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Abstract—We propose a model of secure communication over
wireless channels in which the legitimate parties leverage Radio
Tomographic Imaging (RTI) to learn the adversary. Specifically,
we model the results of RTI as an “in band” sensing channel that
provides causal information about the eavesdropper’s path-loss to
the transmitter. This ability to learn the path-loss is exploited to
achieve secrecy, even in presence of an eavesdropper that moves
to optimize its path-loss and improves its eavesdropping. We show
that the secrecy rates achieved are the same as those that would
have been obtained with hindsight, had the transmitter known
the average path-loss ahead of time.

I. INTRODUCTION

While cryptographic encryption solutions based on public
and private keys have been widely and successfully used, even
strong encryption protocols, such as the widely used WPA2,
are not immune to flaws in their implementations. Wireless
Physical-Layer Security [1]–[3] has the potential to address
these challenges by providing security guarantees on which to
fall back even if everything else fails. Despite much progress
and success in the analysis of various adversarial models [4]–
[8] and in the design of coding schemes [9], [10], the scope
of Wireless Physical-Layer Security (WPLS) has been limited.
This is in large part due to the fact that the formulations
have either been under idealistic assumptions, in particular
in regards to what is known to the legitimate parties about
the adversary, e.g., its channel [11], or in overly pessimistic
scenarios, in which nothing is known about the adversary’s
conditions [12] or that the adversary has control over the
physical channel and can alter the system of the legitimate
parties [5], [13].

We recently suggested that there might exist a realistic
middle ground between these two extremes [14]. Specifically,
we have proposed a variation of attacker-controlled state-
dependent wiretap models, in which the transmitter also has
the opportunity to causally “learn” the states chosen by the
adversary. For Discrete Memoryless Channels (DMCs) and
binary states, we showed the perhaps surprising result that
the legitimate parties can achieve the rates that they would
have obtained had they known with hindsight the fraction
of channel used corresponding to each state used by the
adversary. Although, this result suggests the possibility of
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jointly transmitting secret information and learning the ad-
versary, the modeling was fairly abstract. The objective of
the present work is to show how the framework put forward
in [14] may be adapted to the scenario of [12], which is more
directly relevant to WPLS. In particular, our main conceptual
contribution is the idea that the wireless medium enables the
legitimate parties to learn the environment (and thus, the
adversary) at the physical layer, supported by experimental
results that have exploited wireless communication devices
for “device-free” localization and tomography, also known
as Radio Tomographic Imaging (RTI) [15]. Our technical
contribution is to extend the approach and results of [14] to
the continuous case model of [12], which requires different
technical tools.

The paper is organized as follows. In Section II, we motivate
a model for WPLS with “in band sensing” of the adversary’s
channel that captures the ability to learn the adversary. In
Section III, we develop our main result for this model, which
states that the secrecy rates are those that would have been
obtained with hindsight, had the transmitter known the average
channel gain of the adversary ahead of time.

II. WIRELESS MODEL

We consider the situation in which a legitimate transmitter
(Alice) attempts to communicate a secret message to a legit-
imate receiver (Bob) in the presence of an adversary (Eve).
As in [12], Eve is assumed to be capable of strategically
controlling her observations through the arbitrary choice of
her fading gains. We assume that the channels are memoryless
and that fading is dominated by path-loss. At every discrete
time instant i, a symbol xi ∈ R sent by Alice is received by
Bob and Eve as yi ∈ R and zi ∈ R, respectively, given by
yi = hxi + nm,i and zi = gixi + ne,i, where h and {gi}
are positive real-valued path-loss coefficients, and {nm,i},
{ne,i} are independent and identically distributed (i.i.d.) zero-
mean Gaussian noises with variance one. We assume that the
legitimate parties know the path-loss coefficient h between
Alice and Bob, e.g., through the use of pilot symbols, and
that h remains fixed for the duration of the transmission,
which is relevant for situations with little mobility. However,
in contrast with traditional models for WPLS, we only assume
that gi ∈ G ,]0, g∗] for some known g∗; in particular, i) there
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is no known prior placed on gi; ii) gi could even change from
one channel use to the next if the eavesdropper is moving to
optimize its eavesdropping capability [4], [12]. In this setting,
traditional notions of secrecy capacity or even outage secrecy
capacity do not apply in that we do not have a prior setting
of the communication length.

