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Generalizing Multiple Access Wiretap and
Wiretap II Channel Models: Achievable

Rates and Cost of Strong Secrecy
Mohamed Nafea , Member, IEEE, and Aylin Yener , Fellow, IEEE

Abstract— In this paper, new two-user multiple access wiretap
channel models are studied. First, the multiple access wiretap
channel II with a discrete memoryless main channel under
different wiretapping scenarios is introduced. The wiretapper,
as in the classical wiretap channel II model, chooses a fixed-
size subset of the channel uses, in which it obtains noise-free
observations of one of the codewords: a deterministic function,
e.g., superposition, of the two codewords or each of the two
codewords. A fourth wiretapping scenario is considered, in which
the wiretapper, in each position it chooses, decides to observe
either one of the codewords or both codewords, with an overall
budget on the number of its noiselessly observed symbols. These,
thus, extend the recently examined wiretap channel II with a
noisy main channel to a multiple access setting with a variety
of attack models for the wiretapper. Next, the proposed multiple
access wiretap channel II models are further generalized to the
case when the wiretapper observes the outputs of a discrete
memoryless channel, instead of erasures, outside the subset of
noiseless observations. Achievable strong secrecy rate regions for
all the proposed models are derived. Achievability is established
by solving dual multi-terminal secret key agreement problems
in the source model and converting the solution to the original
channel models using probability distribution approximation
arguments. The derived achievable rate regions quantify the
secrecy cost due to the additional capabilities of the wiretapper
with respect to the previous multiple access wiretap models.

Index Terms— Multiple access wiretap channel, wiretap chan-
nel II, new wiretap channel models, strategic adversaries, strong
secrecy, source-channel duality, random binning, concentration
inequalities.

I. INTRODUCTION

THE wiretap channel II in which the legitimate terminals
communicate over a noiseless channel and the wiretapper

has perfect access to a fixed fraction of its choosing of the
transmitted bits, has been introduced in [3]. This model, while
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similar to a classical wiretap channel [4], [5] with a noiseless
main channel and a binary erasure wiretapper channel, models
a more powerful wiretapper which is able to select the posi-
tions of erasures. Reference [3] has shown that the secrecy
capacity of the wiretap channel II model does not increase
if the wiretapper is a passive observer with a binary erasure
channel whose erasures are randomly chosen by nature.

Considerable amount of research on practical code design
for secrecy has been motivated by the coset coding scheme
devised in [3], see for example [6]–[10]. However, for several
decades, there has been no effort for generalizing the wiretap II
model outside the special scenario of the noiseless main chan-
nel. Recently, [11] has introduced a discrete memoryless main
channel to the wiretap cahnnel II, and derived inner and outer
bounds for its capacity-equivocation region. Reference [12]
has characterized the secrecy capacity of this model, showing
that, once again, the secrecy capacity does not increase when
the more powerful wiretapper is replaced with an erasure
channel.

More recently, [13] has introduced the generalized wiretap
channel model and identified its secrecy capacity. In this
model, the main channel is a discrete memoryless channel
while the wiretapper, besides noiselessly observing a subset
of its choice of the transmitted codeword symbols, observes
the remainder through a discrete memoryless channel. This
new model subsumes both the classical wiretap channel [5]
and the wiretap channel II with a discrete memoryless main
channel [11] as its special cases. The secrecy capacity of
this generalized model quantifies the secrecy penalty of the
additional capability at the wiretapper with respect to the pre-
vious wiretap models. In addition, the results in [3], [11]–[13]
demonstrate the immunity of wiretap (stochastic) encoding
against a more powerful wiretapper which is able to choose
where to tap.

The notion of a “strategic adversary”, inspired by the
wiretap II model, in which the adversary designs a partial
attack by monitoring, modifying, and/or corrupting a subset
of its choice of either the legitimate communication or the
information contents at legitimate nodes in the network, has
attracted a wide spectrum of research in recent years. This
strategic adversary has been considered in several problems
such as secure network coding [14], [15], secure distributed
storage systems [16], [17], active adversarial attacks [9], and
adversarial erasure channels [18].
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These developments reflect on the wide scope of application
for the strategic adversary model in the wiretap channel II.
The wiretap channel II provides an intermediate ground for
modeling adversarial capabilities between either overly opti-
mistic or overly pessimistic assumptions with regard to what
can be known about the adversary. In particular, theoretical
frameworks developed so far assume either a purely passive
observer as in Wyner’s classical wiretap channel and its multi-
terminal extensions [19]–[25]; or an over-powerful arbitrarily
varying wiretap model [26]–[29] which captures complete
uncertainty about the adversary’s jamming and eavesdropping.
Being a middle ground between these two extremes makes the
wiretap channel II model interesting to consider and motivates
further investigation of the model. Generalizing the wiretap
channel II outside the point-to-point setting and investigating
the impact of designed adversarial attacks in multi-terminal
networks is the natural next step, which is the focus of this
work.

In this paper, we extend the generalized wiretap channel
in [13] to the multiple access scenario [21]. In particular,
we first consider the special case of the multiple access
wiretap channel II with a discrete memoryless main channel,
and propose three different attack models for the wiretapper.
In each of these models, the wiretapper chooses a fixed-size
subset of the channel uses and observes erasures outside this
subset. In the first wiretapping model, the wiretapper, in each
position of the subset, decides to observe either the first or
the second user’s symbol. In the second model, the wiretapper
observes a deterministic function, e.g., superposition, of the
two transmitted symbols in the positions of the subset, while
in the third model, the wiretapper observes the transmitted
symbols of both users. Further, we consider a fourth wiretap-
ping model in which the wiretapper chooses two subsets of
the channel uses whose overall size is fixed, and observes the
transmitted symbols of the first (second) user in the positions
of the first (second) subset, and erasures otherwise. The fourth
wiretapping model thus generalizes the wiretapper’s strategy
space in the first and third models in which the wiretapper is
restricted to choose two non-overlapping and identical subsets,
respectively.

The first attack model is a setting in which the wiretapper
is able to tap one of the two transmissions but not both.
For instance, if two transmitters are distant from each other,
the wiretapper may need to get close to one in order to
obtain noise-free observations, and thus is able to tap one at
a time. The second attack model mimics a medium that, for
instance, superposes both transmissions (e.g., wireless), where
the attacker is close enough to both transmitters. In the third
attack model, the wiretapper is able to tap both codewords
individually in the same positions, which can be interpreted
as the wiretapper being able to obtain noiseless (partial) side
information about both transmitted codewords. The fourth
attack model is an intermediate setting between the first and
third models, where the wiretapper is able to choose between
tapping the two codewords at two identical, overlapping,
or distinct sets of positions.

For each of these models, we derive an achievable strong
secrecy rate region. Even though the third attack model,

in which the wiretapper sees the transmitted symbols of both
users, is stronger than the first, the ability of the wiretapper
in the first model to choose which user’s symbol to tap
into results in identical achievable strong secrecy rate regions
for the two models. That is, each transmitter designs their
encoding according to the worst case scenario in which the
wiretapper chooses to see its symbols in all positions of the
subset. Similarly, in the fourth attack model, the worst case
scenario for each transmitter is when the wiretapper spends
all of its budget on observing only its symbols, resulting in an
achievable rate region that is identical to the first and third
models. The achievable secrecy rate region for the second
attack model is shown to be larger than the achievable secrecy
rate region for the other three models, demonstrating the
intrinsic cooperation introduced by the medium.

After obtaining these insights, we generalize these models
by replacing the wiretapper’s erasures with noisy channel
outputs as was done in [13] for the single user channel.
In particular, we generalize the multiple access wiretap chan-
nel II with a discrete memoryless main channel under the pro-
posed wiretapping scenarios to the case when the wiretapper
observes the remainder of the codewords of both users sepa-
rately through a discrete memoryless channel. The generalized
multiple access wiretap channel, under the third wiretapping
scenario, also generalizes the multiple access wiretap channel
in [20], [21], [30] to the case when the wiretapper is provided
with a subset of its choosing of noise-free observations of both
users symbols. Achievable strong secrecy rate regions which
quantify the secrecy cost, with respect to the multiple access
wiretap channel, of the additional capabilities of the wiretapper
in these generalized models are derived.

Achievability of the strong secrecy rate regions for all the
proposed models is established by muti-terminal extensions
of methods in [13], [31], [32]. In particular, for each of the
proposed models, a corresponding dual multi-terminal secret
key agreement problem in the source model is introduced.
In this dual model, two independent sources wish to agree
on two indepedent keys with a common decoder in the
presence of a compound wiretapping source. We solve the
problem in the dual source model, and convert the solution
to the original channel model by means of deriving the joint
distributions of the two problems to become almost identical,
in the total variation distance sense. The technical challenge
in the present paper lies in generalizing the tool utilized for
establishing secrecy of the key in the dual source model from
the single source case, [13, Lemma 2], to the case of two
independent sources. This is done by adapting the lemma
in order to establish all the corner (extreme) points of the
rate region for the two keys, generated at the independent
sources, such that the convergence rate for the probability
of the two keys being independent from the wiretapper’s
observation is doubly-exponential. Time sharing between the
resulting corner points produces the desired rate region. This
doubly-exponential convergence rate is needed in order to
exhaust the exponentially many possible strategies for the
wiretapper [12], [13].

Overall, the contributions of this paper are summarized as
follows:
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1) We introduce the multiple access wiretap channel II
with a noisy main channel under different wiretapping
scenarios which feature different adversarial capabili-
ties and different transmission media. In these models,
the wiretapper chooses subset(s) of noise-free observa-
tions, in different forms, and observes erasures outside
the subset(s) it chooses.

2) We derive achievable strong secrecy rate regions for all
the proposed models, and highlight the insights drawn
from the derived regions.

3) We further generalize the proposed multiple access wire-
tap channel II models to the case when the wiretapper
observes noisy outputs, instead of erasures, outside the
subset(s) of noiseless observations. We derive achiev-
able strong secrecy rate regions for these generalized
models and quantify the secrecy cost of the additional
capabilities at the wiretapper.

4) In order to derive the achievable strong secrecy rate
regions in this paper, we generalize a one-shot lemma
which provides a doubly-exponential convergence rate
for the security measure in a single-user source-modeled
secret key agreement problem [13, Lemma 2] to the
case of two sources. Generalizing this lemma to directly
obtain a rate region for the keys generated at the sources
is troublesome. Instead, we adapt the lemma to obtain
corner points of the rate region and deduce the desired
region by time sharing between these points.

The remainder of the paper is organized as follows.
Section II provides the notation and definitions. Section III
describes the channel models considered in this paper.
Section IV presents the main results. The proofs of the results
are presented in Sections V and VI. Section VII provides a
discussion about the main results and the utilized achievability
approach. Section VIII concludes the paper.

II. NOTATION

We remark the notation we use throughout the paper.
Vectors are denoted by bold lower-case super-scripted letters
while their components are denoted by lower-case sub-scripted
letters. A similar convention but with upper-case letters is used
for random vectors and their components. A1 × A2 denotes
the Cartesian product of the sets A1 and A2. We use �{A} to
denote the indicator function of the event A. For a, b ∈ R,
[a : b] denotes the set of integers {i ∈ N : a ≤ i ≤ b}.
For a sequence of random variables (vectors) A1, · · · , An ,
we use A[i: j ] to denote the sub-sequence {Ai , · · · , A j }, where
1 ≤ i < j ≤ n. We also use AS � {Ai }i∈S for any S ⊆ [1 : n].
For a set S, where S ⊆ [1 : n], we use |S| to denote its
cardinality and Sc to denote its complement.

Probability distribution of a random variable X taking
values from the countable set X is denoted by lower-case
letters, such as pX or p̃X . We use upper-case letters to denote
a random probability distribution, e.g., PX or P̃X , which is
defined as follows:

Definition 1: Let (�,F, P) be a probability space, where
� is the sample space, F is the σ -algebra of events, and P

is the probability measure. For any countable set X, let �X

be the simplex of probability distributions over X. A random
probability distribution PX is a random vector which maps the
sample space � to the measurable space �X, i.e., PX : ω ∈
� �→ PX (.; ω). That is, for every x ∈ X, the mapping ω ∈
� �→ PX (x; ω) is a random variable. A random probability
distribution can as well be viewed as an indexed family of
distributions with a certain probability distribution over the
index set. A random joint probability distribution PXY , over
the product space X × Y, is defined similarly.

