,Gi, E(
∑i

j=1 Tj)−1). Note that Ui is independent
of the fading process in ith timing channel use and that Vi is
a stopping time with respect to the fading process given Ui.

log(M)−H(W |Y n, En)

= H(W )−H(W |Tm, En) (13)
= I(W ;En) + I(W ;Tm|En) (14)
= I(W ;V m|En) (15)

=

m∑
i=1

I(W ;Vi|V i−1, En) (16)

=

m∑
i=1

I(W ;Vi|V i−1, E(
∑i

j=1 Tj)−1) (17)

≤
m∑
i=1

I(W,V i−1, Zi,Gi, E(
∑i

j=1 Tj)−1;Vi) (18)

≤ n∑m
i=1E[Ti]

m∑
i=1

I(Ui;Vi) (19)

≤ n max
p(u),v(u,g)

I(U ;V )

E[T ]
(20)

where (15) follows from independence of En from W and
that Tm is equivalently represented as V m given En, (17)
follows from the fact that Vi is independent of energy arrivals
that occur after

∑i
j=1 Tj th channel use, (18) follows from

nonnegativity of mutual information, and (19) holds since∑m
i=1E[Ti] ≤ n. Finally, (20) follows from

∑
i ai∑
i bi
≤ maxi

ai

bi

for ai, bi > 0. As m gets larger, H(W |Tm) → 0 by Fano’s
inequality and therefore R = log(M)

n ≤ supp(u),v(u,g)
I(U ;V )
E[T ] .

Next, we claim that H(V |U) ≥ h(pon)
pon

. To prove this claim,
we note that for fixed U = u, V is a stopping time with
respect to the fading process hi and if V = v then hv = 1.
Hence, for any such V , there exists a sequence of stopping
rules Ṽn ∈ {1, . . .} with respect to fading process hi such that
the transmitter releases 1 symbol at the

∑n
i=1 Ṽi+1st channel

use if the channel fading is on. Since P [V <∞|U = u] = 1,
number of trials has to be infinite; that is, Ṽn is an infinite
sequence and 1 symbol is released the first time the channel
fade level in the

∑n
i=1 Ṽi + 1st channel use turns on. Let n∗

denote the first time h∑n
i=1 Ṽi+1 = 1. We have:

P (V = v|U = u) =
∑
n∗

pon (1− pon)n
∗−1

P (Ṽ n∗

1 = ṽn
∗

1 )

(21)

where v =
∑n∗

i=1 ṽi+1. Note that for any fixed v, the number
of trials n∗ is determined by the realizations of the stopping
times Ṽi. Conditioned on the realizations of Ṽi = ṽi, V has
a geometric distribution over the integers

∑n
i=1 ṽi + 1. As

conditioning reduces entropy, we have for given U = u:

H(V |U = u) ≥ H(V |{Ṽi}∞i=1, U = u) (22)

=
h(pon)

pon
(23)
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By taking expectation over all u, we get H(V |U) ≥ h(pon)
pon

.
From (20), we have:

CESI ≤ max
p(u),v(u,g)

H(V )−H(V |U)

E[V ] + E[Z]
(24)

≤ max
p(u),v(u,g)

H(V )− h(pon)
pon

E[V ] + E[Z]
(25)

≤ max
p∈[0,pon]

h(p)
p −

h(pon)
pon

1
p + 1

q − 1
(26)

where (25) follows from H(V |U) ≥ h(pon)
pon

, and (26) follows
from the fact that H(V ) is maximized by a geometric distri-
bution among all distributions with the same E[V ]. Finally,
E[V ] ≥ 1

pon
as channel fading has to be in its on state when

1 is sent.
The rate on the right hand side of (26) is achievable by

encoding over the interval with battery state equal to 1 by using
a Shannon strategy in the classical state dependent channel.
Note that the receiver can track the battery state as Ei is given
to it. In E[V ]

E[V ]+E[Z] fraction of time, optimal coding is done
over the channel p(y|u) = ponδ(y − u) + (1− pon)δ(y) with
transmission probability ptx. The following rate is achievable:

max
ptx∈[0,1]

E[V ]

E[V ] + E[Z]
I(U ;Y )

= max
ptx∈[0,1]

1
ptxpon

1
ptxpon

+ 1
q − 1

(H(ptxpon)− ptxH(pon)) (27)

= max
p∈[0,pon]

H(p)
p − H(pon)

pon

1
p + 1

q − 1
(28)

which is equal to the right hand side in (26). �

V. FADING STATE AND ENERGY ARRIVAL INFORMATION
AT THE RECEIVER

In this section, we focus on the case of fading state and
energy arrival information available at both transmitter and
receiver. We will show that in this case, it suffices to encode
over the channel indices with on fading state only and this
gives the following modified timing channel:

T̃i = Ṽi + Z̃i (29)

where T̃i is the number of channel uses between the ith and
the i + 1st energy carrying 1 symbols with on fading state.
Z̃i is the number of channel uses transmitter waits for energy
arrival with on fading state and Ṽi is the corresponding channel
input. Z̃i is i.i.d. with E[Z̃i] = pon

(
1
q − 1

)
. In addition, we

have:
m∑
i=1

E[T̃i] ≤ npon (30)

By encoding and decoding over the modified timing channel
in (29), we obtain the capacity with the energy and fading
state information available at the receiver as follows:

Theorem 3 The channel capacity with causal energy arrival
and fading information at the transmitter and the receiver is:

CEFSI = max
p∈[0,1]

h(p)
1

pon
+ p(1−q)

q

(31)

where h(p) is the binary entropy function.