We assume, however, that Alice and Bob can enroll other
wireless devices, such as those part of an Internet of Things
(IoT) platform, to perform Radio Tomographic Imaging (RTI).
Recent advances [15], [16] have shown that simple measure-
ments, such as Receive Signal Strength (RSS), can provide
sub-meter localization in challenging environments, even with
passive objects. The localization information provided by RTI
can then be transformed into path-loss information. We model
the overall ability to perform RTI by the existence of a
sensing channel providing information about {gi} to Alice
and characterized at each time instant i by xi = gixi + ne,i,
where {ne,i} is an i.i.d. zero-mean Gaussian noise with unit
variance. This modeling abstracts the fine details of RTI,
but nevertheless maintains the idea that information about
gi is obtained “in-band,” through the same wireless channel
as the transmission. This also captures the requirement that
Alice should participate in RTI, and should potentially expend
channel uses to obtain the information. We refer to this model
as in-band sensing of the adversary’s channel.

Formally, a code for this channel model is similar to [14].
Since the number of message bits is unknown at the beginning
of transmission, we assume instead that Alice has K uniformly
distributed bits W , (W1, · · · ,WK) ∈ {0, 1}K , M, and
that only the first ψ bits will be transmitted. The encoder
consists of N possibly stochastic functions f = (f1, · · · , fN )
where fi : Ri−1 × M → R outputs a symbol for the
transmission over the channel based on the past observations
of the sensing channel. The total number of transmitted bits
ψ : RN → J0,KK is a function of Alice’s observations and
is determined after the N th transmission. The decoder is a
function φ : RN → M, which allows the receiver to form
an estimate (Ŵ1, · · · , ŴK) = φ(Y) of the transmitted bits.
Since the channel is varying according to Eve’s path-loss coef-
ficients, Bob is not required to reliably decode all bits; instead,
we assume that there exists a function ψ̂ : RN → J0,KK
that estimates the number of bits actually transmitted. The
quadruple (f , φ, ψ, ψ̂) defines an (N,K) code C, and the
functions f , φ, ψ, and ψ̂ are assumed to be publicly known.
For all sequences of N path-loss coefficients g, the reliability
is measured with a probability of error defined as

Pe(C|g) , P
(
ψ̂(Y) 6= ψ(X)

or ∃k ∈ J1, ψ̂(Y)K : Ŵk 6= Wk

∣∣g) , (1)

and secrecy is measured through the mutual information
I(W;Z|g). The rate of the code is a function of the adver-
sary’s path-loss coefficients and is a random variable defined
as ψ(X)

n . The average power of the code is also defined as
1
N

∑N
i=1 E

(
X2
i

)
.

Definition 1: For a fixed sequence {gN ∈ GN}N>1 of path-
loss coefficients, we say that a sequence of (N,KN ) codes
{CN = (fN , φN , ψN , ψ̂N )}N>1 achieves a rate R with average
power P , if and only if, we have

lim
N→∞

1

N

N∑
i=1

E
(
X2
i

)
6 P, lim

N→∞
I(W;Z|gN ) = 0, (2)

lim
N→∞

Pe(CN |gN ) = 0, and lim
N→∞

P
(
ψ(X)

N
6 R

)
= 0.

(3)

III. MAIN RESULT

Our main result is the characterization of the secrecy rates
that can be achieved in the proposed model for any sequence
of path loss for the adversary.