Notice that the law of total probability and the defini-
tion of conditional probability continue to hold for random
probability distributions. That is, PX = ∑

y∈Y PXY (x, y)

and PX |Y (x, y) = PXY (x,y)
PY (y) ; which means, for all ω ∈

�, PX (x; ω) = ∑
y∈Y PXY (x, y; ω) and PX |Y (x |y; ω) =

PXY (x,y;ω)
PY (y;ω) . For a countably-generated measurable space

(X,F), the probability distribution pX ∈ �X gives rise
to a probability measure over (X,F), denoted by PpX ; for
A ∈ F, PpX (A) = ∑

x∈A pX (x). We use EpX to denote the
expectation taken with respect to PpX . Similarly, we use IpX

to denote the mutual information taken with respect to the
probability distribution pX .

We use pU
X to denote the distribution of a uniform ran-

dom variable X . The argument of the probability distribution
is omitted when it is clear from its subscript. V(pX , qX )
and D(pX ||qX ) denote the total variation distance and the
Kullback-Leibler (K-L) divergence between the two probabil-
ity distributions pX and qX .

III. CHANNEL MODELS

We describe the channel models considered in this paper.
In Section III-A, we present the multiple access wiretap
channel II with a noisy main channel under the aforementioned
attack models for the wiretapper. Section III-B describes the
generalized multiple access wiretap channel models.

A. The Multiple Access Wiretap Channel II With a Noisy
Main Channel

Consider the channel model in Fig. 1. The main channel
{X1,X2,Y, pY |X1 X2} is a discrete memoryless channel con-
sisting of two finite input alphabets X1,X2, a finite output
alphabet Y, and a transition probability distribution pY |X1 X2 .
Each transmitter wishes to reliably communicate an indepen-
dent message to a common receiver and to keep it secret from
the wiretapper. To do so, transmitter j maps its message, W j ,
uniformly distributed over [1 : 2nR j ], into the transmitted
codeword Xn

j = [X j,1, · · · , X j,n] ∈ Xn
j using a stochastic

encoder, j = 1, 2. The receiver observes the sequence Yn =
[Y1, · · · , Yn] ∈ Yn and outputs the estimates Ŵ1, Ŵ2 of the
transmitted messages. As shown in Fig. 1, we consider the
following models for the wiretapper channel.

1) Model 1: This model is described in Fig. 1, when the
switch is on position 1. The wiretapper chooses the subset
Sp ∈ Sp and the sequence u = [u1, · · · , uμ] ∈ {1, 2}μ, where
Sp � {Sp ⊆ [1 : n] : |Sp| = μ ≤ n}. That is, Sp represents
the set of positions noiselessly tapped by the wiretapper and u
represents its sequence of decisions to observe either the first
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Fig. 1. The two-user multiple access wiretap channel II with a noisy main channel.

or the second user codeword symbols. We define the fraction
of the tapped symbols by the wiretapper as

α = μ

n
, 0 ≤ α ≤ 1. (1)

Let Sp(k) and u(k) denote the kth elements of the subset Sp

and the sequence u, where k ∈ [1 : μ]. The set S of all possible
strategies for the wiretapper is defined as

S �
{
(Sp(k), u(k)) : Sp ∈ Sp, u ∈ {1, 2}μ, k ∈ [1 : μ]} .

(2)

For S ∈ S, the wiretapper observes Zn
S =

[ZS,1, · · · , ZS,n] ∈ Zn , where

ZS,i =
{

X j,i , (i, j) ∈ S

?, (i, j) /∈ S,
(3)

‘?’ denotes an erasure, and the alphabet is Z � {X1∪X2}∪{?}.
2) Model 2: The model is described in Fig. 1, when the

switch is on position 2. The wiretapper chooses the subset
S ∈ S, where S is redefined as

S � {S ⊆ [1 : n] : |S| = μ ≤ n} . (4)

The wiretapper then observes Zn
S = [ZS,1, · · · , ZS,n] ∈ Zn ,

where

ZS,i =
{

g(X1,i , X2,i ), i ∈ S

?, i /∈ S; (5)

g : X1 × X2 �→ g(X1,X2) is a fixed deterministic function
which is not controlled by the wiretapper; g(X1,X2) is the
codomain of g, and Z � {g(X1,X2)} ∪ {?}. Thus, the wire-
tapper observes the outputs of a deterministic function of the
two users codeword symbols in the positions of the subset S,
and erasures otherwise. The ratio α is defined as in (1).

An example of the deterministic function g is the noiseless
superposition of the two users symbols, i.e., g(X1,i , X2,i ) =
X1,i + X2,i . For this case Z � {X1 +X2}∪{?}, where X1 +X2
denotes the Minkowski sum of the sets X1 and X2, i.e., X1 +
X2 � {x1 + x2 : x1 ∈ X1, x2 ∈ X2}.

3) Model 3: The model is described in Fig. 1, when the
switch is on position 3. The wiretapper chooses the subset
S ∈ S, with S defined as in (4), and observes Zn

S =
[ZS,1, · · · , ZS,n] ∈ Zn , where

ZS,i =
{

{X1,i , X2,i }, i ∈ S

?, i /∈ S,
(6)

and Z � {X1 × X2} ∪ {?}. That is, the wiretapper observes the
transmitted codeword symbols of both users in the positions
of the subset S, and erasures otherwise.

4) Model 4: The model is described in Fig. 1, when the
switch is on position 4. This wiretapping model represents an
intermediate setting between Models 1 and 3, where the wire-
tapper, in every position it chooses, decides to observe either
one symbol or both symbols, with an overall budget on the
number of the observed symbols. In particular, the wiretapper
chooses two (possibly overlapping) subsets S1, S2 ⊆ [1 : n],
such that |S1| + |S2| = μ. The set S of all possible strategies
for the wiretapper is defined as

S � {(S1, S2) : S1, S2 ⊆ [1 : n], |S1| + |S2| = μ ≤ n} . (7)

For S ∈ S, the wiretapper observes Zn
S = [ZS,1, · · · , ZS,n] ∈

Zn , where

ZS,i =

⎧
⎪⎨

⎪⎩

{X1,i , X2,i }, i ∈ S1 ∩ S2

X j,i , i ∈ Sj \ Sk, k 	= j

?, o.w.,

(8)

and Z � {X1 ∪ X2} ∪ {X1 × X2} ∪ {?}. The ratio α is defined
as in (1).

Next, we present generalized multiple access wiretap chan-
nel models which extend the attack models proposed in this
section to the case when the wiretapper sees noisy observa-
tions, instead of erasures, outside the subset(s) it chooses.
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Fig. 2. The generalized two-user multiple access wiretap channel.

B. The Generalized Multiple Access Wiretap Channel

Consider the channel model in Fig. 2. The main channel in
this model is identical to the main channel in Section III-A.
For the wiretapper channel, we consider the same wiretap-
ping models in Sections III-A.1-III-A.4, while replacing the
erasures with the outputs of the discrete memoryless multiple
access channel pV |X1 X2 . In particular, for the four wiretap-
ping models in Section III-A, ZS,i is defined as in (3), (5),
(6), and (8), with replacing ‘?’ by Vi ∈ V, where Vn =
[V1, · · · , Vn] ∈ Vn is the n-letter output of pV |X1 X2 , and V

is a finite alphabet. The alphabets Z are thus defined as in
Sections III-A.1-III-A.4 with replacing {?} by V.

For the channel models described in Sections III-A
and III-B, an (n, 2nR1 , 2nR2) channel code Cn � {C1,n,C2,n}
consists of two message sets W1 = [1 : 2nR1 ], W2 =
[1 : 2nR2 ]; two stochastic encoders P

(C1,n )

Xn
1 |W1

, P
(C2,n )

Xn
2 |W2

, and
a decoder at the receiver. (R1, R2) is an achievable strong
secrecy rate pair if there exists a sequence of (n, 2nR1 , 2nR2)
codes, {Cn}n≥1, such that

lim
n→∞P

(Cn)

⎛

⎝
⋃

j=1,2

(Ŵ j 	= W j )

⎞

⎠ = 0, (9)

and lim
n→∞ max

S∈S
I (Cn)(W1, W2; Zn

S) = 0. (10)

P
(Cn) and I (Cn) denote the probability measure and the mutual

information with respect to the joint probability distribution
induced by the code Cn . Strong secrecy capacity region for
the channel is the supremum of all achievable strong secrecy
rate pairs (R1, R2).

IV. MAIN RESULTS

We first present achievable strong secrecy rate regions
for the generalized multiple access wiretap channel in
Section III-B, under the four proposed attack models for the
wiretapper.

Theorem 1: For 0 ≤ α ≤ 1, an achievable strong secrecy
rate region for the generalized multiple access wiretap channel
under the wiretapper model 1, R(1)(α), is given by the convex
hull of all rate pairs (R1, R2) satisfying

R1 ≤ I (U1; Y |U2) − α I (U1; X1) − (1 − α)I (U1; V ) (11)

R2 ≤ I (U2; Y |U1) − α I (U2; X2) − (1 − α)I (U2; V ) (12)

R1 + R2 ≤ I (U1, U2; Y ) − α I (U1, U2; X1, X2)

− (1 − α)I (U1, U2; V ), (13)

for some distribution pU1 X1 pU2 X2 which satisfies the Markov
chains U1 − X1 − (Y, V ) and U2 − X2 − (Y, V ).

Theorem 2: For 0 ≤ α ≤ 1, an achievable strong secrecy
rate region for the generalized multiple access wiretap channel
under the wiretapper model 2, R(2)(α), is given by the convex
hull of all rate pairs (R1, R2) satisfying

R1 ≤ I (U1; Y |U2) − α I (U1; g(X1, X2)) − (1 − α)I (U1; V )

(14)

R2 ≤ I (U2; Y |U1) − α I (U2; g(X1, X2)) − (1 − α)I (U2; V )

(15)

R1 + R2 ≤ I (U1, U2; Y ) − α I (U1, U2; g(X1, X2))

− (1 − α)I (U1, U2; V ), (16)

for some distribution pU1 X1 pU2 X2 which satisfies the Markov
chains U1 − X1 − (Y, V ) and U2 − X2 − (Y, V ).

Theorem 3: For 0 ≤ α ≤ 1, an achievable strong secrecy
rate region for the generalized multiple access wiretap channel
under the wiretapper model 3, R(3)(α), is given by the convex
hull of all rate pairs (R1, R2) satisfying (11)-(13), for some
distribution pU1 X1 pU2 X2 which satisfies the Markov chains
U1 − X1 − (Y, V ) and U2 − X2 − (Y, V ).

Remark 1: The achievable strong secrecy rate region for the
generalized multiple access wiretap channel under wiretapper
model 1 in Theorem 1 is identical to the achievable strong
secrecy rate region for the more powerful wiretapper in The-
orem 3, i.e., R(1)(α) = R(3)(α). When the wiretapper has the
ability of choosing to observe either symbol in every position
it chooses, each user designs its transmission according to
the worst case scenario in which the wiretapper decides to
observe only its symbols in all the positions of the subset.
This results in an achievable rate region for the wiretapper
model 1 as when the wiretapper observes both users symbols
in each position it chooses. However, this argument does not
imply the equivalence of the secrecy capacity regions for the
two models.

Theorem 4: For 0 ≤ α ≤ 1, an achievable strong secrecy
rate region for the generalized multiple access wiretap channel
under the wiretapper model 4, R(4)(α), is given by the convex
hull of all rate pairs (R1, R2) satisfying (11)-(13), for some
distribution pU1 X1 pU2 X2 which satisfies the Markov chains
U1 − X1 − (Y, V ) and U2 − X2 − (Y, V ).

Remark 2: The achievable strong secrecy rate region for the
generalized multiple access wiretap channel under wiretapper
model 4 in Theorem 4 is identical to the achievable regions for
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wiretapper models 1 and 3. The worst case scenario according
to which user j, j = 1, 2, designs its transmission is when the
wiretapper chooses S1, S2 such that |Sj | = μ, |Sk | = 0, k 	= j .
That is, the wiretapper spends all of its budget on observing
only user j ’s symbols, resulting in an achievable rate region
as when the wiretapper observes both users symbols in each
position it chooses.

