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Abstract— In this paper, a new wiretap channel model is
proposed, where the legitimate transmitter and receiver commu-
nicate over a discrete memoryless channel. The wiretapper has
perfect access to a fixed-length subset of the transmitted code
word symbols of her choosing. Additionally, she observes the
remainder of the transmitted symbols through a discrete mem-
oryless channel. This new model subsumes the classical wiretap
channel and wiretap channel II with noisy main channel as its
special cases, and is termed as the generalized wiretap channel
for that reason. The strong secrecy capacity of the proposed
channel model is identified. Achievability is established by solving
a dual secret key agreement problem in the source model, and
converting the solution to the original channel model using proba-
bility distribution approximation arguments. In the dual problem,
a source encoder and decoder, who observe random sequences
independent and identically distributed according to the input
and output distributions of the legitimate channel in the original
problem, communicate a confidential key over a public error-
free channel using a single forward transmission, in the presence
of a compound wiretapping source who has perfect access to
the public discussion. The security of the key is guaranteed
for the exponentially many possibilities of the subset chosen at
the wiretapper by deriving a lemma which provides a doubly-
exponential convergence rate for the probability that, for a fixed
choice of the subset, the key is uniform and independent from the
public discussion and the wiretapping source’s observation. The
converse is derived by using Sanov’s theorem to upper bound
the secrecy capacity of the generalized wiretap channel by the
secrecy capacity when the tapped subset is randomly chosen by
nature.

Index Terms— Wiretap channel, wiretap channel II, strong
secrecy, source-channel duality, random binning, concentration
inequalities.

I. INTRODUCTION

WYNER’S wiretap channel models a legitimate trans-
mitter and a receiver communicating over a discrete

memoryless channel (DMC), referred to as the main channel,
in the presence of a passive wiretapper who only listens to the
transmitted signal through a cascaded second DMC, referred to
as the wiretapper channel [2]. Subsequently, reference [3] has
generalized Wyner’s wiretap channel model to a general, not
necessarily degraded, discrete memoryless wiretap channel.
Later, Ozarow and Wyner, in reference [4], have introduced
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the wiretap channel II model, which considers a noiseless
main channel and a binary erasure channel to the wiretapper,
where the wiretapper is able to select the positions of erasures.
Interestingly, using random partitioning and combinatorial
arguments, reference [4] has showed that the secrecy capacity
for this channel is equal to that if the wiretapper is a passive
observer unable to choose the positions of the erasures, thus
demonstrating the ability of coding to neutralize this more
powerful wiretapper.

While considerable research on code design for secure
communication followed the randomized coset coding of [4],
see for example [5]–[7], the idea of the wiretap channel II
remained linked to the assumption of a noiseless main channel
for several decades, mainly due to technical challenges in
generalizing the model outside of this special model. Yet,
the notion of providing the wiretapper with this additional
capability of choosing what to observe is appealing and repre-
sents a positive step towards providing confidentiality guaran-
tees in stronger attack models. Towards this end, reference [8]
introduced a discrete memoryless (noisy) main channel to the
wiretap channel II model, and derived outer and inner bounds
for the capacity-equivocation region of the model, where the
proposed achievability scheme is optimal for the special case
of the maximizing input distribution being uniform. More
recently, reference [9] found the secrecy capacity of this
model, showing that, once again, the secrecy capacity is equal
to that of the case when the wiretapper channel is replaced
with a discrete memoryless erasure channel.

This work goes one step further and introduces a new
wiretap channel model with a discrete memoryless main
channel and a wiretapper who observes a subset of the trans-
mitted codeword symbols of her choosing perfectly, as well
as observing the remaining symbols through a second DMC.
This model includes as special cases both the classical wiretap
channel in [3] by setting the subset size to zero, and the
wiretap channel II with a noisy main channel in [8] by setting
the wiretapper’s DMC to an erasure channel with erasure
probability one, and is termed as the generalized wiretap
channel for that reason. We characterize the strong secrecy
capacity for the proposed wiretap channel model, quantifying
precisely the cost in secrecy capacity due to the additional
capability at the wiretapper, with respect to the previous
wiretap models.

We first present the achievability. Recent independent
work [9] has provided an achievability proof for the wiretap
channel II model with a noisy main channel considered
in [8] using a stronger version of Wyner’s soft covering
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Fig. 1. The generalized wiretap channel: A new wiretap channel model.

lemma [10]. Although, with a careful handing, this approach
can be applied to the wiretap channel model we propose
in the paper, we follow an alternative approach to establish
its achievability, namely by using a framework similar to
the output statistics of random binning framework in [11].
In particular, we solve a dual secret key agreement problem
in the source model sense [12], [13], and infer the design for
the encoder and decoder of the original channel model from
the solution of the dual problem. The difference between our
achievability proof and the framework presented in [11] is that
we measure the statistical dependence between the transmitted
message and the wiretapper’s observation in terms of the
Kullback-Leibler (K-L) divergence instead of total variation
distance, which requires establishing a convergence result,
with a rate strictly faster than 1

n , for the probability that the two
induced distributions from the original and the dual models are
close in the total variation distance sense. In addition, in the
source model, we guarantee the secrecy of the confidential key
for the exponentially many possibilities of the subset chosen at
the wiretapper by deriving a one-shot result which provides a
doubly-exponential convergence rate for the probability that
the key is uniform and independent from the wiretapper’s
observation.

The converse is derived by identifying a channel model
whose secrecy capacity is identical to that of the proposed
channel model, and is easier to establish the converse of. This
is done by means of upper bounding its secrecy capacity with
that of a discrete memoryless channel1 whose secrecy capacity
is tractable.

The remainder of the paper is organized as follows.
Section II describes the new wiretap channel model. Section III
provides the main result of the paper, i.e., the strong secrecy
capacity for the new wiretap channel. Sections IV and V pro-
vide the achievability and converse proofs. Section VI provides
a discussion about the main result and the adopted achievabil-
ity approach. Section VII concludes the paper. The proofs for
the supporting lemmas are provided in the Appendices.