Theorem 1: For ζ > 0, there exists a sequence of (N,KN )
codes {CN}N>1 that, for all IZ , achieves the secrecy rate[

1

2
log(1 + h2P )− IZ

]+

− ζ (4)

for every sequence {gN}N>1 such that

lim
N→∞

∑N
i=1

1
2 log(1 + g2

i P )

N
= IZ . (5)

Theorem 1 is meaningful in that i) it claims the existence
of a universal sequence of codes that achieves secrecy for
all path-loss sequences; ii) the secrecy rate is what would be
achieved had we known the average path-loss ahead of time. In
other words, although learning is strictly causal and the path-
loss of the adversary is not predicted, our proposed scheme
performs as if the path-loss of the adversary had been known in
advance. We also emphasize that, as evident from our proof
of Theorem 1, the protocol operates in the regime of finite
blocklength without requiring any properties on the path-loss
sequence of the adversary. The asymptotic condition in (5) is
merely for convenience and elegance of the theorem statement.

IV. PROOF OF THEOREM 1

The proof follows the steps of [12], with the necessary
modifications to account for layered secrecy coding and the
presence of causal sensing. We start by recalling a concentra-
tion of measure result that will prove useful in our analysis.

Theorem 2 (Hanson-Wright): Let X = (X1, · · · , Xn)T be
a random vector such that X1, · · · , Xn are independent, and
for all i ∈ J1, nK, we have E(Xi) = 0 and

‖Xi‖ψ2
, sup

p>1
p−

1
2 (E(|Xi|p))

1
p 6 K. (6)

Then, there exists a universal constant c > 0 such that for any
n× n matrix and any t > 0, we have

P
(
|XTAX− E

(
XTAX

)
| > t

)
6 2 exp

[
−cmin

(
t2

K4‖A‖2
HS

,
t

K2‖A‖

)]
, (7)
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where

‖A‖ , sup
x∈Rn:‖x‖

2
=1

‖Ax‖
2

and ‖A‖HS ,
√

tr (ATA). (8)

Lemma 1: Let X1, · · · , Xn, N1, · · · , Nn be a sequence of
independent random variables such that for all i ∈ J1, nK,
Xi and Ni are distributed according to N (0, P ) and N (0, 1),
respectively. Let us define Zi , giXi + Ni for constants
g1, · · · , gn ∈ R. We then have

P

(
n∑
i=1

log
pZi|Xi(Zi|Xi)

pZi(Zi)
>

1

2

n∑
i=1

log
(
1 + g2

i P
)

+ nζ

)
6 2 exp (−nξ) , (9)

where pZi|Xi is the conditional Probability Distribution Func-
tion (PDF) of Zi given Xi, pZi is the PDF of Zi, and

ξ 6
cζ

K2
min
i

min

(
ζ

K2 (g4
i (P 2 + 1) + 2g2

i )
,

2∣∣∣gi√g2
i (1 + P )2 + 4

∣∣∣
 (10)

with K ,
√

2/πmax(
√
P , 1). In particular, if |gi| 6 g∗ for

all i ∈ J1, nK, ξ can be chosen such that it depends only on c,
ζ, P , and g∗.

Proof: Since Zi is distributed according to N (0, 1+g2
i P ),

and given Xi = xi, Zi is distributed according to N (gixi, 1),
by definition, we have

log
pZi|Xi(Zi|Zi)
pZi(Zi)

=
1

2
log
(
1 + g2

i P
)
− (Zi − giXi)

2

2
+

Z2
i

2(1 + g2
i P )

(11)

=
1

2
log
(
1 + g2

i P
)
− g2

i PN
2
i

2(1 + g2
i P )

+
g2
iX

2
i

2(1 + g2
i P )

+
giXiNi
1 + g2

i P
. (12)

For X , (N1, · · · , Nn, X1, · · · , Xn)T ∈ R2n and

A =
1

2

Diag
(
− g21P

1+g21P
,··· ,− g2nP

1+g2nP

)
Diag

(
g1

1+g21P
,··· , gn

1+g2nP

)
Diag

(
g1

1+g21P
,··· , gn

1+g2nP

)
Diag

(
g21

1+g21P
,··· , g2n

1+g2nP

)
 , (13)

we therefore obtain that

P

(
n∑
i=1

log
pZi|Xi(Zi|Xi)

pZi(Zi)
>

1

2

n∑
i=1

log(1 + g2
i P ) + nζ

)
= P

(
XTAX− E

(
XTAX

)
> ζn

)
. (14)