Remark 3: The achievable strong secrecy rate region for the
generalized multiple access wiretap channel under wiretapper
models 1, 3, 4, is included in the achievable region for the
wiretapper model 2, i.e., R(1)(α) ⊆ R(2)(α). This follows
due to the Markov chains U1 − X1 − g(X1, X2); U2 − X2 −
g(X1, X2), and (U1, U2) − (X1, X2) − g(X1, X2). By data
processing inequality, we have

I (U j ; X j ) ≥ I (U j ; g(X1, X2)), j = 1, 2, (17)

I (U1, U2; X1, X2) ≥ I (U1, U2; g(X1, X2)). (18)

Next, we present achievable strong secrecy rate regions for
the multiple access wiretap channel II in Section III-A.

Corollary 1: For 0 ≤ α ≤ 1, an achievable strong secrecy
rate region for the multiple access wiretap channel II under
wiretapper models 1, 3, 4 in Sections III-A.1, III-A.3, III-A.4
is given by the convex hull of all rate pairs (R1, R2) satisfying

R1 ≤ I (U1; Y |U2) − α I (U1; X1), (19)

R2 ≤ I (U2; Y |U1) − α I (U2; X2), (20)

R1 + R2 ≤ I (U1, U2; Y ) − α I (U1, U2; X1, X2), (21)

for some distribution pU1 X1 pU2 X2 which satisfies the Markov
chains U1 − X1 − Y and U2 − X2 − Y .

Corollary 2: For 0 ≤ α ≤ 1, an achievable strong secrecy
rate region for the multiple access wiretap channel II under the
wiretapper model 2 in Section III-A.2 is given by the convex
hull of all rate pairs (R1, R2) satisfying

R1 ≤ I (U1; Y |U2) − α I (U1; g(X1, X2)), (22)

R2 ≤ I (U2; Y |U1) − α I (U2; g(X1, X2)), (23)

R1 + R2 ≤ I (U1, U2; Y ) − α I (U1, U2; g(X1, X2)), (24)

for some distribution pU1 X1 pU2 X2 which satisfies the Markov
chains U1 − X1 − Y and U2 − X2 − Y .
Corollaries 1 and 2 follow directly from Theorems 1-4 by
setting V = const., i.e., the channel pV |X1 X2 is an erasure
channel with erasure probability one.

The proofs for Theorems 1-4 are provided in Sections V
and VI. A discussion about the main results of this work is
provided in Section VII.

V. PROOF OF THEOREM 1

The achievability proof of Theorem 1 follows the same key
steps as in [13], with the need of extending the utilized tools to
address the multiterminal setting as will be explained shortly.
The outline of the proof is as follows:

1) First, we consider the availability of an additional shared
randomness at the transmitters, receiver, as well as the
external wiretapper, in the original channel model. This
assumed shared randomness represents the randomness
of codebooks generation in the original channel model,

whose realizations are available at the legitimate termi-
nals and the wiretapper.

2) We then define a dual multi-terminal secret key agree-
ment problem in the source model, which introduces
a set of random variables similar to those introduced
by the original channel model with the added shared
randomness.

3) We provide rate conditions which satisfy certain relia-
bility and secrecy (independence) conditions in the dual
source model. We also solve for rate conditions which
result in the induced joint distributions from the original
and dual models to be almost identical in the total
variation distance sense.

4) Next, we use the closeness of the induced joint distri-
butions to show that, under the same rate conditions,
the desired reliability and secrecy properties in the orig-
inal channel model with the added shared randomness
are satisfied.

5) Finally, we eliminate the added shared randomness from
the original channel model by conditioning on a certain
instance of that randomness, while keeping the relia-
bility and security conditions satisfied. This resembles
showing the existence of good codebooks which satisfy
the desired properties.

The achievability proof is thus threefold: (i) Reliabil-
ity of the keys in the dual source model, (ii) Security
of the keys in the dual source model, and (iii) Closeness
of the induced joint distributions. Reliability of the keys
follows from Slepian-Wolf source coding theorem for mul-
tiple sources [33, Theorem 10.3]. Closeness of joint distrib-
utions, and converting the reliability and security conditions
from the dual problem to the original problem, are ensured
by utilizing an exponential convergence rate for the aver-
age total variation distance between the two distributions.
This is done using a rather straightforward generalization of
[13, Lemma 1].

The main challenge in the proof lies in ensuring security
for the keys in the dual source model, which requires doubly-
exponential convergence rate for the probability of the two keys
being uniform and independent from the wiretapper’s obser-
vation, in the Kullback-Leibler divergence sense. Generalizing
the lemma derived for the single source case, [13, Lemma 2],
to the case of two sources in order to directly obtain a rate
region for the keys generated at the sources, which satisfies the
doubly-exponential convergence, is not easy. Instead, we adapt
the lemma so that we derive the corner points of this rate
region. Time sharing between these corner points results in
the desired rate region.

The exponential convergence rate for the average total varia-
tion distance between the distributions of the dual and original
problems is needed to prove a convergence in probability
result, which allows for converting the security condition from
the dual problem to the original problem. In addition, note
that, for all the proposed models in this paper, the number
of possible subsets the wiretappcer can choose is exponential
in the block length. The double-exponential convergence rate
for the probability that the keys are uniform and independent
from the wiretapper’s observation, i.e., the security condition
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Fig. 3. Problem A: Multi-terminal secret key agreement in the source model.

in the dual source model, is utilized, along with the union
bound, in order to ensure security against the exponentially
many possible strategies for the wiretapper [13].

Let us first fix the distribution pU1 X1 pU2 X2 =
pU1 pU2 pX1|U1 pX2|U2 . Let pY |U1U2 be the distribution resulting
from concatenating the discrete memoryless channels pY |X1 X2

and pX1 X2|U1U2 = pX1|U1 pX2|U2 , where pY |X1 X2 is the
transition probability distribution for the legitimate channel
of the channel model in Section III-B. That is,

pY |U1U2(y|u1, u2)

=
∑

x1,x2∈X1×X2

pX1|U1(x1|u1)pX2|U2(x2|u2)pY |X1 X2(y|x1, x2).

(25)

We present the following two problems. Each problem
(i) describes a system model, (ii) defines a set of random
variables for the model, and (iii) induces a joint distribution
over these random variables. We precisely identify the joint
distribution induced by each problem.

Problem A: Multi-terminal Secret Key Agreement in the
Source Model (Dual Model):

This problem is shown in Fig. 3, and is described as
follows. Let Un

1, Un
2 , and Yn be independent and identically

distributed (i.i.d.) sequences according to the distribution
pU1 pU2 pY |U1U2 .

Source Encoders: Source encoder j , j = 1, 2, (i) observes
the i.i.d. random sequence Un

j , distributed according to pU j

over the finite alphabet U j , (ii) assigns two indices w j (un
j ) ∈

[1 : 2nR j ] and f j (un
j ) ∈ [1 : 2nR̃ j ] to each sequence un

j ∈
Un

j , and (iii) sends the index f j (un
j ) to the common decoder

over a noiseless public channel, which is perfectly accessed
by the wiretapper. The indices w j , j = 1, 2, represent the
confidential keys generated at the source encoders and to be
reconstructed at the common decoder.

Random Binning: We consider a random binning argument
in which source encoder j , j = 1, 2, randomly and inde-
pendently assigns two indices w j (un

j ) and f j (un
j ) to each

sequence un
j ∈ Un

j , according to uniform distributions over

[1 : 2nR j ] and [1 : 2nR̃ j ], respectively. Let W j � B
( j )
1 (Un

j )

and Fj � B
( j )
2 (Un

j ) denote the random bin indices, where

B
( j )
1 and B

( j )
2 are independent and uniformly distributed over

[1 : 2nR j ] and [1 : 2nR̃ j ], respectively.

Decoder: The decoder observes the i.i.d. random sequence
(side information) Yn , distributed according to pY over the
finite alphabet Y, and the public messages F1 and F2, and
outputs the estimates Ûn

1 and Ûn
2 of the source encoders obser-

vations, and the estimates Ŵ1 and Ŵ2 of their generated keys.
In particular, the decoder assigns estimates (ûn

1 , ûn
2) ∈ Un

1 ×Un
2

for each sequence yn ∈ Yn and index pair ( f1(un
1)), f2(un

2)),
which in turn are used to output the estimates ŵ1(ûn

1) and
ŵ2(ûn

2).
Wiretapper Model: The wiretapper observes the random

sequence Zn
S , for some S ∈ S, and the public messages F1 and

F2; where S is defined in (2), and Zn
S , for all S ∈ S, is defined

as in (3) with replacing the erasures ‘?’ by Vi . In particular,
the wiretapper chooses the strategy S ∈ S whose realization
is unknown to the legitimate terminals. The cardinality of the
set S of all possible wiretapper’s strategies for attack model 1
is upper bounded as

|S| =
(

n

μ

)

× 2μ =
(

n

αn

)

× 2αn < 2n × 2αn = 2(1+α)n.

(26)

Thus, the distribution of the wiretapper’s observation (side
information) Zn

S is only known to belong to the finite class
{pZn

S
}S∈S of probability distributions over the finite alphabet

Z.
Problem A thus introduces the random variables

W[1:2], F[1:2], Un[1:2], Yn, Zn
S , Ûn[1:2], and Ŵ[1:2]. The induced

joint distribution of Problem A is

P̃W[1:2]F[1:2]Un[1:2]YnZn
SÛn[1:2]

= pUn[1:2]YnZn
S

P̃W[1:2]F[1:2]|Un[1:2] P̃Ûn[1:2]|Yn F[1:2] (27)

= pUn[1:2]YnZn
S

P̃Ûn[1:2]|Yn F[1:2]

× �

{
B

( j )
1 (Un

j ) = W j ,B
( j )
2 (Un

j ) = Fj ,∀ j = 1, 2
}

(28)

= P̃W[1:2]F[1:2] P̃Un[1:2]|W[1:2]F[1:2] pYnZn
S |Un[1:2] P̃Ûn[1:2]|Yn F[1:2] , (29)

where P̃ denotes the random probability distribution induced
by the random binning of Un

1 and Un
2, and pUn[1:2]YnZn

S
denotes

the marginal probability distribution of the noisy observations
at the source encoders, decoder, and the wiretapper; defined
as in the original channel model in Section III-B under attack
model 1, and (25). Note that, in (27)-(29), we use P̃ to denote
the overall joint distribution of Problem A, as well as the
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marginal and conditional probability distributions that depend
on the random binning, i.e., the random bins W[1:2] and F[1:2].

Remark 4: Using the random binning argument for the dual
problem (Problem A), we show that certain reliability and
security conditions, averaged over the random binning, are
satisfied. We then show the existence of a binning realization
which satisfies the aforementioned conditions. For this fixed
binning realization, the decoder’s outputs Ŵ1 and Ŵ2 are
deterministic functions of its estimates of the source encoders
observations, i.e., Ûn

1 and Ûn
2.

Remark 5: Notice that the joint distribution in (27) does
not include the Ŵ random variables. We will introduce them
later as deterministic functions of the Ûn random vectors,
after fixing the binning realization, i.e., the binning realization
which satisfies the desired conditions.

Problem B: Original Channel Model with Additional Shared
Randomness:

This problem is described as the original channel model
in Section III-B under attack model 1, with the addition of
assuming shared randomness F1 and F2 that is available at
the transmitters, the receiver, as well as the wiretapper. F1 and
F2 are independent, uniformly distributed over [1 : 2nR̃1] and
[1 : 2nR̃2 ], and independent from all other random variables.

Notice that the assumed shared randomness F1, F2, is avail-
able at the wiretapper, and hence not utilized as a secure shared
key between the legitimate parties. This shared randomness
rather represents the random generation of the codebooks in
the original channel model, whose realizations are available
both at the legitimate terminals and the wiretapper. That is,
adding this shared randomness to the original channel model
brings the random generation of the codebooks from the
background to the foreground as explicit random variables,
F1 and F2.

We utilize here the encoders and decoder in (29), i.e., the
encoders and decoder from the dual source model in Prob-
lem A. That is,

PUn[1:2]|W[1:2]F[1:2] = P̃Un[1:2]|W[1:2]F[1:2], and

PÛn[1:2]|Yn F[1:2] = P̃Ûn[1:2]|Yn F[1:2], (30)

where we use P to denote the random joint, marginal, and con-
ditional probability distributions for Problem B. The induced
joint distribution for Problem B is given by

PW[1:2]F[1:2]Un[1:2]YnZn
SÛn[1:2]

= pU
W[1:2] pU

F[1:2] P̃Un[1:2]|W[1:2]F[1:2] pYnZn
S |Un[1:2] P̃Ûn[1:2]|Yn F[1:2] .