II. CHANNEL MODEL AND DEFINITIONS

We first remark the notation we use throughout the paper.
Vectors are denoted by bold lower-case super-scripted letters
while their components are denoted by lower-case sub-scripted
letters. A similar convention but with upper-case letters is used

1A similar approach was considered to derive [9, Proposition 1].

for random vectors and their components. Vector superscripts
are omitted when dimensions are clear from the context.
We use �{A} to denote the indicator function of the event A.
For a, b ∈ R, �a, b� denotes the set of integers {i ∈ N : a ≤
i ≤ b}. For S ⊆ N, XS denotes the sequence {Xi }i∈S . We use
upper-case letters to denote random probability distributions,
e.g., PX , and lower-case letters to denote deterministic proba-
bility distributions, e.g., pX . We use pU

X to denote a uniform
distribution over the random variable X . The argument of the
probability distribution is omitted when it is clear from its
subscript. V(pX , qX ) and D(pX ||qX ) denote the total variation
distance and the Kullback-Leibler (K-L) divergence between
the probability distributions pX and qX .

We consider the channel model illustrated in Figure 1.
The main channel

{
X,Y, pY |X

}
is a discrete memoryless

channel (DMC) which consists of a finite input alphabet X,
a finite output alphabet Y, and a transition probability pY |X .
The transmitter wishes to transmit a message W , uniformly
distributed over W = �1, 2nRs �, to the legitimate receiver
reliably, and to keep the message secret from the wiretapper.
To do so, the transmitter maps the message W to the trans-
mitted codeword Xn ∈ Xn using a stochastic encoder. The
legitimate receiver observes Yn ∈ Yn and maps its observation
to the estimate Ŵ of the message W . The wiretapper chooses
a subset S ∈ S where the set S is defined as

S �
{

S : S ⊆ �1, n�, |S| = μ ≤ n, α = μ

n

}
. (1)

Then, the wiretapper observes the sequence Zn
S �

[Z S
1 , Z S

2 , · · · , Z S
n ] ∈ Zn , with

Z S
i =

{
Xi , i ∈ S

Vi , otherwise,
(2)

where Vn � [V1, V2, · · · , Vn] ∈ Vn is the output of the DMC
pV |X when Xn is the input, and the alphabet Z is given by
Z = {X ∪ V}.

An (n, 2nRs ) code Cn for the channel model in Figure 1
consists of

(i) the message set W = �1, 2nRs �,
(ii) the stochastic encoder PXn |W,Cn at the transmitter, and

(iii) the decoder at the legitimate receiver.

We consider the strong secrecy constraint at the
wiretapper [14], [15]. Rate Rs is an achievable strong
secrecy rate if there exists a sequence of (n, 2nRs ) channel
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codes, {Cn}n≥1, such that

lim
n→∞P

(
Ŵ 	= W |Cn

)
= 0 Reliability, (3)

and lim
n→∞max

S∈S
I
(
W ; Zn

S |Cn
) = 0 Strong Secrecy, (4)

where S is defined as in (1). The strong secrecy capacity, Cs ,
is the supremum of all achievable strong secrecy rates.

Finally, we will be using the following two measures
extensively in the sequel. The total variation distance between
two probability distributions pX and qX , defined on the same
probability space, is given by

V(pX , qX ) � 1

2

∑

x∈X

|p(x)− q(x)|

=
∑

x∈X: p(x)>q(x)

[p(x)− q(x)]. (5)

The Kullback-Leibler divergence, or relative entropy, between
the two distributions pX and qX , defined on the same proba-
bility space, is given by

D(pX ||qX ) �
∑

x∈X

pX (x) log
pX (x)

qX (x)
. (6)

III. MAIN RESULT

The main result of this paper is stated in the following
theorem.

Theorem 1: For 0 ≤ α ≤ 1, the strong secrecy capacity of
the generalized wiretap channel in Figure 1 is given by

Cs(α)= max
U−X−Y V

[I (U ; Y )− I (U ; V )− α I (U ; X |V )]+ , (7)

where the maximization is over all the distributions pU X which
satisfy the Markov chain U − X − Y V , and the cardinality of
U can be restricted as |U| ≤ |X|.

Proof: The achievability and converse proofs for Theorem 1
are provided in Sections IV and V, respectively. �

Remark 1: An equivalent characterization for the strong
secrecy capacity of the generalized wiretap channel is given by

Cs(α) = max
U−X−Y V

[
I (U ; Y )− α I (U ; X)

−(1 − α)I (U ; V )

]+
, (8)

since I (U ; X |V ) in (7) can be written as

I (U ; X |V ) = H (U |V )− H (U |X) (9)

= H (U)− I (U ; V )− H (U |X) (10)

= I (U ; X)− I (U ; V ), (11)

where (9) follows from the Markov chain U − X − V .
Corollary 1: By setting the tapped subset by the

wiretapper, S, to the null set, or equivalently α = 0, the secrecy
capacity in (7) is equal to the secrecy capacity of the discrete
memoryless wiretap channel in [3, Corollary 2], i.e.,

Cs(0) = max
U−X−Y V

[I (U ; Y )− I (U ; V )]+ . (12)

Remark 2: Comparing (7) and (12), we observe that the
secrecy cost, with respect to the classical wiretap channel,
of the additional capability of the wiretapper to choose a subset

of size αn of the codewords to access perfectly, is equal to
α I (U ; X |V ).

Corollary 2: By setting the wiretapper’s DMC through
which she observes the (1−α)n symbols she does not choose,
pV |X , to be an erasure channel with erasure probability one,
the secrecy capacity in (7) is equal to the secrecy capacity
of the wiretap channel II with a noisy main channel in
[9, Th. 2], i.e.,

Cs(α) = max
U−X−Y

[I (U ; Y )− α I (U ; X)]+ . (13)

Remark 3: Comparing (8) and (13), the secrecy cost, with
respect to the wiretap channel II with a noisy main channel,
of the additional capability of the wiretapper of observing
(1 − α) fraction of the codeword through the DMC pV |X ,
is equal to (1 − α)I (U ; V ).