To apply Theorem 2 to the right hand side of the above
equality, note that

‖Ni‖ψ2
= sup

p>1
p−

1
2 (E(|Ni|p))

1
p (15)

= sup
p>1

p−
1
2

(
(2)

p
2 Γ
(
p+1

2

)
√
π

) 1
p

=

√
2

π
, (16)

and similarly,

‖Xi‖ψ2
=

√
2P

π
. (17)

In addition, one can check that

‖A‖ 6 1

2
max
i∈J1,nK

∣∣∣∣gi√g2
i (1 + P )2 + 4

∣∣∣∣ , (18)

and

‖A‖HS 6
√
n max
i∈J1,nK

√
g4
i (P 2 + 1) + 2g2

i . (19)

We therefore obtain for K ,
√

2/πmax(
√
P , 1) that

P
(
XTAX− E

(
XTAX

)
> ζn

)
6 2 exp

[
−cmin

(
ζ2n2

K4‖A‖2
HS

,
ζn

K2‖A‖

)]
, (20)

which is less than 2 exp(−ξn) for

ξ =
cζ

K2
min
i

min

(
ζ

K2 (g4
i (P 2 + 1) + 2g2

i )
,

2∣∣∣gi√g2
i (1 + P )2 + 4

∣∣∣
 . (21)

If |gi| 6 g∗ for all i ∈ J1, nK, we also lower-bound ξ by

cζ

K2
min

(
ζ

K2
(
g∗4(P 2 + 1) + 2g∗2

) , 2

g∗
√
g∗2(1 + P )2 + 4

)
,

(22)

which depends only on c, ζ, P , and g∗.
We now show the existence of an encoder guaranteeing
layered-secrecy for all fading coefficients of Eve. Specifically,
let IZ(g) , 1

2 log(1 + g2P ) and consider a random encoder
F : {0, 1}k → Rn encoding k uniformly distributed bits
W = (W1, · · · ,Wk) into a codeword of length n, X. We
then prove that for an appropriate distribution on the random
encoder, with high probability, for all sequences of fading
coefficients g ∈ Gn , if the sequence X is transmitted over an
Additive White Gaussian Noise (AWGN) channel described
with fading coefficients g to obtain sequence Z ∈ Rn, the
mutual information between the first ≈ k −

∑n
i=1 IZ(gi) bits

of W and Z is negligible, as formalized in the next lemma.
Lemma 2: Let ζ > 0, k and m(g) , k −

∑n
i=1 IZ(gi) −

ζn for all g ∈ Gn. Let F : {0, 1}k → Rn be a random
encoder whose codewords are drawn independently according
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to N (0, P )⊗n. There exists ξ > 0 depending only on c, ζ, P ,
and g∗

PF (∀g ∈ Gn s.t. m(g) > ζn,

I
(
W1, · · · ,Wm(g)−ζn;Z|g

)
6 2−ξn) > 1− 2−2ξn . (23)

Proof: We prove the lemma in four steps as in [12].
a) Step 1: We show that for a fixed g, the expectation

under random coding of the information leakage measured
in terms of the variational distance is exponentially small.
Let P̂WZ be the induced probability measure on W and Z
when using the encoder F .1 Let X1, · · · , Xn and N1, · · · , Nn
be two i.i.d. sequences with generic distributions N (0, P ) and
N (0, 1), respectively. Let Zi , giXi +Ni for i ∈ J1, nK. By
deriving secrecy from resolvability, we obtain

EF
(
V
(
P̂W1···Wm(g)Z, P̂W1···Wm(g) × P̂Z

))
6 2EF

(
V
(
P̂W1···Wm(g)Z, P̂W1···Wm(g)

× PZ

))
(24)

= 2
∑

w1,··· ,wm(g)

1

2m(g)
EF
(
V
(
P̂Z|W1=w1···Wm=wm(g)

, PZ

))
(25)

(a)