(31)

Remark 6: Notice that PUn[1:2]|W[1:2]F[1:2] = P̃Un[1:2]|W[1:2]F[1:2]
factorizes as P̃Un

1 |W1 F1 P̃Un
2 |W2 F2 . That is, the shared random-

ness Fi available at the j th transmitter is not utilized to
generate its codeword Un

j ; i, j = 1, 2, i 	= j . This implies that
the transmitted codeword at one transmitter does not depend
on the codebook of the other transmitter.

Before continuing with the proof, we state the following
lemmas.

A. Useful Lemmas

By comparing the joint distributions for Problems A and
B in (29) and (31), we find that they only differ in the
distribution for W[1:2] and F[1:2]. In particular, W[1:2] and F[1:2]
are independent and uniformly distributed in Problem B, while
their distribution in Problem A is determined by the random
binning of Un

1 and Un
2. The following lemma is a one-shot

result which provides conditions on the binning rates such that
the random binning in Problem A results in a distribution for
the bins that is close, in the total variation distance sense,
to independent uniform distributions. The convergence rate
provided by the lemma, which is exponential, is needed for
converting the secrecy condition, established for the source
model in Problem A, to the original channel model in Prob-
lem B [13].

Lemma 1: Let X1 and X2 be two independent sources with
probability distributions pX1 and pX2 over the alphabets X1
and X2, respectively. For j = 1, 2, each x j ∈ X j is randomly
and independently assigned into the two indices w j (x j ) and
f j (x j ) according to uniform distributions over [1 : W̃ ] and
[1 : F̃]. Let W j = B

( j )
1 (X j ) and Fj = B

( j )
2 (X j ) denote the

random bin indices, where B
( j )
1 and B

( j )
2 are independent and

uniformly distributed over [1 : W̃ j ] and [1 : F̃j ]. Let B �{
B

( j )
1 (x j ),B

( j )
2 (x j ) : x j ∈ X j , j = 1, 2

}
, and let pB denote

the joint distribution of all uniform random variables in B.
For γ j > 0, j = 1, 2, define

Dγ j �
{

x j ∈ X j : log
1

pX j (x j )
> γ j

}

. (32)

Then, we have

EpB

(
V

(
PW[1:2]F[1:2], pU

W[1:2] pU
F[1:2]

))

≤
2∑

j=1

(

PPX j

(
X j /∈ Dγ j

) + 1

2

√

W̃ j F̃j 2−γ j

)

, (33)

where P is the induced distribution over W[1:2] and F[1:2].

Proof: Lemma 1 is a generalization of [13, Lemma 1].
In particular, using [13, Lemma 1], we have, for j = 1, 2,

EpB

(
V

(
PW j Fj , pU

W j
pU

Fj

))

≤ PPX j

(
X j /∈ Dγ j

) + 1

2

√

W̃ j F̃j 2−γ j . (34)

Since X1 and X2 are independent, so are {W1, F1} and
{W2, F2}. Thus, Lemma 1 follows by using the triangle
inequality. �

Lemma 2 below is again a one-shot result which provides
rate conditions for a certain secrecy (independence) condition
in the source model. In particular, the lemma provides a
doubly-exponential convergence rate for the probability of
the confidential keys W[1:2] and the public messages F[1:2]
being independent, uniformly distributed, and all independent
from the wiretapper’s observation Zn

S . This doubly-exponential
convergence is utilized, along with the union bound, to guar-
antee secrecy against the exponentially many choices for the
wiretapper.
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Lemma 2: Let X1 and X2 be two sources with probability
distributions pX1 and pX2 over the finite alphabets X1 and
X2. Both X1 and X2 are correlated with the source {ZS}
whose distribution is only known to belong to the finite
class

{
pZS : S ∈ S

}
of probability distributions over the finite

alphabet Z. For j = 1, 2, the source X j is randomly binned
into the two indices W j and Fj as in Lemma 1. For γ j , γi j >
0, i, j = 1, 2, i 	= j, and for any S ∈ S, define

DS
j �

{
(x[1:2], z) ∈ X1 × X2 × Z :

(x j , z) ∈ DS
γ j

, (x[1:2], z) ∈ DS
γi j

}
, (35)

where

DS
γ j

�
{

(x j , z) ∈ X j × Z : log
1

pX j |ZS (x j |z) > γ j

}

, (36)

and

DS
γi j

�
{
(x[1:2], z) ∈ X1 × X2 × Z :

log
1

pXi |X j ZS (xi |x j , z)
> γi j

}
. (37)

If there exists a δ ∈ (0, 1
2 ) such that for j = 1, 2, and for all

S ∈ S, we have

PpX[1:2]Z S

((
X[1:2], ZS

) ∈ DS
j

)
≥ 1 − δ2, (38)

then, we have, for every ε ∈ [0, 1], that

PpB

(

max
S∈S

D(PW[1:2]F[1:2] ZS ||pU
W[1:2] pU

F[1:2] pZS) ≥ 2ε̃

)

≤ |S||Z| min
i, j=1,2,i 	= j

{

exp

((
−ε2(1 − δ)2γ j

3W̃ j F̃j

))

+ exp

((−ε2(1 − δ)2γi j

3W̃i F̃i

))}

, (39)

where pB is defined as in Lemma 1; P is the induced
distribution over W[1:2] and F[1:2];

ε̃ = max
j=1,2

{
ε + (δ + δ2) log(W̃ j F̃j ) + Hb(δ

2)
}

, (40)

and Hb is the binary entropy function.

Proof: See the Appendix. �
In applying Lemmas 1 and 2 to the dual source model in

Problem A, we utilize the following version of Hoeffding’s
inequality:

Lemma 3: (Hoeffding’s Inequality) [34, Theorem 2],
[13, Lemma 3]:
Let X1, X2, · · · , Xn be independent random variables with
Xi ∈ [0, b] for all i ∈ [1 : n], and let m̄ = 1

n

∑n
i=1 E(Xi ).

Then, for ε > 0, we have

P

(
1

n

n∑

i=1

Xi ≤ (1 − ε)m̄

)

≤ exp

(−2ε2m̄2

b2 n

)

. (41)

Remark 7: After showing that the reliability and secrecy
properties established for the dual source model hold as well
for the original channel model in Problem B, we utilize the
selection lemma, [35, Lemma 2.2], in order to prove the

existence of a binning realization such that both properties
are still satisfied for the channel model with the added shared
randomness. It is also utilized to eliminate the shared random-
ness F[1:2] from the channel model in Problem B.

B. Proof

1) Closeness of Induced Joint Distributions: We first apply
Lemma 1 to the dual source model in Problem A to establish
the closeness of the induced joint distributions from the two
problems. In Lemma 1, set X j = Un

j , W̃ j = 2nR j , and

F̃j = 2nR̃ j , for j = 1, 2; Un
j , W̃ j , F̃j are defined as in

Problem A. Let Dγ j be defined as in (32) with X j = Un
j

for j = 1, 2. For ε j > 0, j = 1, 2, choose γ j = n(1 −
ε j )H (U j ). Without loss of generality, assume that for all
un

j , j = 1, 2, pUn
j
(un

j ) > 0. Using Hoeffding’s inequality in
Lemma 3,

PpUn
j

(
Un

j /∈ Dγ j

)
= PpUn

j

(

log
1

pUn
j
(Un

j )
≤ γ j

)

(42)

= PpU j

(
n∑

k=1

log
1

pU j (U j,k)
≤ n(1 − ε j )H (U j)

)

(43)

≤ exp(−β j n), (44)

where β j > 0. By substituting the choices for W̃ j , F̃j , γ j ,
and (44) in (33), as long as

R1 + R̃1 < (1 − ε1)H (U1) (45)

R2 + R̃2 < (1 − ε2)H (U2), (46)

there exists a β > 0 such that

EpB

(
V

(
P̃W[1:2]F[1:2], pU

W[1:2] pU
F[1:2]

))
≤ 4 exp(−βn), (47)

where pB is defined as in Lemma 1, with replacing x j ∈ X j

by un
j ∈ Un

j , for j = 1, 2.
Using (29), (31), and (47), we have

EpB

(
V

(
P̃W[1:2]F[1:2]Un[1:2]Yn Zn

SÛn[1:2]
,

PW[1:2]F[1:2]Un[1:2]YnZn
SÛn[1:2]

))

= EpB

(
V

(
P̃W[1:2]F[1:2], pU

W[1:2] pU
F[1:2]

))
≤ 4 exp(−βn).

(48)

2) Reliability of the Dual Source Model (Problem A): Next,
we establish a reliability condition for the dual source model
in Problem A. We utilize a Slepian-Wolf decoder [36], which
implies that [33, Theorem 10.3]

lim
n→∞EpB

(
P P̃

(
Ûn[1:2] 	= Un[1:2]

))
= 0, (49)

as long as

R̃1 ≥ H (U1|U2, Y ), (50)

R̃2 ≥ H (U2|U1, Y ), (51)

R̃1 + R̃2 ≥ H (U1, U2|Y ). (52)
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Using (49) and [32, Lemma 1], which is a variation of the
Slepian-Wolf source coding theorem, we have, for all S ∈ S,

lim
n→∞EpB

(
V

(
P̃W[1:2]F[1:2]Un[1:2]YnZn

SÛn[1:2]
,

P̃W[1:2]F[1:2]Un[1:2]YnZn
S
�{Ûn[1:2] = Un[1:2]}

))

= lim
n→∞EpB

(
P P̃(Ûn

[1:2] 	= Un
[1:2])

)
= 0. (53)

3) Secrecy for the Dual Source Model (Problem A): Next,
we use Lemma 2 to establish the secrecy condition for the
dual source model in Problem A. In Lemma 2, for j = 1, 2,

set X j = Un
j , W̃ j = 2nR j , F̃j = 2nR̃ j , ZS = Zn

S , for all S ∈ S,
where Un

j , S, Zn
S are defined as in Problem A. In addition, let

DS
j ,D

S
γ j

, and DS
γi j

be defined as in (35)-(37), with X j = Un
j

and ZS = Zn
S .

For S ∈ S, where S is defined in (2), let S̄ j � {k : (k, j) ∈
S}. That is, S̄ j is the set of positions in which the wiretapper
observes the j th transmitter’s symbols. Notice that S̄1∩S̄2 = ∅.
For j = 1, 2, let |S̄ j | = μ j , and thus μ1 +μ2 = μ. Recall that
Sp = S̄1 ∪ S̄2, where |Sp| = μ. The wiretapper’s observation
can be written as Zn

S = {X1,S̄1
, X2,S̄2

, VSc
p
}.

The channel pV |U1U2 is a discrete memoryless channel,
since it results from concatenating the discrete memoryless
channels pV |X1 X2 and pX1|U1 pX2|U2 . Thus, we have

H (Un
1|Zn

S) = H (Un
1|X1,S̄1

, X2,S̄2
, VSc

p
) (54)

= H (U1,S̄1
, U1,S̄2

, U1,Sc
p
|X1,S̄1

, X2,S̄2
, VSc

p
) (55)

= H (U1,S̄1
|X1,S̄1

, X2,S̄2
, VSc

p
)

+ H (U1,Sc
p
|U1,S̄1

, X1,S̄1
, X2,S̄2

, VSc
p
)

+ H (U1,S̄2
|U1,S̄c

2
, X1,S̄1

, X2,S̄2
, VSc

p
) (56)

= H (U1,S̄1
|X1,S̄1

) + H (U1,Sc
p
|VSc

p
) + H (U1,S̄2

) (57)

= μ1 H (U1|X1) + (n − μ)H (U1|V ) + μ2 H (U1), (58)

where (56) follows because S̄c
2 = Sc

p ∪ S̄1. (57) follows
from the Markov chains U1,S̄1

− X1,S̄1
− (X2,S̄2

, VSc
p
) and

U1,Sc
p
− VSc

p
− (U1,S̄1

, X1,S̄1
, X2,S̄2

), and since U1,S̄2
is inde-

pendent from {U1,S̄c
2
, X1,S̄1

, X2,S̄2
, VSc

p
}; which hold because

(i) {Un
1, Xn

1} are independent from {Un
2, Xn

2}, (ii) Un
1 and Un

2
are i.i.d. sequences, and (iii) pX1|U1 , pX2|U2 , and pV |U1U2 are
discrete memoryless channels. Similarly, we have

H (Un
2|Zn

S) = μ2 H (U2|X2) + (n − μ)H (U2|V ) + μ1 H (U2)

(59)

H (Un
1|Un

2, Zn
S)

= H (U1,S̄1
, U1,S̄2

, U1,Sc
p
|Un

2, X1,S̄1
, X2,S̄2

, VSc
p
) (60)

= H (U1,S̄1
|Un

2, X1,S̄1
, X2,S̄2

, VSc
p
)

+ H (U1,Sc
p
|U1,S̄1

, U2,Sp, U2,Sc
p
, X1,S̄1

, X2,S̄2
, VSc

p
)

+ H (U1,S̄2
|U1,S̄c

2
, Un

2 , X1,S̄1
, X2,S̄2

, VSc
p
) (61)

= H (U1,S̄1
|X1,S̄1

) + H (U1,Sc
p
|U2,Sc

p
, VSc

p
) + H (U1,S̄2

) (62)

= μ1 H (U1|X1) + (n − μ)H (U1|U2, V ) + μ2 H (U1), (63)

H (Un
2|Un

1, Zn
S)

= μ2 H (U2|X2) + (n − μ)H (U2|U1, V ) + μ1 H (U2), (64)

where (62) follows due to the Markov chains U1,S̄1
−

X1,S̄1
− (Un

2 , X2,S̄2
, VSc

p
) and U1,Sc

p
− (U2,Sc

p
, VSc

p
) −

(U1,S̄1
, U2,Sp, X1,S̄1

, X2,S̄2
).