IV. ACHIEVABILITY

We establish the achievability for Theorem 1 using an
indirect approach as in [11], [16], and [17]. We first assume the
availability of a certain common randomness at all terminals
of the original channel model. We then define a dual secret
key agreement problem in the source model which introduces
a set of random variables similar to the set of variables
introduced by the original problem with the assumed common
randomness. The alphabets of the random variables in the
original and dual problems are identical. In addition, a subset
of the marginal and conditional distributions for these random
variables in the original and dual problems are considered to
be identical. Yet, the joint distribution of the random variables
in the dual problem can differ from that of the original problem
due to the different dynamics in the two problems. The main
trick is to search for conditions such that the joint distributions
of the random variables in the two problems are almost
identical in the total variation distance sense. This enables
converting the solution, i.e., finding an encoder and decoder
which satisfy certain reliability and secrecy conditions, for the
dual problem, which is more tractable, to a solution of the
original problem. We finally eliminate the assumed common
randomness from the original channel model by conditioning
on a certain instance of it. Duality here is an operational
duality [18] in which the solution for the dual problem is
converted to a solution for the original problem.

We first prove the achievability for the case U = X .
We fix the input distribution pX and define two protocols;
each of these protocols introduces a set of random variables
and random vectors and induces a joint distribution over them.
The first protocol, protocol A, describes a dual secret key
agreement problem in which a source encoder and decoder
observe random sequences independently and identically dis-
tributed (i.i.d.) according to the input and output distributions
of the original channel model. The source encoder and decoder
intend to communicate a confidential key via transmitting a
public message over an error-free channel, in the presence
of a compound wiretapping source who has perfect access to
the public message and observes another random sequence
whose distribution belongs to a finite class of distributions,
with no prior distribution over the class. The second protocol,
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Fig. 2. Protocol A: Secret key agreement in the source model.

protocol B, describes the original channel model in Figure 1,
with the addition of assuming a common randomness that is
available at all terminals. In the following, we describe the
two protocols in detail.

Protocol A (Secret Key Agreement in Source Model): The
protocol is illustrated in Figure 2. The random vectors Xn,Yn

are i.i.d. according to pXY = pX pY |X , where pY |X is the tran-
sition probability of the main channel in Figure 1. The source
encoder observes the sequence Xn and randomly assigns (bins)
it into the two bin indices W = B1,n(Xn) and F = B2,n(Xn),
where B1,n and B2,n are uniformly distributed over �1, 2nRs �

and �1, 2nR̃s �, respectively. That is, each xn ∈ Xn is randomly
and independently assigned to the indices w ∈ �1, 2nRs �

and f ∈ �1, 2nR̃s �. The bin index F represents the public
message which is transmitted over a noiseless channel to the
decoder and perfectly accessed by the wiretapper. The bin
index W represents the confidential key to be generated at the
encoder and reconstructed at the decoder. The source decoder
observes F and the i.i.d. sequence Yn , and outputs the estimate
X̂n of Xn , which in turn generates the estimate Ŵ of W . For
any S ∈ S, where S is defined as in (1), the wiretapper source
node observes F and the sequence Zn

S in (2). The subset S is
selected by the wiretapper and her selection is unknown to the
legitimate parties. Thus, the wiretapper can be represented as
a compound source Zn

S �
{
Z, pZn

S
, S ∈ S

}
whose distribution

is only known to belong to the finite class {pZn
S
}S∈S with no

prior distribution over the class, with |S| = ( n
αn

) ≤ 2n . For
S ∈ S, the induced joint distribution for this protocol is

P̃W FXYZSX̂(w, f, x, y, z, x̂)

= pXYZS(x, y, z)P̃W F |X(w, f |x)P̃X̂|YF (x̂|y, f ) (14)

= pXYZS(x, y, z)�{B1,n(X) = W }�{B2,n(X) = F}
× P̃X̂|YF (x̂|y, f ) (15)

= P̃W F (w, f )P̃X|W F (x|w, f ) pYZS|X(y, z|x)
× P̃X̂|YF (x̂|y, f ). (16)

Protocol B (Main problem assisted with common ran-
domness): This protocol is defined as the channel model
in Figure 1, with an addition of a common randomness F
that is uniformly distributed over �1, 2nR̃s �, independent from
all other variables, and known at all terminals. In fact,
the assumed common randomness represents the random
nature in generating the codebook, which is known at all
nodes. At the end of the proof, we eliminate the assumed
common randomness from the channel model in this pro-
tocol by conditioning on a certain instance of it. The
encoder and decoder in this protocol are defined as in (16),

i.e., PX|W F = P̃X|W F and PX̂|YF = P̃X̂|YF . The induced joint

distribution for this protocol is given by

PW FXYZSX̂(w, f, x, y, z, x̂)

= pU
W pU

F P̃X|W F (x|w, f )pYZS|X(y, z|x)P̃X̂|YF (x̂|y, f ). (17)

The induced joint distributions in (16) and (17) are random
due to the random binning of Xn . Note that we have ignored
the random variables Ŵ from the induced joint distributions
at this stage. We will introduce them later to the joint distri-
butions as deterministic functions of the random vectors X̂n ,
after fixing the binning functions.

The remaining steps of the proof are outlined as follows:
(i) We derive a condition on the rates Rs and R̃s such that

the two induced joint distributions (16) and (17) are close
in the total variation distance sense, when averaged over
the random binning.

(ii) We then use Slepian-Wolf source coding
theorem [19], [20] to derive a condition on the
rate R̃s such that the decoding of X̂ in protocol A is
reliable, i.e., the communication of the key W is reliable.

(iii) Next, for protocol A, we derive another condition on the
rates Rs and R̃s such that the probability, with respect to
the random binning, that for all S ∈ S, the key W and the
public message F are uniformly distributed, independent,
and both independent from the wiretapper’s observation
Zn

S , goes to one as n goes to infinity, i.e., protocol A is
secure.