6 2P

(
n∑
i=1

log
pZi|Xi(Zi|Xi)

pZi(Zi)
> γ

)
+ 2

γ−(k−m(g))
2 +1 (26)

where PZ is the distribution of random vector Z =
(Z1, · · · , Zn), and (a) follows from [17, Lemma 2] for all
γ ∈ R. Choosing

γ =

n∑
i=1

IZ(gi) +
ζn

2
, (27)

Lemma 1 implies that for some ξ′1 depending on c, P , ζ, g∗,

P

(
n∑
i=1

log
pZi|Xi(Zi|Xi)

pZi(Zi)
> γ

)
62−ξ

′
1n, (28)

and by the definition of m(g) and γ, we have

2
γ−(k−m(g))

2 +1 6 2−
ζn
4 +1. (29)

Thus, if ξ1 < min(ξ′1, ζ/4) for large enough n we have

EF
(
V
(
P̂W1···Wm(g)Z, P̂W1···Wm(g) × P̂Z

))
6 2−ξ1n. (30)

b) Step 2: We show that, with high probability, the
information leakage measured in variational distance is
exponentially small for a fixed fading coefficients g ∈ Gn
such that m(g) > ζn. One can show that

PF
(
V
(
P̂W1···Wm(g)Z, P̂W1···Wm(g) × PZ

)
> 2−ξ1n+1

)
6 exp

(
−2m(g)−2ξ1n+1)

)
. (31)

1Note that W and Z are discrete and continuous random variables,
respectively, and therefore, their joint probability measure is a mixed of
continuous and discrete probability measures.

By our choice of g and ξ1 have

m(g)− 2ξ1n+ 1 >
1

2
ζn. (32)

We therefore obtain for ξ2 < min(ξ1, ζ/2)

PF
(
V
(
P̂W1···Wm(g)Z, P̂W1···Wm(g) × PZ

)
> 2−ξ2n

)
6 2−2ξ2n .

(33)

c) Step 3: We show how an upper-bound on the
information leakage with variational distance implies an
upper-bound on the information leakage with relative
entropy. One can show that

I
(
W1, · · · ,Wm(g);Z

)
6 4m(g)V

(
P̂W1···Wm(g)Z, P̂W1···Wm(g)

× PZ

)
, (34)

where (a) follows from [18, Eq. (360)]. As a result, we have
for 0 < ξ3 < min(ξ2) and n large enough

P
(
I
(
W1, · · · ,Wm(g);Z

)
> 2−ξ3n

)
6 2−2ξ3n . (35)

d) Step 4: With proper quantization, we show how to
guarantee secrecy for all g ∈ Gn. For any ∆ > 0, we define
Q∆(g) , ∆dg/∆e and Qn∆(g) = (Q∆(g1), · · · , Q∆(gn)),
for which one can check that |Q∆(g)− g| 6 ∆. Since IZ(g)
is uniformly continuous on G, there exists positive integer d
depending on ζ, g∗, and P such that for all g1, g2 ∈ G, |g1 −
g2| 6 g∗/d implies that |IZ(g1) − IZ(g2)| < ζ. By setting
∆ = g∗/d, we therefore have

m(Qn∆(g)) = k −
n∑
i=1

IZ(Q∆(gi))− ζn (36)

> k −
n∑
i=1

(IZ(gi) + ζ)− ζn (37)

= m(g)− ζn (38)

Note that for any 0 < g1 6 g2 the channel Z = g1X + N is
degraded with respect to the channel Z = g2X + N . Hence,
for a fixed encoder f , by the data processing inequality, we
have for all m ∈ J0, nK

I(W1, · · · ,Wm;Z|g) 6 I(W1, · · · ,Wm;Z|Qn∆(g)). (39)

and using a union bound one can show

PF (∀g ∈ Gn s.t. m(g) > ζn,

I
(
W1, · · · ,Wm(g)−ζn;Z|g

)
6 2−ξn) > 1− 2−2ξn . (40)

Corollary 1: For all ζ > 0 and P > 0, there
exists ξ > 0 such that for n large enough and
k , n