In addition, for the tuples (xn[1:2], zn) with pXn
j |Zn

S
(xn

j |zn) >

0 and pXn
i |Xn

j Zn
S
(xn

i |xn
j , zn) > 0, where i, j = 1, 2, i 	= j ,

we have, for all S ∈ S, that

pUn
j |Zn

S
(un

j |zn)

= p(u j,S̄ j
, u j,S̄i

, u j,Sc
p
|x j,S̄ j

, xi,S̄i
, vSc

p
) (65)

= p(u j,S̄ j
|x j,S̄ j

, xi,S̄i
, vSc

p
) p(u j,Sc

p
|u j,S̄ j

, x j,S̄ j
, xi,S̄i

, vSc
p
)

× p(u j,S̄i
|u j,S̄c

i
, x j,S̄ j

, xi,S̄i
, vSc

p
) (66)

= p(u j,S̄ j
|x j,S̄ j

) p(u j,Sc
p
|vSc

p
) p(u j,S̄i

)

=
∏

k∈S̄ j

p(u j,k|x j,k)
∏

k∈Sc
p

p(u j,k|vk)
∏

k∈S̄i

p(u j,k), (67)

pUn
i |Un

j Zn
S
(un

i |un
j , zn)

= p(ui,S̄i
|xi,S̄i

) p(ui,Sc
p
|u j,Sc

p
, vSc

p
) p(ui,S̄ j

) (68)

=
∏

k∈S̄i

p(ui,k |xi,k)
∏

k∈Sc
p

p(ui,k |vk)
∏

k∈S̄ j

p(ui,k).

(69)

For i, j = 1, 2, i 	= j, and ε̃ j > 0, let

γ j = (1 − ε̃ j ) min
S∈S

H (Un
j |Zn

S) (70)

= (1 − ε̃ j )[μH (U j |X j ) + (n − μ)H (U j |V )], (71)

γi j = (1 − ε̃ j ) min
S∈S

H (Un
i |Un

j , Zn
S) (72)

= (1 − ε̃ j )[μH (Ui |Xi ) + (n − μ)H (Ui |U j , V )], (73)

where (71) and (73) follow from (58), (59), (63), (64), and that
μ j H (U j |X j ) + (n − μ)H (U j |V ) + μi H (U j ) is minimized
by μ j = μ and μi = 0, which occurs when S = {(k, j) :
k ∈ Sp}, i.e., when the wiretapper observes the symbols of
the j th transmitter in all the positions it chooses. Similarly,
μi H (Ui |Xi )+ (n −μ)H (Ui |U j , V )+μ j H (Ui) is minimized
by μi = μ and μ j = 0.

Using Hoeffding inequality and the definition of DS
γ j

in (36), we have, for all S ∈ S,

PpUn
j Zn

S

( (
Un

j , Zn
S

)
/∈ DS

γ j

)

= PpUn
j Zn

S

(
log

1

pUn
j |Zn

S
(Un

j |Zn
S)

≤ γ j

)
(74)

= PpU j X j V

( ∑

k∈S̄ j

log
1

p(U j,k|X j,k)
+

∑

k∈Sc
p

log
1

p(U j,k|Vk)

+
∑

k∈S̄i

log
1

p(U j,k)

≤ (1 − ε̃ j )
[
μH (U j |X j ) + (n − μ)H (U j |V )

] )
(75)

≤ PpU j X j V

( ∑

k∈S̄ j

log
1

p(U j,k|X j,k)
+

∑

k∈Sc
p

log
1

p(U j,k|Vk)

+
∑

k∈S̄i

log
1

p(U j,k)
≤ (1 − ε̃ j )

[
μ j H (U j |X j )
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+ (n − μ)H (U j |V ) + μi H (U j)
])

(76)

≤ exp(−β̃ j n), (77)

where β̃ j > 0 for j = 1, 2; (75) follows from (67), and (76)
follows because, for i, j = 1, 2, i 	= j, and all S ∈ S,

μH (U j |X j ) + (n − μ)H (U j |V )

≤ μ j H (U j |X j ) + (n − μ)H (U j |V ) + μi H (U j). (78)

Note that, for any finite γ j , in order to compute the
probability on the left hand side of (74), we only need to
consider the tuples (un

j , zn) with pUn
j |Zn

S
(un

j |zn) > 0.
Similarly, for i, j = 1, 2, i 	= j and all S ∈ S, using

Hoeffding’s inequality, (69), (73), and the definition for DS
γi j

in (37), we have

PpUn[1:2]Zn
S

(
(Un

[1:2], Zn
S) /∈ DS

γi j

)

= PpUn[1:2]Zn
S

(

log
1

pUn
i |Un

j Zn
S
(Un

i |Un
j , Zn

S)
≤ γi j

)

(79)

≤ exp(−β̃i n). (80)

Taking δ2 = 2 exp(−β̃n), where β̃ = min{β̃1, β̃2}, yields

PpUn[1:2]Zn
S

(
(Un[1:2], Zn

S) 	∈ DS
j

)
≤ δ2, (81)

for j = 1, 2 and all S ∈ S. Note that lim
n→∞δ2 = 0. Thus,

for n sufficiently large, δ2 ∈ (0, 1
4 ). Thus, the conditions for

Lemma 2 are satisfied. We also have, for j = 1, 2, that

lim
n→∞(δ + δ2) log(W̃ j F̃j )

= lim
n→∞n(R j + R̃ j )(2 exp(−β̃n) + exp(−1

2
β̃n)) = 0 (82)

lim
n→∞Hb(δ

2) = Hb

(
lim

n→∞δ2
)

= 0, (83)

where (83) follows because Hb is a continuous function. Thus,
we have

lim
n→∞ε̃ = ε + lim

n→∞(δ + δ2) log(W̃ j F̃j ) + lim
n→∞Hb(δ

2) = ε.

(84)

By substituting the choices for W̃ j , F̃j , γ j , γi j , where i, j =
1, 2, i 	= j , and

|S||Zn| ≤ exp(n[(1 + α) ln 2 + ln(|X1| + |X2| + |V|)]),
(85)

in (39), and using (84), we have, for every ε, ε′ > 0, ε̃ = ε+ε′,
there exist n∗ ∈ N and κε, κ̃ > 0 such that for all n ≥ n∗,

PpB

(

max
S∈S

D

(
P̃W[1:2]F[1:2]Zn

S
||pU

W[1:2] pU
F[1:2] pZn

S

)
≥ 2ε̃

)

≤ exp
(
−κεeκ̃n

)
, (86)

as long as

R1 + R̃1 ≤ (1 − ε̃1) [αH (U1|X1) + (1 − α)H (U1|V )] ,

(87)

R2 + R̃2 ≤ (1 − ε̃2) [αH (U2|X2) + (1 − α)H (U2|V )] ,

(88)

R1 + R2 + R̃1 + R̃2 ≤ (1 − ε̃1)
[
αH (U1, U2|X1, X2)

+ (1 − α)H (U1, U2|V )
]
. (89)

By applying the first Borel-Cantelli Lemma [37, Theo-
rem 4.3] to (86), we get

lim
n→∞PpB

(

max
S∈S

D

(
P̃W[1:2]F[1:2]Zn

S
||pU

W[1:2] pU
F[1:2] pZn

S

)
> 0

)

= 0. (90)

In addition, using Markov’s inequality and (47), we have,
for any r > 0, that

∞∑

n=1

PpB

(
V

(
P̃W[1:2]F[1:2], pU

W[1:2] pU
F[1:2]

)
> r

)

≤ 4

r

∞∑

n=1

exp(−βn) < ∞. (91)

Using the first Borel-Cantelli lemma, it follows from (91) that

lim
n→∞PpB

(
V

(
P̃W[1:2]F[1:2], pU

W[1:2] pU
F[1:2]

)
> 0

)
= 0. (92)

Remark 8: In the secrecy condition for the source model,
(90), we require the independence of the public messages
F[1:2] from the confidential keys W[1:2] and the wiretapper’s
observation Zn

S . The reason is that, after showing that the
secrecy condition in (90) holds as well for the original channel
model in Problem B, we need to eliminate the added shared
randomness F[1:2] from the channel model by conditioning
on a certain instance of it, without disturbing the established
independence between the messages W[1:2] and the wiretap-
per’s observation Zn

S .
Remark 9: By setting j = 1, i = 2, instead of the minimum

in the right hand side of (39), Lemma 2 results in the maximum
binning rate R1 + R̃1 of the source Un

1, and the corresponding
maximum conditional binning rate R2 + R̃2 for the source
Un

2 given R1 + R̃1, such that the probability in the left hand
side of (39) is vanishing. In other words, Lemma 2 provides
the corner points of the binning rate region such that the
probability, over the random binning of the sources, that
the bins are independent, uniform, and independent from the
wiretapper’s observation, is vanishing.

4) Converting Reliability and Secrecy Properties from Prob-
lem A to Problem B: Now, we show that the reliability and
secrecy conditions in (53) and (90) hold as well for the original
channel model in Problem B. First, for the reliability condition,
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using (29), (31), and the triangle inequality, we have

V

(
PW[1:2]F[1:2]Un[1:2]YnZn

SÛn[1:2]
,

PW[1:2]F[1:2]Un[1:2]YnZn
S
�{Ûn

[1:2] = Un
[1:2]}

)

≤ V

(
PW[1:2]F[1:2]Un[1:2]Yn Zn

SÛn[1:2]
,

P̃W[1:2]F[1:2]Un[1:2]YnZn
SÛn[1:2]

)

+ V

(
P̃W[1:2]F[1:2]Un[1:2]YnZn

SÛn[1:2]
,

P̃W[1:2]F[1:2]Un[1:2]YnZn
S
�{Ûn[1:2] = Un[1:2]}

)

+ V

(
P̃W[1:2]F[1:2]Un[1:2]YnZn

S
�{Ûn

[1:2] = Un
[1:2]},

PW[1:2]F[1:2]Un[1:2]YnZn
S
�{Ûn[1:2] = Un[1:2]}

)
(93)

= V

(
P̃W[1:2]F[1:2]Un[1:2]Yn Zn

SÛn[1:2]
,

P̃W[1:2]F[1:2]Un[1:2]YnZn
S
�{Ûn[1:2] = Un[1:2]}

)

+ 2V

(
PW[1:2]F[1:2], pU

W[1:2] pU
F[1:2]

)
. (94)

Thus, using (47), (53), and (94), we have

lim
n→∞EpB

(
V

(
PW[1:2]F[1:2]Un[1:2]Yn Zn

SÛn[1:2]
,

PW[1:2]F[1:2]Un[1:2]YnZn
S
�{Ûn

[1:2] = Un
[1:2]}

))
= 0. (95)

Second, for the secrecy condition, using the union bound,
we have

PpB

(

max
S∈S

D

(
PW[1:2]F[1:2]Zn

S
||pU

W[1:2] pU
F[1:2] pZn

S

)
> 0

)

≤ PpB

(

max
S∈S

D

(
P̃W[1:2]F[1:2]Zn

S
||pU

W[1:2] pU
F[1:2] pZn

S

)
> 0

)

+ PpB

(
V

(
P̃W[1:2]F[1:2], pU

W[1:2] pU
F[1:2]

)
> 0

)
. (96)

Thus, using (90), (92), and (96), we have

lim
n→∞PpB

(

max
S∈S

D

(
PW[1:2]F[1:2]Zn

S
||pU

W[1:2] pU
F[1:2] pZn

S

)
> 0

)

= 0. (97)

By applying the selection lemma, [35, Lemma 2.2], to (95)
and (97), there is at least one binning realization b∗ =
{b∗( j )

1 , b∗( j )
2 : j = 1, 2}, with a corresponding joint distribution

p∗ for Problem B, such that

lim
n→∞V

(
p∗

W[1:2]F[1:2]Un[1:2]Yn Zn
SÛn[1:2]

,

p∗
W[1:2]F[1:2]Un[1:2]Yn Zn

S
�{Ûn

[1:2] = Un
[1:2]}

)
= 0, (98)

and

lim
n→∞�

{

max
S∈S

D

(
p∗

W[1:2]F[1:2]Zn
S
||pU

W[1:2] pU
F[1:2] pZn

S

)
> 0

}

= 0

(99)

where W j = b∗( j )
1 (Un

j ) and Fj = b∗( j )
2 (Un

j ), j = 1, 2.