Proof: Let the message W be uniform over {1, . . . ,M}. The
received sequence Y n, hn, En is equivalently represented as
Ṽ m, hn, En in view of the fact that one can uniquely construct
Ṽ m, hn, En from Y n, hn, En and vice versa.

log(M)−H(W |Y n,hn, En)

= H(W )−H(W |Y n, hn, En) (32)

= I(W ; Ṽ m, hn, En) (33)

= I(W ; Ṽ m|hn, En) (34)

≤ H(Ṽ m) (35)

≤
m∑
i=1

H(Ṽi) (36)

≤ npon∑m
i=1E[T̃i]

m∑
i=1

H(Ṽi) (37)

≤ npon max
p(ṽ)

H(Ṽ )

E[T̃ ]
= nCEFSI (38)

where (34) follows from independence of the message W
and hn, En, (35) holds due to non-negativity of entropy and
the fact that conditioning reduces entropy, (37) follows from
(30), and (38) follows from the fact that

∑
i ai∑
i bi
≤ maxi

ai

bi

for ai, bi > 0. Achievability of CEFSI directly follows from
encoding and decoding Ṽ over the modified timing channel in
(29). Finally, the expression in (31) follows from the fact that
entropy of V is maximized by a geometric distribution among
all distributions with the same E[V ]. �

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the achievable rates
and capacities obtained in previous sections. We propose a
finite cardinality achievable scheme and consider capacities in
the extreme cases of infinite and zero energy storage.

A. A Finite Cardinality Achievable Scheme

We propose a class of achievable schemes that use a finite
cardinality auxiliary variable U . In particular, we design an
encoding function f(u, z) and the attempts to send the energy
carrying symbol are performed at every channel use after
f(u, z). This scheme corresponds to an achievable scheme in
the following timing channel:

T = V + Z + Zh (39)

where Zh is geometrically distributed over the set {0, 1, 2, . . .}
with parameter pon and the transmitter has perfect knowledge
of only Z. Note that this scheme is an extension of the schemes
for non-fading channel considered in [1], [2]. In particular,
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Fig. 3. Achievable rates and capacities versus the fading probability for fixed
energy arrival rate q = 0.1.

we consider the following encoding function as in the hybrid
scheme in [2]:

V =

{
U − Z + 1, U ≥ Z
(U − Z mod N) + 1, U < Z

(40)

The rates achievable with this scheme are calculated by
searching for N and pU (u) that maximize R = I(U ;T )

E[T ] . We
note that this achievable scheme does not make the best use of
the channel fading information as the stopping rule v(u, z, g)
cannot fully adapt to the memoryless fading process.

B. Capacities with Infinite and Zero Batteries

When there is zero battery to save energy in the transmitter
and the incoming energy can be used only in that channel use,
we obtain a new on-off fading channel with on probability
qpon and fading state information perfectly available at the
transmitter only. In this case, the capacity is [5]:

CZS = max
pT (t)

I(T ;Y ) (41)

where p(y|t) = qponδ(t− y) + (1− qpon)δ(y).
When there is infinite-sized battery at the transmitter, the

capacity is achieved by a Shannon strategy with respect to the
channel fading only and an average constraint on the number
of 1s put to the channel [4]:

CIS = max
pT (t):E[T ]≤ q

pon

I(T ;Y ) (42)

where p(y|t) = ponδ(y − t) + (1− pon)δ(y).
In Fig. 3, we plot achievable rates and capacities with

respect to the fading probability pon for q = 0.1. We also
plot achievable rates by Shannon strategies [3]. We observe
that the achievable rate by the proposed timing based encoding
scheme is below the achievable rate by naı̈ve and optimal i.i.d.
Shannon strategies for moderate pon values. In contrast, the
achievable rate by timing based encoding scheme outperforms
the other achievable schemes as the channel gets closer to
the nonfading channel, corroborating the finding in [2]. We
also observe that the capacity with energy arrival information
is very close to the achievable rates without energy arrival
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Fig. 4. Channel capacities versus the energy arrival rate.

information at the receiver for moderate to small pon. Hence,
the value of energy arrival information at the receiver is
becoming less as pon becomes smaller.

In Fig. 4, we provide comparison of channel capacities
under zero and infinite energy storage and the channel capacity
with energy and fading state information at the transmitter with
respect to the energy arrival rate. We provide this comparison
for pon = 0.5 and pon = 0.7. We observe that the capacity
with infinite energy storage is surpassed by the capacity with
energy arrival and fading information at both sides as q
increases. This suggests that the value of energy storage space
diminishes with respect to the value of fading state information
as the energy arrival probability increases.
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