(
1
2 log

(
1 + h2P

)
− ζ
)
, there exists a pair of en-

coder/decoder (f, φ) where f : {0, 1}k → Rn and φ : Rn →
{0, 1}k with probability of error less than 2−nξ and for all
g ∈ Gn such that m(g) > ζn, we have

I
(
W1, · · · ,Wmax(0,m(g));Z|g

)
6 2−ξn. (41)
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Finally the average power of the code is less than P + o(1). 2

V. OUR PROPOSED CODING SCHEME

Fixing n,B, t, t′ ∈ N, the transmission happens over N =
B(n+ t) + t′ channel uses with B sub-blocks of length n+ t.

a) Encoding: Let Wb = (W b
1 , · · · ,WB

k ) be the message
bits to be transmitted in sub-block b and Lb = (Lb1, · · · , LBk )
be auxiliary uniformly distributed bits used for encoding of
sub-block b. We also define A0 , (0, · · · , 0) ∈ {0, 1}k and
m0 , 0. At the beginning of sub-block b ∈ J1, BK, Alice
forms the sequence Ab = (Ab1, · · · , Abk) according to

Abi ,

{
Ab−1
i ⊕W b

i i ∈ J1,mb−1K,
Lbi i ∈ Jmb−1, kK.

(42)

Alice then encodes Ab into the codeword of length n Xb ,
f(Ab) using the encoder f as in Corollary 1. Alice also
chooses t positions Jb = (J1, · · · , Jt) uniformly at random
with 1 6 J1 < · · · < Jt 6 n + t for estimation. She
subsequently transmits η, whose value will be specified later,
on the positions in Jb and transmits Xb on the remaining n
positions. At the end of sub-block b, Alice sets

mb , k − n

t

t∑
i=1

IZ
(
XJi

η

)
− 2ζn. (43)

Alice finally uses the last t′ channel uses to send J1, · · · ,JB
together with m1, · · · ,mB using any channel code.

b) Decoding: Bob first decodes J1, · · · ,JB and
m1, · · · ,mB and forms the sequence Y1, · · · ,YB where Yb

is his observation in sub-block b on the positions Alice did
not used for estimation. He then decodes Ab as Âb , φ(Yb)
for b ∈ J1, BK and defines

Ŵ b
i = Âbi ⊕ Âbi−1 i ∈ J1,mb−1K. (44)

c) Reliability Analysis: Since the probability of error in
each sub-block is 2−nξ, the overall one is bounded by B2−nξ.

d) Secrecy Analysis: In the following lemma, we first
show that mb is a good approximation of m(gb).

Lemma 3: For a constant ζ ′ > 0 depending on ζ and g∗,

P
(
m(gb)− 2ζn 6 mb 6 m(gb)

)
> 1− 2ne−

η2ζ′2
2 − 2e

− tζ2

2IZ (g∗)2 . (45)

Proof: Omitted because of space limit.
Following the same calculation for DMCs [14], we obtain that

I(Z;W|g) 6 KB

(
2ne−

η2ζ′2
2 + 2e

− tζ2

2IZ (g∗)2

)
+B22−ξn.

2As ζn appears in m(g), by properly re-defining ζ and ξ, we can remove
the condition m(g) > ζn and guarantee the secrecy of the first m(g) bits.

e) Rate Analysis: By Lemma 3, the achievable rate is
1

N

B−1∑
b=1

mb

>

[
1

2
log(1 + Ph2)− 1

N

B∑
b=1

n∑
i=1

IZ(gbi ) +O(ζ +
1

B
)

]+

.

with probability at least 1−B(2ne−
η2ζ′2

2 + 2e
− tζ2

2IZ (g∗)2 ).
f) Power Analysis: On the positions used for data trans-

mission the average power is less than P+o(1) by Corollary 1.
On the positions used for estimation, the average power is η.
The overall average power would be t

n′ η + n
n′ (P + o(1)).

Therefore, to achieve the rate R with average power P , it is
enough to choose n′ = b

√
Nc, t = b

√
n′c, and η =

√
t.
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