Next, we introduce the Ŵ variables to the joint distributions
in (98). For j = 1, 2, Ŵ j is a deterministic function of
the random sequence Ûn

j . In particular, p∗
Ŵ j |Ûn

j
(ŵ j |ûn

j ) =

�

{
ŵ j = b∗( j )

1 (ûn
j )
}

. Using (98) and a similar analysis as
in [13, (58)-(64)], we have

lim
n→∞Ep∗

F[1:2]

(
Pp∗

(
Ŵ[1:2] 	= W[1:2]|F[1:2]

))

= lim
n→∞V

(
p∗

W[1:2]F[1:2]Un[1:2]YnZn
SÛn[1:2]

,

p∗
W[1:2]F[1:2]Un[1:2]YnZn

S
�{Ûn[1:2] = Un[1:2]}

)
= 0, (100)

where p∗
F[1:2] = pU

F[1:2] . Using the union bound, we also have

Pp∗
F[1:2]

(

max
S∈S

D

(
p∗

W[1:2]Zn
S |F[1:2] ||pU

W[1:2] p∗
Zn

S|F[1:2]

)
> 0

)

≤ Pp∗
F[1:2]

(

max
S∈S

D(p∗
W[1:2]Zn

S |F[1:2] ||pU
W[1:2] p∗

Zn
S|F[1:2]) > 0,

and ∀S, p∗
W[1:2]F[1:2]Zn

S
= pU

W[1:2] pU
F[1:2] pZn

S

)

+ �

{

max
S∈S

D

(
p∗

W[1:2]F[1:2]Zn
S
||pU

W[1:2] pU
F[1:2] pZn

S

)
> 0

}

(101)

= �

{

max
S∈S

D

(
p∗

W[1:2]F[1:2]Zn
S
||pU

W[1:2] pU
F[1:2] pZn

S

)
> 0

}

,

(102)

where (102) follows since the first term on the right hand side
of (101) is equal to zero. Thus, using (99) and (102), we have

lim
n→∞Pp∗

F[1:2]

(

max
S∈S

D

(
p∗

W[1:2]Zn
S |F[1:2] ||pU

W[1:2] p∗
Zn

S|F[1:2]

)
> 0

)

= 0. (103)

5) Eliminating the Added Shared Randomness From Prob-
lem B: Once again, applying the selection lemma to (100)
and (103), implies that there is at least one realization f ∗[1:2]
such that

lim
n→∞Pp∗

(
Ŵ[1:2] 	= W[1:2]

∣
∣F[1:2] = f ∗[1:2]

)
= 0, (104)

lim
n→∞ max

S∈S
Ip∗

(
W[1:2]; Zn

S

∣
∣F[1:2] = f ∗[1:2]

) = 0. (105)

Let p̃∗ be the induced joint distribution for Prob-
lem A which corresponds to the binning realization
b∗. We identify

{
p̃∗(un

j |w j , f ∗
j ), p(xn

j |un
j ), j = 1, 2

}
and

{
p̃∗(ûn[1:2]|yn, f ∗[1:2]), {b∗( j )

1 (ûn
j ), j = 1, 2}

}
as the encoders

and the decoder for the original channel model.
By combining the rate conditions in (45), (46), (50)-(52),

(87)-(89), and taking ε̃1, ε̃2 → 0, we obtain the achievable
strong secrecy rate region in (11)-(13). The convex hull follows
by time sharing independent codes and the fact that maximiz-
ing the secrecy constraint over S in the whole block-length
is upper bounded by its maximization over the individual
segments of the time sharing.

VI. PROOFS FOR THEOREMS 2, 3, AND 4

The proof for Theorem 2 follows similar steps as in the
proof for Theorem 1. The difference is that in Problem A,
S is defined as in (4) and Zn

S , for all S ∈ S, is defined as
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in (5) with replacing the erasures ‘?’ by Vi ∼ pV |X1 X2 . For
i, j = 1, 2, i 	= j , and all S ∈ S, we have

H (Un
j |Zn

S) = H
(
U j,S, U j,Sc

∣
∣{g(X1,i , X2,i )}i∈S , VSc

)
(106)

= H
(
U j,S

∣
∣{g(X1,i , X2,i )}i∈S, VSc

)

+ H
(
U j,Sc

∣
∣U j,S, {g(X1,i , X2,i )}i∈S , VSc

)
(107)

= H
(
U j,S

∣
∣{g(X1,i , X2,i )}i∈S

) + H (U j,Sc|VSc) (108)

= μH (U j |g(X1, X2)) + (n − μ)H (U j |V ) (109)

H (Un
i |Un

j , Zn
S)

= H
(

Ui,S , Ui,Sc
∣
∣Un

j , {g(X1,i , X2,i )}i∈S , VSc

)
(110)

= H
(

Ui,S
∣
∣Un

j , {g(X1,i , X2,i )}i∈S , VSc

)

+ H
(

Ui,Sc
∣
∣Ui,S , Un

j , {g(X1,i , X2,i )}i∈S , VSc

)
(111)

= H
(
Ui,S

∣
∣U j,S, {g(X1,i , X2,i )}i∈S

)

+ H (Ui,Sc |U j,Sc, VSc) (112)

= μH (Ui |U j , g(X1, X2)) + (n − μ)H (Ui |U j , V ), (113)

where (108) follows from the Markov chains
U j,S − {g(X1,i , X2,i )}i∈S − VSc and U j,Sc − VSc −
(U j,S, {g(X1,i , X2,i )}i∈S). Similarly, (112) follows due to the
Markov chains Ui,S −(

U j,S, {g(X1,i , X2,i )}i∈S
)−(U j,Sc, VSc)

and Ui,Sc − (U j,Sc, VSc) − (Ui,S , U j,S, {g(X1,i , X2,i )}i∈S).
Thus, in applying Lemma 2 to the dual source model in

Problem A, for i, j = 1, 2, i 	= j , and ε̃ j > 0, we choose

γ j = (1 − ε̃ j ) min
S∈S

H (Un
j |Zn

S)

= (1 − ε̃ j )[μH (U j |g(X1, X2)) + (n − μ)H (U j |V )] (114)

γi j = (1 − ε̃ j ) min
S∈S

H (Un
i |Un

j , Zn
S)

= (1 − ε̃ j )[μH (Ui |U j , g(X1, X2)) + (n − μ)H (Ui |U j , V )]
(115)

Using Hoeffding inequality, the conditions of the lemma are
satisfied, and the rate conditions required for the secrecy
property in (90) are

R1 + R̃1 ≤ αH (U1|g(X1, X2)) + (1 − α)H (U1|V ) (116)

R2 + R̃2 ≤ αH (U2|g(X1, X2)) + (1 − α)H (U2|V ) (117)

R1 + R2 + R̃1 + R̃2 ≤ αH (U[1:2]|g(X1, X2))

+ (1 − α)H (U[1:2]|V ). (118)

These conditions, combined with the rate conditions for the
Slepian-Wolf decoder in (50)-(52), and using time sharing,
establish the achievability for the strong secrecy rate region in
Theorem 2.

Similarly, the proof for Theorem 3 follows similar steps as
in the proof for Theorem 1. In Problem A, S and Zn

S , for all
S ∈ S, are defined as in Section III-A.3, with replacing the
erasures ‘?’ by Vi . For i, j = 1, 2, i 	= j, and all S ∈ S,

H (Un
j |Zn

S) = H (U j,S, U j,Sc |X1,S, X2,S, VSc) (119)

= H (U j,S|X1,S, X2,S, VSc)

+ H (U j,Sc|U j,S, X1,S, X2,S, VSc) (120)

= H (U j,S|X j,S) + H (U j,Sc|VSc) (121)

= μH (U j |X j ) + (n − μ)H (U j |V ) (122)

H (Un
i |Un

j , Zn
S) = H (Ui,S, Ui,Sc |Un

j , X1,S, X2,S, VSc) (123)

= H (Ui,S|Un
j , X1,S, X2,S, VSc)

+ H (Ui,Sc |Ui,S , U j,S, U j,Sc, X1,S, X2,S, VSc) (124)

= H (Ui,S|Xi,S) + H (Ui,Sc |U j,Sc, VSc) (125)

= μH (Ui |Xi ) + (n − μ)H (Ui |U j , V ), (126)

where (121) follows due to the Markov chains U j,S −
X j,S − (Xi,S , VSc) and (U j,S, X1,S, X2,S) − VSc − U j,Sc .
Equation (125) follows from the Markov chains Ui,S − Xi,S −
(Un

j , X j,S, VSc) and (Ui,S , U j,S, X1,S, X2,S) − (U j,Sc, VSc) −
Ui,Sc .

Thus, for i, j = 1, 2, i 	= j , and ε̃ j > 0, by choosing

γ j = (1 − ε̃ j ) min
S∈S

H (Un
j |Zn

S)

= (1 − ε̃ j )[μH (U j |X j ) + (n − μ)H (U j |V )] (127)

γi j = (1 − ε̃ j ) min
S∈S

H (Un
i |Un

j , Zn
S)

= (1 − ε̃ j )[μH (Ui |Xi ) + (n − μ)H (Ui |U j , V )], (128)

and using Hoeffding inequality, the conditions of Lemma 2 are
satisfied. The rate conditions needed for the secrecy property
in (90) are given by (87)-(89). Thus, the achievable strong
secrecy rate region in Theorem 3 is identical to the region in
Theorem 1.

Finally, the proof for Theorem 4 follows similarly, where
in Problem A, S and Zn

S , for all S ∈ S, are defined as in (7)
and (8), with replacing the erasures ‘?’ by Vi .

Define S̄ � S1 ∪ S2, and let |Sj | = μ j , j = 1, 2, and
|S̄| = μ̄. Notice that μ̄ ≤ μ1 + μ2 = μ. The wiretapper’s
observation can be written as Zn

S = {X1,S1, X2,S2, VS̄c}. For
i, j = 1, 2, i 	= j, and all S ∈ S, we have

H (Un
j |Zn

S) = H (U j,S̄, U j,S̄c|X1,S1, X2,S2, VS̄c) (129)

= H (U j,S̄|X1,S1, X2,S2, VS̄c)

+ H (U j,S̄c|U j,S̄, X1,S1, X2,S2, VS̄c) (130)

= H (U j,S̄|X j,S j ) + H (U j,S̄c|VS̄c) (131)

= H (U j,S j |X j,S j ) + H (U j,{S̄\S j }) + H (U j,S̄c|VS̄c) (132)

= μ j H (U j |X j ) + (μ̄ − μ j )H (U j ) + (n − μ̄)H (U j |V )
(133)

H (Un
i |Un

j , Zn
S) = H (Ui,S̄, Ui,S̄c |Un

j , X1,S1, X2,S2, VS̄c)

(134)

= H (Ui,S̄|Un
j , X1,S1, X2,S2, VS̄c)

+ H (Ui,S̄c |Ui,S̄ , U j,S̄, U j,S̄c, X1,S1, X2,S2, VS̄c) (135)

= H (Ui,S̄|Xi,Si ) + H (Ui,S̄c |U j,S̄c, VS̄c) (136)

= H (Ui,Si |Xi,Si ) + H (Ui,{S̄\Si }) + H (Ui,S̄c |U j,S̄c, VS̄c)

(137)

= μi H (Ui |Xi ) + (μ̄ − μi )H (Ui) + (n − μ̄)H (Ui |U j , V ).
(138)

The right hand side of (133) is minimized by μ j = μ̄ = μ
and μi = 0. Similarly, the right hand side of (138) is
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minimized by μi = μ̄ = μ and μ j = 0. By choosing

γ j = (1 − ε̃ j ) min
S∈S

H (Un
j |Zn

S)

= (1 − ε̃ j )[μH (U j |X j ) + (n − μ)H (U j |V )] (139)

γi j = (1 − ε̃ j ) min
S∈S

H (Un
i |Un

j , Zn
S)

= (1 − ε̃ j )[μH (Ui |Xi ) + (n − μ)H (Ui |U j , V )], (140)

and using Hoeffding inequality, the conditions of Lemma 2
are satisfied. Once again, the rate conditions needed for the
secrecy property in (90) are the same as (87)-(89). Thus,
the achievable strong secrecy rate region in Theorem 4 is
identical to the region in Theorem 1.