(iv) We use the closeness of the two induced distributions
for the two protocols to show that, under the same rate
conditions for protocol B, the aforementioned reliability
and secrecy properties in (ii) and (iii) hold for protocol B
as well.

(v) The reliability and secrecy properties in (ii) and (iii),
after being converted to the channel model in protocol B,
are averaged over the random binning of the dual source
model2 in protocol A. We show the existence of a fixed
binning realization such that both properties still hold for
protocol B.

(vi) Finally, we eliminate the common randomness F from
the channel model in protocol B by showing that the
reliability and secrecy constraints still hold when we
condition on a certain instance of F , i.e., F = f ∗.

Note that, for the secrecy constraint, we have required the
independence of the assumed common randomness F from
both W and Zn

S so that when we condition over an instance
of F , the independence of W and Zn

S is not affected. That
is, the secrecy (independence) property in (iii) for protocol B,
after fixing the binning function and removing the common
randomness, results in an achievable strong secrecy rate for
the original channel model. Before continuing with the proof,
we state the following lemmas.

A. Useful Lemmas

Lemma 1 is a one-shot result, which provides an exponential
decay rate for the average, over the random binning, of the

2Note that the probability with respect to the random binning in (iii) is
equivalent to an average over the random binning of an indicator function.
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total variation distance between the two induced distributions
from the two protocols. We utilize this lemma to show a
convergence in probability result that allows converting the
secrecy property from protocol A to protocol B. A result
similar to Lemma 1 was derived in [11, Appendix A] which
does not provide the required convergence rate, hence the need
for Lemma 1.

Lemma 1: Let the source X � {X, pX } be randomly binned
into W = B1(X) and F = B2(X), where B1 and B2
are uniform over �1, W̃ � and �1, F̃�, respectively. Let B �
{B1(x),B2(x)}x∈X, and for γ > 0, define

Dγ �
{

x ∈ X : log
1

pX (x)
> γ

}
. (18)

Then, we have

EB

(
V

(
PW F , pU

W pU
F

))
≤ P

(
X /∈ Dγ

)+ 1

2

√
W̃ F̃2−γ , (19)

where P is the induced distribution over W and F .

Proof: The proof is provided in Appendix A. �
Lemma 2 below is again a one-shot result which provides

a doubly-exponential decay rate for the probability of failure
of achieving the secrecy property for protocol A, for a fixed
choice of the subset S. This lemma is needed, along with the
union bound, to guarantee secrecy against the exponentially
many possibilities of the tapped subset S.

Lemma 2: Let X � {X, pX } and {ZS} �
{
Z, pZS , S ∈ S

}

be two correlated sources with |X|, |Z|, and |S| < ∞, where
{ZS}S∈S is a compound source whose distribution is known to
belong to the finite class {pZS}S∈S. Let X be randomly binned
into the bin indices W and F as in Lemma 1. For γ > 0 and
any S ∈ S, define

DS
γ �

{
(x, z) ∈ X × Z : log

1

pX |ZS(x |z) > γ

}
. (20)

If there exists δ ∈ (
0, 1

2

)
such that for all S ∈ S,

PpX Z S

(
(X, ZS) ∈ DS

γ

)
≥ 1 − δ2, then, we have, for every

ε1 ∈ [0, 1], that

PB

(
max
S∈S

D
(
PW F ZS ||pU

W pU
F pZS

) ≥ ε̃

)

≤ |S||Z| exp

(
−ε2

1 (1 − δ)2γ

3W̃ F̃

)

, (21)

where ε̃ = ε1 + (δ+ δ2) log(W̃ F̃)+ Hb(δ
2), Hb is the binary

entropy function, and P is the induced distribution over W, F,
and ZS .

Proof: The proof of Lemma 2 is given in Appendix B. �
The selection lemma below is used to show the existence of

a binning realization such that both the secrecy and reliability
properties hold for protocol B. It is also used to eliminate the
common randomness F from the channel model in protocol B.

Lemma 3 (Selection Lemma [21, Lemma 2.2]): Let
A1, A2, · · · , An be a sequence of random variables where
An ∈ An , and let Fn �

{
f1,n, · · · , fM,n

}
be a finite set of

bounded functions fi,n : An �→ R
+, i ∈ �1,M�, such that

|Fn| = M does not depend on n, and

lim
n→∞EAn

(
fi,n (An)

) = 0 for all i ∈ �1,M�. (22)

Then, there exists a specific realization {a∗
n} of the sequence

{An} such that

lim
n→∞ fi,n (a

∗
n) = 0 for all i ∈ �1,M�. (23)

The following Lemma states two properties of the total
variation distance, which we utilize through the achievability
proof.

Lemma 4 (Properties of Total Variation Distance [17, Lem-
mas V.1 and V.2]): Consider the joint distributions pXY =
pX pY |X and qXY = qX qY |X , defined on the same probability
space. Then, we have,

V(pX , qX ) ≤ V(pXY , qXY ) (24)

V(pX pY |X , qX pY |X ) = V(pX , qX ). (25)

In order to apply Lemmas 1 and 2 to protocol A, we use
Hoeffding’s inequality, which is stated in the following
Lemma.

Lemma 5 (Hoeffding’s Inequality [22, Th. 2]): Let
X1, X2, · · · , Xn be independent random variables with
Xi ∈ [0, b] for all i ∈ �1, n�, and let m̄ = 1

n

∑n
i=1 E(Xi ).

Then, for ε > 0, we have

P

(
1

n

n∑

i=1

Xi ≤ (1 − ε)m̄

)

≤ exp

(−2ε2m̄2

b2 n

)
. (26)

B. Proof

First, we apply Lemma 1 to protocol A. In Lemma 1,
set X = Xn , W̃ = 2nRs , F̃ = 2nR̃s , B = Bn �{
B1,n(x),B2,n(x)

}
x∈Xn , and γ = n(1 − ε2)H (X), where

ε2 > 0 and Xn is defined as in protocol A, i.e., is an i.i.d.
sequence. Without loss of generality, we assume that for all
x ∈ X, we have pX (x) > 0. Let pmin = minx∈X pX (x), where
the minimum exists since the input alphabet X is finite.3 Thus,
the random variables log 1

pX (Xi )
, i ∈ �1, n�, are i.i.d. and each

is bounded by the interval [0, bmax], where bmax = log 1
pmin

.