VII. DISCUSSION

The third wiretapping model in Section III-A.3 is the
strongest attack model with regard to the number of noise-
lessly observed symbols by the wiretapper. In particular,
the wiretapper in this model noiselessly observes a total of
2μ symbols; μ symbols from each user. For the first and
fourth wiretapping models in Sections III-A.1 and III-A.4,
the wiretapper noiselessly observes a total of μ symbols.
However, the ability of the wiretapper in these two models
to decide on which user’s symbol to observe, in each position
it chooses, results in achievable strong secrecy rate regions
which are identical to the rate region of the third wiretapping
model.

In the achievable strong secrecy rate regions for the gen-
eralized multiple access wiretap channel under the proposed
attack models, in Theorems 1-4, the terms multiplied by α
represent the secrecy cost due to the noise-free observations
by the wiretapper and the terms multiplied by (1−α) represent
the secrecy cost due to its noisy observations. The achievable
secrecy rate regions under wiretapper models 1, 3, 4, in Theo-
rems 1, 3, and 4, can be alternatively expressed by the convex
hull of all rate pairs (R1, R2) satisfying

R1 ≤ I (U1; Y |U2) − I (U1; V ) − α I (U1; X1|V ), (141)

R2 ≤ I (U2; Y |U1) − I (U2; V ) − α I (U2; X2|V ), (142)

R1 + R2 ≤ I (U1, U2; Y ) − I (U1, U2; V )

− α I (U1, U2; X1, X2|V ), (143)

for some distribution pU1 X1 pU2 X2 which satisfies the Markov
chains U1 − X1 − (Y, V ) and U2 − X2 − (Y, V ). This
follows because I (U j ; X j ) = I (U j ; X j , V ), j = 1, 2,
and I (U1, U2; X1, X2) = I (U1, U2; X1, X2, V ), due to the
Markov chains U j − X j − V , j = 1, 2, and (U1, U2) −
(X1, X2) − V .

By setting the size of the subset S (or the overall size
of S1 and S2 for wiretapper model 4) to zero, i.e., α = 0,
in Theorems 1-4, we obtain the achievable strong secrecy
rate region in [30, Theorem 1] for the two user multiple
access wiretap channel. The same region was derived under
a weak secrecy criterion in [21], [38]. In addition, by setting
R2 = 0 in Theorems 1, 3, 4, we obtain the strong secrecy
capacity region for the single user case in [13, Theorem 1].
From the alternative characterization of the rate region for
wiretapper models 1, 3, 4, in (141)-(143), the terms multiplied

by α quantify the secrecy cost, with respect to the classical
multiple access wiretap channel, of the additional capabilities
at the wiretapper in these models; cf. [30, Theorem 1].

For the generalized multiple access wiretap channel under
wiretapper model 3, the achievable strong secrecy rate region
remains the same when the wiretapper observes noisy outputs
in all channel uses, i.e., the wiretapper observes the whole
sequence Vn . For the wiretapper model 3, in which the
wiretapper noiselessly observes both users symbols in the
positions of the subset it chooses, observing noisy symbols
through the multiple access channel pV |X1 X2 in the same
positions does not increase the wiretapper’s information about
the transmitted messages. The generalized multiple access
wiretap channel under the third wiretapper model thus gen-
eralizes the multiple access wiretap channel in [21], [30] to
the case when the wiretapper is provided with noiseless
observations for a subset of its choosing of the transmitted
codeword symbols of both users. The terms multiplied by α
in (141)-(143) quantify the secrecy cost, with respect to the
multiple access wiretap channel, of these additional noise-free
observations.

We note that extending the achievability approach utilized in
this paper to the case of non-uniform messages, i.e., semantic
secrecy [12], does not appear straightforward. In order to
handle the case of non-uniform messages, we would need to
characterize the distribution of the sources Un

1 , Un
2, given the

wiretapper’s observation Zn
S , when conditioned on each real-

ization of the keys w1, w2, i.e., pUn[1:2]|Zn
S W[1:2](u

n[1:2]|zn, w[1:2]),
for all un

[1:2] ∈ Un
1 ×Un

2, zn ∈ Zn , and w[1:2] ∈ [1 : 2nR1 ]×[1 :
2nR2 ], which is not easy due to the random binning of Un

1 and
Un

2.
The advantage of the achievability approach we utilize is

that it allows for rather straightforward extensions of the proof
to the different attack models proposed for the wiretapper,
as described in Section VI. In particular, the crucial component
of the achievability proof is Lemma 2, which provides a
doubly exponential convergence rate for the security measure
that exhausts the exponentially many possible strategies for
the type-II wiretapper. The different wiretapper models result
in different rate conditions required to satisfy the assumptions
of the lemma, while the remainder of the proof remains the
same.

Finally, we note that, for the wiretapper models considered
in this paper, the wiretapper’s strategy, i.e., which positions
and which user symbols to noiselessly tap, is chosen by the
wiretapper before the transmission begins. Investigating the
case when the wiretapper is allowed to adaptively update its
strategy according to the symbols it has observed so far is of
future interest.

VIII. CONCLUSION

In this paper, we have studied the extension of the wiretap
channel II with a noisy main channel in [11] and the gener-
alized wiretap channel model in [13] to the multiple access
setting. For the multiple access wiretap channel II with a
noisy main channel, we have proposed four different attack
models for the wiretapper which feature different adversarial
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capabilities, and derived an achievable strong secrecy rate
region for each. Further, we have generalized the proposed
models to the case when the wiretapper observes the outputs
of a noisy multiple access channel instead of erasures outside
the subset of noise-free observations it chooses, proposing a
generalized multiple access wiretap model. We have derived
achievable strong secrecy rate regions for this generalized
model under the proposed wiretapping scenarios. The tools
we have utilized for achievability extend the set of tools
utilized for the single-user scenario in [13] to a multi-user
setting.

Future work includes other multi-terminal setups with more
powerful wiretappers. Additionally, extending the results and
the utilized techniques in this work to Gaussian channels is an
interesting open problem. Another interesting direction is to
investigate whether the strong secrecy capacity in the wiretap
channel II setting also implies semantic security, i.e., security
over all possible message distributions.

APPENDIX

First, we rewrite the relative entropy in (39) as follows:

D

(
PW[1:2]F[1:2] ZS ||pU

W[1:2] pU
F[1:2] pZS

)

=
∑

w[1:2], f[1:2],z
PW[1:2]F[1:2] ZS (w[1:2], f[1:2], z)

× log
PW[1:2]F[1:2] ZS (w[1:2], f[1:2], z)

pU
W[1:2] pU

F[1:2] pZS(z)
(144)

=
∑

w[1:2], f[1:2],z
PW[1:2]F[1:2] ZS (w[1:2], f[1:2], z)

× log

(
PW[1:2]F[1:2] ZS (w[1:2], f[1:2], z)

PW1 F1 ZS (w1, f1, z)pU
W2

pU
F2

× PW1 F1 ZS (w1, f1, z)

pU
W1

pU
F1

pZS(z)

)

(145)

= EpZ S

(
D

(
PW[1:2]F[1:2]|ZS ||PW1 F1|ZS pU

W2
pU

F2

))

+ D

(
PW1 F1 ZS ||pU

W1
pU

F1
pZS

)
. (146)

Thus, the probability in (39) is upper bounded as

PpB

(

max
S∈S

D

(
PW[1:2]F[1:2] ZS ||pU

W[1:2] pU
F[1:2] pZS

)
≥ 2ε̃

)

≤ PpB

(

max
S∈S

D

(
PW1 F1 ZS ||pU

W1
pU

F1
pZS

)
≥ ε̃

)

+ PpB

(
maxS∈SEpZ S

D

(
PW[1:2]F[1:2]|ZS ||PW1 F1|ZS pU

W2
pU

F2

)
≥ ε̃

)

.

(147)

We upper bound each term on the right hand side of (147).
Using [13, Lemma 2], the first term is upper bounded
as

PpB

(

max
S∈S

D

(
PW1 F1 ZS ||pU

W1
pU

F1
pZS

)
≥ ε̃

)

≤ |S||Z| exp

(−ε2(1 − δ)2γ1

3W̃1 F̃1

)

. (148)

Next, we upper bound the second term in (147). For all
S ∈ S, let us define

AS �
{

z ∈ Z : PpX[1:2]|Z S

(
(X[1:2], ZS) ∈ DS

1

)
≥ 1 − δ

}
,

(149)

where DS
1 is defined in (35). Using Markov’s inequality

and (38), we have

PpZ S
(Ac

S) = PpZ S

(
PpX[1:2]|Z S

(
(X[1:2], ZS) /∈ DS

1

)
≥ δ

)

(150)

≤ 1

δ
PpX[1:2]Z S

(
(X[1:2], ZS) /∈ DS

1

)
≤ δ2

δ
= δ. (151)

For all w[1:2], f[1:2] ∈ [1 : W̃ ] × [1 : F̃], z ∈ Z, and S ∈ S,
define

P S
1 (w[1:2], f[1:2]|z)

=
∑

x[1:2]∈X1×X2

pX[1:2]|ZS (x[1:2]|z)�
{
(x[1:2], z) ∈ DS

1

}

× �

{
B

( j )
1 (x j ) = w j ,B

( j )
2 (x j ) = f j ,∀ j = 1, 2

}

(152)

P S
2 (w[1:2], f[1:2]|z)

=
∑

x[1:2]∈X1×X2

PX[1:2]|ZS(x[1:2]|z)�
{
(x[1:2], z) /∈ DS

1

}

× �

{
B

( j )
1 (x j ) = w j ,B

( j )
2 (x j ) = f j ,∀ j = 1, 2

}
.

(153)

Thus, we have
PW[1:2]F[1:2]|ZS (w[1:2], f[1:2]|z)

= P S
1 (w[1:2], f[1:2]|z) + P S

2 (w[1:2], f[1:2]|z). (154)

Now, for every x2 ∈ X2, define

Ux2 =
∑

x1∈X1

pX[1:2]|ZS (x[1:2]|z)

× �

{
B

(2)
1 (x2) = w2,B

(2)
2 (x2) = f2

}
�

{
(x[1:2], z) ∈ DS

1

}
.

(155)

The random variables
{
Ux2

}
x2∈X2

are non-negative and inde-

pendent since the random variables
{
B

(2)
1 (x2),B

(2)
2 (x2)

}

x2∈X2

are independent. From the definition of DS
1 in (35), we have for

(x[1:2], z) ∈ DS
1 that (x[1:2], z) ∈ DS

γ21
. Additionally, from the

definition of DS
γ21

in (37), we have that p(x2|x1, z) ≤ 2−γ21 .
From (155), we have

Ux2 ≤
∑

x1

pX1|ZS (x1|z)pX2|X1,ZS(x2|x1, z)

× �

{
(x[1:2], z) ∈ DS

1

}
(156)

≤ 2−γ21
∑

x1

pX1|ZS(x1|z)�
{
(x[1:2], z) ∈ DS

1

}
(157)

≤ 2−γ21 . (158)

Since for all x2 ∈ X2,

EpB

(
�

{
B

(2)
1 (x2) = w2,B

(2)
2 (x2) = f2

})
= 1

W̃2 F̃2
, (159)
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we have,
∑

x2∈X2

EpB (Ux2)

= 1

W̃2 F̃2

∑

x[1:2]∈X1×X2

pX[1:2]|ZS (x[1:2]|z)�
{
(x[1:2], z) ∈ DS

1

}

(160)

=
PpX[1:2]|Z S

((
X[1:2], z

) ∈ DS
1

)

W̃2 F̃2
. (161)

In addition, notice that
∑

w1, f1

P S
1 (w[1:2], f[1:2]|z)

=
∑

x[1:2]
pX[1:2]|ZS(x[1:2]|z)�

{(
x[1:2], z

) ∈ DS
1

}

×
∑

w1, f1

�

{
B

( j )
1 (x j ) = w j ,B

( j )
2 (x j ) = f j ,∀ j = 1, 2

}

(162)

=
∑

x2

∑

x1

pX[1:2]|ZS (x[1:2]|z)�
{(

x[1:2], z
) ∈ DS

1

}

× �

{
B

(2)
1 (x2) = w2,B

(2)
2 (x2) = f2

}
(163)

=
∑

x2

Ux2 . (164)

We now state the following lemma, which is a variation on
Chernoff’s bound that we need to utilize in the proof.