We also have that m̄ = 1
n

∑n
i=1 EpX

(
log 1

pX (Xi )

)
= H (X).

Using Hoeffding’s inequality in (26), we have, for any ε2 > 0,
that

P
(
X /∈ Dγ

) = PpX

(
log

1

pX(X)
≤ γ

)
(27)

= PpX

(
1

n

n∑

i=1

log
1

pX (Xi )
≤ (1 − ε2)H (X)

)

(28)

≤ exp

(
−2ε2

2 H 2(X)

b2
max

n

)

= exp(−β1n), (29)

where β1 = 2ε2
2 H2(X)
b2

max
> 0.

3If the input alphabet X is infinite, minx∈X pX (x) might not exist. As a
result, there might not be a finite upper bound on the random variables
log 1

pX (Xi )
. In such a case, Hoeffding inequality can not be applied.
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By substituting the choices for W̃ , F̃, γ and (29) in (19),
we have, as long as Rs + R̃s < (1 − ε2)H (X),
that

EBn

(
V(P̃W F , pU

W pU
F )
) ≤ 2 exp(−βn), (30)

where β2 = ln 2
2

(
(1 − ε2)H (X)− Rs − R̃S

)
and β =

min{β1, β2} > 0. By applying (25) to (16) and (17), and
using (30), we have

EBn

(
V

(
P̃W FXYZSX̂, PW FXYZSX̂

))

= EBn

(
V

(
P̃W F , pU

W pU
F

))
≤ 2 exp(−βn). (31)

Consider Slepian-Wolf decoder for protocol A. As long as
R̃s ≥ H (X |Y ), we have [23, Th. 10.1]

lim
n→∞ EBn

(
P P̃ (X̂ 	= X)

)
= 0. (32)

Next, we observe

EBn

(
V

(
P̃W FXYZSX̂, P̃W FXYZS�{X̂ = X}

))

= EBn

∑

w, f,x,y,z,x̂:
P̃(w, f,x,y,z)�{x̂=x}
< P̃(w, f,x,y,z,x̂)

[
P̃(w, f, x, y, z, x̂)

−P̃(w, f, x, y, z)�{x̂ = x}

]

(33)

= EBn

∑

w, f,x,y,z,x̂: x̂ 	=x

P̃(w, f, x, y, z, x̂) (34)

= EBn

(
P P̃ (X̂ 	= X)

)
. (35)

Equation (34) follows because P̃(w, f, x, y, z, x̂) >
P̃(w, f, x, y, z)�{x̂ = x} holds if and only if
�{x̂ = x} = 0, where P̃(w, f, x, y, z, x̂) factorizes
as P̃(w, f, x, y, z, x̂) = P̃(w, f, x, y, z)P̃(x̂|y, f ) and
P̃(x̂|y, f ) ≤ 1. Thus, using (32) and (35), we have
that

lim
n→∞EBn

(
V

(
P̃W FXYZSX̂, P̃W FXYZS�{X̂ = X}

))
= 0, (36)

as long as R̃s ≥ H (X |Y ).
Now, we apply Lemma 2 to protocol A. In Lemma 2, set

X = Xn , W̃ = 2nRs , F̃ = 2nR̃s , B = Bn , ZS = Zn
S , for all

S ∈ S, and γ = n(1 − ε̃2)(1 − α)H (X |V ), where ε̃2 > 0 and
Xn,Zn

S , S are defined as in protocol A. In order to calculate

PpXZS

(
(X,ZS) /∈ DS

γ

)
, we only need to consider the pairs

(x, z) such that pX|ZS(x|z) > 0, since all the pairs (x, z)
with pX|ZS(x|z) = 0 belong to DS

γ , by the definition of DS
γ

in (20). Since the sequence X is i.i.d. and the channel pV |X
is memoryless, we have, for all (x, z) with pX|ZS(x|z) > 0,
that

pX|ZS(x|z) = pXSXSc |XSVSc (xS, xSc |xS, vSc) (37)

= pXSc |VSc (xSc |vSc) =
∏

i∈Sc

pX |V (xi |vi ). (38)

Once again, using Hoeffding’s inequality, we have, for all
S ∈ S,

PpXZS

(
(X,ZS) /∈ DS

γ

)

= PpXZS

(
pX|ZS(X|ZS) > 0, log

1

pX|ZS (X|ZS)
≤ γ

)
(39)

= PpX |V

(
1

n − μ

∑

i∈Sc

log
1

pX |V (Xi |Vi )
≤ (1 − ε̃2)H (X |V )

)

(40)

≤ exp
(
−β̃(1 − α)n

)
= δ2, (41)

where β̃ > 0, and (40) follows from (38). From (41),
lim

n→∞δ
2 = 0, and hence, for sufficiently large n, we have

δ2 ∈ (0, 1
4

)
. Thus, the conditions in Lemma 2 are satisfied.

Note that lim
n→∞n(δ + δ2) = 0, and lim

n→∞Hb(δ
2) =

Hb( lim
n→∞δ

2) = 0 since Hb is a continuous function. Thus,

lim
n→∞ε̃ = ε1 + (Rs + R̃s) lim

n→∞n(δ + δ2)+ lim
n→∞Hb(δ

2) = ε1.

(42)

By substituting the choices for W̃ , F̃, γ , and |S||Zn| ≤
exp (n [ln 2 + ln (|X| + |V|)]) in (21), and using (42), we have
that, for all ε1, ε

′
1 > 0 and ε̃ = ε1 + ε′

1, there exist n∗ ∈ N

and ψ(ε1), κ > 0 such that, for all n ≥ n∗,

PBn

(
max
S∈S

D

(
P̃W FZS ||pU

W pU
F pZS

)
≥ ε̃

)

≤ exp
(−ψ(ε1)e

κn) , (43)

as long as Rs + R̃s < (1 − ε̃2)(1 − α)H (X |V ).
Take r > 0 and let Dn = maxS D(P̃W FZS ||pU

W pU
F pZS ) and

Kn � {Dn ≥ r}. Using (43), we have that
∑∞

n=1 PBn (Kn)
< ∞. Thus, using the first Borel-Cantelli lemma yields

PBn (Kn infinitely often (i.o.)) = 0. (44)

This implies that, for all r > 0, PBn ({Dn < r} i.o.) = 1,
i.e., the sequence Dn converges to zero almost surely. Thus,
the sequence Dn converges to zero in probability as well.
We conclude that, for Rs + R̃s < (1 − ε̃2)(1 − α)H (X |V ),
we have

lim
n→∞PBn

(
max
S∈S

D

(
P̃W FZS ||pU

W pU
F pZS

)
> 0

)
= 0. (45)

That is, protocol A is secure.
Next, we deduce that protocol B is also reliable and secure

when R̃s ≥ H (X |Y ) and Rs + R̃s < (1 − ε̃2)(1 − α)H (X |V ).
First, we show that the reliability in (36) holds for protocol B
as well. We have

V

(
PW FXYZSX̂, PW FXYZS�{X̂ = X}

)

≤ V

(
PW FXYZSX̂, P̃W FXYZSX̂

)

+ V

(
P̃W FXYZSX̂, PW FXYZS�{X̂ = X}

)
(46)

≤ V

(
P̃W FXYZSX̂, P̃W FXYZS�{X̂ = X}

)

+ V

(
P̃W FXYZS�{X̂ = X}, PW FXYZS�{X̂ = X}

)
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+ V

(
PW FXYZSX̂, P̃W FXYZSX̂

)
(47)

= V

(
P̃W FXYZSX̂, P̃W FXYZS�{X̂ = X}

)

+ 2V

(
P̃W F , pU

W pU
F

)
, (48)

where (46) and (47) follow from the triangle inequality,
and (48) follows since (16), (17) and (25) imply that

V

(
PW FXYZSX̂, P̃W FXYZSX̂

)

= V

(
P̃W FXYZS�{X̂ = X}, PW FXYZS�{X̂ = X}

)
(49)

= V

(
P̃W F , pU

W pU
F

)
. (50)

Substituting (30) and (36) in (48) yields

lim
n→∞EBn

(
V

(
PW FXYZSX̂, PW FXYZS�{X̂ = X}

))
= 0. (51)

Second, we show that the secrecy property in (45) holds for
protocol B. Using the union bound, we have

PBn

(
max
S∈S

D

(
PW FZS ||pU

W pU
F pZS

)
> 0

)

≤ PBn

(
max
S∈S

D

(
PW FZS ||pU

W pU
F pZS

)
> 0,

and V(P̃W F , pU
W pU

F ) > 0

)

+PBn

(
max
S∈S

D

(
PW FZS ||pU

W pU
F pZS

)
> 0,

and V(P̃W F , pU
W pU

F ) = 0

)
(52)

≤ PBn

(
V(P̃W F , pU

W pU
F ) > 0

)

+PBn

(
max
S∈S

D

(
P̃W FZS ||pU

W pU
F pZS

)
> 0

)
. (53)

Equation (53) follows since V(P̃W F , pU
W pU

F ) = 0 if and only
if P̃W F (w, f ) = pU

W pU
F for all w and f , and hence PW FZS =

pU
W pU

F PZS |W F = P̃W F P̃ZS |W F = P̃W FZS , where

PZS |W F (z|w, f )

=
∑

x∈Xn

pZS|X(z|x)P̃X|W F (x|w, f ) = P̃ZS |W F (z|w, f ). (54)

Using the exponential decay in (30) and Markov inequality,
we have, for any r > 0, that

∞∑

n=1

PBn

(
V(P̃W F , pU

W pU
F ) > r

)

≤ 1

r

∞∑

n=1

EBn

(
V(P̃W F , pU

W pU
F )
)

(55)

≤ 2

r

∞∑

n=1

exp(−βn) < ∞, (56)

where β > 0. Thus, using the Borel-Cantelli lemma, as in the
derivation for (45), we have

lim
n→∞PBn

(
V(P̃W F , pU

W pU
F ) > 0

)
= 0. (57)

By substituting (45) and (57) in (53), we get

lim
n→∞PBn

(
max
S∈S

D

(
PW FZS ||pU

W pU
F pZS

)
> 0

)
= 0. (58)

Now, we show the existence of a binning realization, and
hence an encoder and decoder, such that the reliability and
secrecy properties, in (51) and (58), hold for protocol B.
By applying Lemma 3 to the random sequence {Bn}n≥1

and the functions V

(
PW FXYZSX̂, PW FXYZS�{X̂ = X}

)
,

�
{
maxS∈SD(PW FZS ||pU

W pU
F pZS) > 0

}
, while using (51)

and (58), there exists a sequence of binning realizations
b∗

n = (b∗
1,n, b∗

2,n), with a corresponding joint distribution p∗
for protocol B, such that

lim
n→∞V

(
p∗

W FXYZSX̂
, p∗

W FXYZS
�{X̂ = X}

)
= 0, (59)

lim
n→∞�

{
max
S∈S

D(p∗
W FZS

||pU
W pU

F pZS) > 0

}
= 0, (60)

where W = b∗
1,n(X

n) and F = b∗
2,n(X

n).
Next, we introduce the random variable Ŵ to the two joint

distributions in (59), where Ŵ is a deterministic function of
the random sequence X̂n , i.e., p∗

Ŵ |X̂(ŵ|x̂) = �

{
ŵ = b∗

1,n(x̂)
}

.
Using (25) and (59), we have

lim
n→∞V

(
p∗

W FXYZSX̂Ŵ
, p∗

W FXYZS
�{Ŵ = W }

)