Lemma 4: (A variation on Chernoff
bound [13, Lemma 6]): Let U1, U2, · · · , Un be a sequence
of non-negative independent random variables with respective
means E(Ui ) = m̄i . If Ui ∈ [0, b], for all i ∈ [1 : n], and∑n

i=1 m̄i ≤ m̄, then, for every ε ∈ [0, 1], we have

P

(
n∑

i=1

Ui ≥ (1 + ε)m̄

)

≤ exp

(

−ε2 m̄

3b

)

. (165)

The random variables
{
Ux2

}
x2∈X2

are non-negative, inde-
pendent, and Ux2 ∈ [0, 2−γ21] for all x2 ∈ X2. By applying
Lemma 4 to the random variables {Ux2}x2∈X2 , we have,

PpB

(

P S
1 (w[1:2], f[1:2]|z) ≥ 1 + ε

W̃2 F̃2
PW1 F1|ZS (w1, f1|z)

)

≤ PpB

( ∑
w1, f1

P S
1 (w[1:2], f[1:2]|z)

≥ 1+ε

W̃2 F̃2

∑
w1, f1

PW1 F1|ZS (w1, f1|z)
)

(166)

= PpB

(
∑

x2

Ux2 ≥ 1 + ε

W̃2 F̃2

)

(167)

≤ PpB

(
∑

x2

Ux2 ≥ 1 + ε

W̃2 F̃2
PpX[1:2]|Z S

((
X[1:2], z

) ∈ DS
1

)
)

(168)

= PpB

(
∑

x2

Ux2 ≥ (1 + ε)
∑

x2

EpB (Ux2)

)

(169)

≤ exp

(−ε22γ21

3W̃2 F̃2
PpX[1:2]|Z S

((
X[1:2], z

) ∈ DS
1

))

, (170)

where (167) follows from (164), (169) follows from (161),
and (170) follows from Lemma 4.

From the definition of AS in (149), we have, for all z ∈ AS ,
that PpX[1:2]|Z S

((
X[1:2], z

) ∈ DS
1

) ≥ 1−δ. Thus, for all z ∈ AS ,

PpB

(

P S
1 (w[1:2], f[1:2]|z) ≥ 1 + ε

W̃2 F̃2
PW1 F1|ZS (w1, f1|z)

)

≤ exp

(−ε2(1 − δ)2γ21

3W̃2 F̃2

)

. (171)

Note that, for fixed z ∈ Z and S ∈ S, the random
variables

{
P S

1 (w[1:2], f[1:2]|z)
}

are identically distributed for
all w[1:2], f[1:2] due to the symmetry in the random binning.
Let b � {b( j )

1 , b( j )
2 , j = 1, 2} be a realization of the random

binning B. We define the class G of binning functions b as

G �
{

b : P S
1 (w[1:2], f[1:2]|z) <

1 + ε

W̃2 F̃2
PW1 F1|ZS (w1, f1|z),

for all S ∈ S and z ∈ AS

}
. (172)

Using the union bound, we have

PpB (Gc)

= PpB

(

P S
1 (w[1:2], f[1:2]|z) ≥ 1 + ε

W̃2 F̃2
PW1 F1|ZS (w1, f1|z),

for some S ∈ S or z ∈ AS

)

(173)

≤
∑

S∈S,z∈AS

PpB

(

P S
1 (w[1:2], f[1:2]|z)

≥ 1 + ε

W̃2 F̃2
PW1 F1|ZS (w1, f1|z)

)

(174)

≤ |S||Z| exp

(−ε2(1 − δ)2γ21

3W̃2 F̃2

)

, (175)

where (175) follows from (171).
Take b such that b ∈ G, and set W j = b( j )

1 (X j ) and Fj =
b( j )

2 (X j ) for j = 1, 2. For all S ∈ S,

EpZ S

(
D

(
PW[1:2]F[1:2]|ZS ||PW1 F1|ZS pU

W2
pU

F2

))

= EpZ S

( ∑

w[1:2], f[1:2]
PW[1:2]F[1:2]|ZS (w[1:2], f[1:2]|ZS)

× log
PW[1:2]F[1:2]|ZS (w[1:2], f[1:2]|ZS)

PW1 F1|ZS(w1, f1|ZS)pU
W2

pU
F2

)

(176)

= EpZ S

( ∑

w[1:2], f[1:2]

2∑

i=1

P S
i (w[1:2], f[1:2]|ZS)

× log

∑2
i=1 P S

i (w[1:2], f[1:2]|ZS)

PW1 F1|Z S (w1, f1|ZS)

W̃2 F̃2

2∑

i=1

∑

w[1:2],
f[1:2]

P S
i (w[1:2], f[1:2]|ZS)

)

(177)

≤ EpZ S

( 2∑

i=1

∑

w[1:2], f[1:2]
P S

i (w[1:2], f[1:2]|ZS)
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× log
1

∑

w[1:2], f[1:2]
P S

i (w[1:2], f[1:2]|ZS)

)

+ EpZ S

( ∑

w[1:2], f[1:2]
P S

1 (w[1:2], f[1:2]|ZS)

× log
W̃2 F̃2 P S

1 (w[1:2], f[1:2]|ZS)

PW1 F1|ZS (w1, f1|ZS)

)

+ EpZ S

( ∑

w[1:2], f[1:2]
P S

2 (w[1:2], f[1:2]|ZS)

× log
W̃2 F̃2 P S

2 (w[1:2], f[1:2]|ZS)

PW1 F1|ZS (w1, f1|ZS)

)

, (178)

where (177) follows since

∑

w[1:2], f[1:2]

2∑

i=1

P S
i

(
w[1:2], f[1:2]|ZS

) = 1, (179)

and (178) follows from the log-sum inequality.
Now, we upper bound each term in the right hand side

of (178) for b ∈ G. The second term in the right hand side
of (178) is upper bounded as follows:

EpZ S

( ∑

w[1:2], f[1:2]
P S

1 (w[1:2], f[1:2]|ZS)

× log
W̃2 F̃2 P S

1 (w[1:2], f[1:2]|ZS)

PW1 F1|ZS (w1, f1|ZS)

)

= EpZ S

( ∑

w[1:2], f[1:2]
P S

1 (w[1:2], f[1:2]|ZS)

× log
W̃2 F̃2 P S

1 (w[1:2], f[1:2]|ZS)

PW1 F1|ZS (w1, f1|ZS)
� {ZS /∈ AS}

)

+ EpZ S

( ∑

w[1:2], f[1:2]
P S

1 (w[1:2], f[1:2]|ZS)

× log
W̃2 F̃2 P S

1 (w[1:2], f[1:2]|ZS)

PW1 F1|ZS(w1, f1|ZS)
� {ZS ∈ AS}

)

(180)

≤ log(W̃2 F̃2)
∑

z∈Z

pZS(z)�{z /∈ AS}
∑

w[1:2],
f[1:2]

P S
1 (w[1:2], f[1:2]|z)

+ log(1 + ε) EpZ S

⎛

⎝
∑

w[1:2], f[1:2]
P S

1 (w[1:2], f[1:2]|ZS)

⎞

⎠

(181)

≤ PpZ S
(ZS /∈ AS) log(W̃2 F̃2) + log(1 + ε) (182)

≤ δ log(W̃2 F̃2) + ε, (183)

where (181) follows because (i) for i = 1, 2, and all
w[1:2], f[1:2], we have

P S
i (w[1:2], f[1:2]|ZS) ≤ PW[1:2]F[1:2]|ZS (w[1:2], f[1:2]|ZS)

(184)

= PW1 F1|ZS (w1, f1|ZS)PW2 F2|W1 F1 ZS(w2, f2|w1, f1, ZS)
(185)

≤ PW1 F1|ZS(w1, f1|ZS), (186)

and (ii) for b ∈ G and ZS ∈ AS ,
W̃2 F̃2 P S

1 (w[1:2], f[1:2]|ZS)

PW1 F1|Z S (w1, f1|ZS) <

(1 + ε), which follows from (172).
Next, we upper bound the third term in the right hand side

of (178). We have that

EpZ S

⎛

⎝
∑

w[1:2], f[1:2]
P S

2 (w[1:2], f[1:2]|ZS)

⎞
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=
∑

z

pZS(z)
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pX[1:2]|ZS (x[1:2], z)�

{(
x[1:2], z

)
/∈ DS

1

}

×
∑

w[1:2], f[1:2]
�

{
B

( j )
1 (x j ) = w j ,B

( j )
2 (x j ) = f j , j = 1, 2

}

(187)

= PpX[1:2],Z S

((
X[1:2], ZS

)
/∈ DS

1

)
≤ δ2, (188)

where the inequality in (188) follows from the assumption of
the lemma in (38). Using (186) and (188), we have

EpZ S

( ∑

w[1:2], f[1:2]
P S
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× log
W̃2 F̃2 P S
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)

≤ δ2 log(W̃2 F̃2).

(189)

Since we have
∑

w[1:2], f[1:2]
P S

1

(
w[1:2], f[1:2]|ZS

)

= PpX[1:2]|Z S
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X[1:2], ZS

) ∈ DS
1

)
, (190)

and
∑

w[1:2], f[1:2]
P S

2

(
w[1:2], f[1:2]|ZS

)

= 1 − PpX[1:2]|Z S

((
X[1:2], ZS

) ∈ DS
1

)
, (191)

the first term on the right hand side of (178) is upper bounded
as follows:

EpZ S

( 2∑

i=1

∑

w[1:2], f[1:2]
P S
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× log
1
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)

= EpZ S

(
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PpX[1:2]|Z S
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X[1:2], ZS
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1
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(192)

≤ Hb

(
PpX[1:2],Z S
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X[1:2], ZS

) ∈ DS
1

))
(193)

≤ Hb(1 − δ2) = Hb(δ
2), (194)

where (193) follows from Jensen’s inequality and the con-
cavity of Hb, and (194) follows from (38) and that Hb(x) is
monotonically decreasing in x ∈ ( 1

2 , 1).
Using (183), (189), and (194), for any b ∈ G and S ∈ S,

the left hand side of (178) is upper bounded as

EpZ S

(
D

(
PW[1:2]F[1:2]|ZS ||PW1 F1|ZS pU

W2
pU

F2

))

≤ ε + (δ + δ2) log(W̃2 F̃2) + Hb(δ
2) ≤ ε̃. (195)
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Thus, the second probability on the right hand side of (147)
is upper bounded as

PpB

(

max
S∈S

EpZ S
D

(
PW[1:2]F[1:2]|ZS ||PW1 F1|ZS pU

W2
pU

F2

)
> ε̃

)

= 1−
PpB

(

max
S∈S

EpZ S
D

(
PW[1:2]F[1:2]|ZS ||PW1 F1|ZS pU

W2
pU

F2

)
≤ ε̃

)

(196)

= 1 − PpB

(

EpZ S
D

(
PW[1:2]F[1:2]|ZS ||PW1 F1|ZS pU

W2
pU

F2

)
≤ ε̃

for all S ∈ S

)

(197)

≤ 1 − PpB (G) = PpB (Gc) (198)

≤ |S||Z| exp

(−ε2(1 − δ)2γ21

3W̃2 F̃2

)

, (199)

where (199) follows from (175).
Finally, by rewriting (146) with switching the roles of

(W1, F1) and (W2, F2) and repeating the whole proof,
we obtain the second term in the minimum in (39), which
completes the proof for Lemma 2.
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