= lim
n→∞V

(
p∗

W FXYZSX̂
�
{
Ŵ = b∗

1,n(X̂)
}
,

p∗
W FXYZS

�{X̂ = X}�{Ŵ = b∗
1,n(X̂)

}
)

(61)

= lim
n→∞V

(
p∗

W FXYZSX̂
, p∗

W FXYZS
�{X̂ = X}

)
= 0, (62)

where (61) follows since p∗
Ŵ |W FXYZSX̂

= p∗
Ŵ |X̂ = �

{
Ŵ =

b∗
1,n(X̂)

}
, and that Ŵ = W if and only if X̂ = X and Ŵ =

b∗
1,n(X̂). We then have

lim
n→∞EF

(
Pp∗(Ŵ 	= W |F)

)

= lim
n→∞

∑

f

pU
F

∑

w,ŵ: ŵ 	=w
p∗

W Ŵ |F (w, ŵ| f ) (63)

= lim
n→∞

∑

w,ŵ, f : ŵ 	=w
p∗

W Ŵ F
(w, ŵ, f ) (64)

= lim
n→∞

∑

w,ŵ, f :
pU

W pU
F�{ŵ=w}

<p∗(w,ŵ, f )

[
p∗

W Ŵ F
(w, ŵ, f )− pU

W pU
F �{ŵ = w}

]

(65)

= lim
n→∞V

(
p∗

W Ŵ F
, pU

W pU
F�{Ŵ = W }

)
(66)

= lim
n→∞V

(
p∗

W FXYZSX̂Ŵ
, p∗

W FXYZS
�{Ŵ = W }

)
= 0. (67)

Equation (65) follows because p∗
W Ŵ F

> pU
W pU

F�{Ŵ = W }
if and only if �{Ŵ = W } = 0 where p∗

W Ŵ F
factorizes as

pU
W pU

F p∗
Ŵ |W F

and p∗
Ŵ |W F

≤ 1, while equation (67) follows
from (25) and (62).
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We also have that

PF

(
max

S
D(p∗

W ZS|F ||pU
W p∗

ZS|F ) > 0

)

≤ PF

(
max

S
D

(
p∗

W ZS|F ||pU
W p∗

ZS|F
)
> 0,

and max
S

D

(
p∗

W FZS
||pU

W pU
F pZS

)
= 0

)

+PF

(
max

S
D

(
p∗

W ZS|F ||pU
W p∗

ZS|F
)
> 0,

and max
S

D

(
p∗

W FZS
||pU

W pU
F pZS

)
> 0

)
(68)

≤ PF

(
max

S
D

(
p∗

W ZS|F ||pU
W p∗

ZS|F
)
> 0, and

∀S, p∗
W FZS

(w, f, z) = pU
W pU

F pZS(z),∀w, f, z
)

+PF

(
max

S
D(p∗

W FZS
||pU

W pU
F pZS ) > 0

)
(69)

= �

{
max

S
D(p∗

W FZS
||pU

W pU
F pZS) > 0

}
, (70)

where (69) follows since maxS D

(
p∗

W FZS
||pU

W pU
F pZS

)
= 0,

if and only if, for all S ∈ S, p∗
W FZS

(w, f, z) = pU
W pU

F pZS(z)

for all w, f, and z. (70) follows because the first probability
term on the right hand side of (69) is equal to zero. Thus,
using (60), we get

lim
n→∞PF

(
max
S∈S

D(p∗
W ZS|F ||pU

W p∗
ZS|F ) > 0

)
= 0. (71)

Let us express the random variable F as an explicit function
of n, i.e., F = Fn = b∗

2,n(X
n). In order to eliminate Fn from

the channel model in protocol B, we apply Lemma 3 to the ran-
dom sequence {Fn}n≥1 and the functions Pp∗

(
Ŵ 	= W |Fn

)
,

�

{
maxS∈SD

(
p∗

W ZS|Fn
||pU

W p∗
ZS|Fn

)
> 0
}

, while using (67)
and (71), which implies that there exists at least one realization
{ f ∗

n } such that

lim
n→∞Pp∗

(
Ŵ 	= W |Fn = f ∗

n

)
= 0, and (72)

lim
n→∞ max

S∈S
Ip∗
(
W ; ZS |Fn = f ∗

n

) = 0, (73)

where Ip∗ is the mutual information with respect to
the distribution p∗. Equation (73) follows because
lim

n→∞�
{

maxS∈SD(p∗
W ZS|Fn= f ∗

n
||pU

W p∗
ZS|Fn= f ∗

n
) > 0

} = 0

implies that there exists n′ large enough such that, for all
n ≥ n′, we have

max
S

D

(
p∗

W ZS|Fn= f ∗
n
||pU

W p∗
ZS|Fn= f ∗

n

)

= max
S

Ip∗
(
W ; ZS |Fn = f ∗

n

) = 0. (74)

Finally, let p̃∗ be the induced distribution for protocol A
corresponding to b∗

n . We use p̃∗
X|W,Fn= f ∗

n
as the encoder and

( p̃∗
X̂|Y,Fn= f ∗

n
, b∗

1,n(X̂)) as the decoder for the original model.

By combining the rate conditions Rs + R̃s < (1 − ε̃2)(1 −
α)H (X |V ), R̃s ≥ H (X |Y ), and taking ε̃2 → 0, the rate Rs =
maxpX [I (X; Y )− I (X; V )− αH (X |V )] is achievable.

Fig. 3. A wiretap channel model whose secrecy capacity is equal to that of
Figure 1.

So far, we have considered the case U = X . Next, we prefix
a discrete memoryless channel pX |U to the original channel
model in Figure 1. The main channel for the new model
is pY |U and the wiretapper channel is described by pX |U
and (2). The proof for this case follows similar steps to the
proof above. In particular, for protocol A, we consider the
i.i.d. input sequence Un = [U1,U2, · · · ,Un]. When we apply
Lemma 2 to protocol A, we set γ = n(1 − ε̃2)[αH (U |X)+
(1 − α)H (U |V )], and for pU|ZS(u|z) > 0, we have, for any
S ∈ S, that

pU|ZS(u|z) = pUSUSc |XSVSc (uS,uSc |xS, vSc) (75)

= pUS|XSVSc (uS |xS, vSc)

× pUSc |USXSVSc (uSc |uS, xS, vSc) (76)

= pUS|XS(uS |xS) pUSc |VSc (uSc |vSc) (77)

=
∏

i∈S

pU |X (ui |xi)
∏

i∈Sc

pU |V (ui |vi ), (78)

where (77) and (78) follow since the sequences Un,Xn,
and Vn are i.i.d. and the channels pX |U and pV |X are dis-
crete memoryless channels. Using (78), the choice for γ ,
and Hoeffding’s inequality, the conditions of Lemma 2 are
satisfied, and we deduce the rate condition

Rs + R̃s < (1 − ε̃2)[αH (U |X)+ (1 − α)H (U |V )] (79)

required for secrecy of protocol A. Note that H (U |X) =
H (U |X, V ) because of the Markov chain U − X −V . By com-
bining (79) with the rate condition R̃s ≥ H (U |Y ) required
for the Slepian-Wolf decoder, we obtain the achievability
of (7). The cardinality bound on U, |U| ≤ |X|, follows using
[23, Appendix C]. This completes the achievability proof of
Theorem 1.

V. CONVERSE

Consider the channel model illustrated in Figure 3, where
the wiretapper observes the outputs of two independent chan-
nels, with Xn being the input to both the channels. The first
channel to the wiretapper is the DMC pV |X which outputs Vn .
The second channel is the wiretapper channel in the wiretap
II channel model, i.e., the wiretapper chooses S ⊆ �1, n� and
observes Z̃n

S = [Z̃ S
1 , · · · , Z̃ S

n ], where Z̃ S
i = Xi for i ∈ S, and

Z̃ S
i =?, i.e., erasures, otherwise.
We show that, for 0 ≤ α ≤ 1, the strong secrecy capacity

for this channel model, CEQ
s (α), is equal to the strong secrecy
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Fig. 4. A discrete memoryless equivalent wiretap channel model.

capacity of the original channel model, Cs(α), in (7). Since
the main channels in the two models are the same, it suffices
to show that I (W ; Zn

S) = I (W ; Z̃n
S Vn) for all S ∈ S, where

Zn
S is defined as in (2). This follows because, for all S ∈ S,

we have

H (W |Z̃SV)

= H (W,X|Z̃S,V)− H (X|W, Z̃S,V) (80)

= H (X|Z̃S,V)+ H (W |X, Z̃S,V)− H (X|W, Z̃S,V) (81)

= H (X|Z̃S,V)− H (X|W, Z̃S,V) (82)

= H (XS,XSc |XS,VS,VSc)

− H (XS,XSc |W,XS,VS,VSc) (83)

= H (XSc|XS,VS,VSc)− H (XSc|W,XS ,VS,VSc) (84)

= H (XSc|XS,VSc)− H (XSc|W,XS ,VSc) (85)

= H (X|ZS)− H (X|W,ZS) (86)

= H (X,W |ZS)− H (X|W,ZS) = H (W |ZS), (87)

where (82) and (87) follow because H (W |X) = 0, and (85)
follows since the channel pV |X is memoryless which results in
the Markov chains XSc−XSVSc−VS and XSc−WXSVSc−VS .

Next, consider the channel model illustrated in Figure 4,
which is the same as the channel model in Figure 3, except
we replace the second channel to the wiretapper with a
discrete memoryless erasure channel (DM-EC) with erasure
probability 1 − α. The output of the second channel to the
wiretapper is Zn . For this model, we have the Markov chain
Vn − Xn − Zn since the two channels to the wiretapper are
independent. Since the two channels to the wiretapper are
discrete memoryless, we have

pVZ|X(v, z|x) = pV|X(v|x) pZ|X(z|x)
=

n∏

i=1

pV |X (vi |xi ) pZ |X(zi |xi)

=
n∏

i=1

pV Z |X (vi , zi |xi ). (88)

That is, the combined channel to the wiretapper is a discrete
memoryless channel, making the channel model in Figure 4
a discrete memoryless wiretap channel. The strong secrecy
capacity for this model CEQ2

s (α) is given by

CEQ2
s (α) = max

U−X−Y V Z
[I (U ; Y )− I (U ; V Z)]+. (89)

In order to compute CEQ2
s (α) in (89), we define the random

variable 	 ∼ Bern(α) whose n i.i.d. samples represent the

erasure process in the DM-EC, where 	 = 0 when Z = X
and 	 = 1 when Z =?. Thus, 	 is determined by Z , and
hence, the Markov chains U − X − Y V Z and V − X − Z
imply the Markov chains U − X − Y V Z	 and V − X − Z	.
Also, 	 is independent from X , since the erasure process is
independent from the input to the channel. Thus, we have

p	|U V (φ|u, v) =
∑

x∈X

p	X |U V (φ, x |u, v)

=
∑

x∈X

pX |U V (x |u, v) p	|XU V (φ|x, u, v)

= p	(φ)
∑

x∈X

pX |U V (x |u, v) = p	(φ) (90)

p	|V (φ|v) =
∑

x∈X

p	X |V (φ, x |v)

=
∑

x∈X

pX |V (x |v) p	|X V (φ|x, v)

= p	(φ)
∑

x∈X

pX |V (x |v) = p	(φ). (91)

where (90) and (91) follow since p	|XU V = p	|X V = p	|X =
p	 due to the Markov chains U − XV −	 and V − X −	, and
the independence of 	 and X . Since p	|U V = p	|V = p	,
then 	 and U are conditionally independent given V . Thus,
we have

I (U ; Z |V ) = I (U ; Z ,	|V ) = I (U ; Z |	, V ) (92)

= P(	 = 0)I (U ; Z |	 = 0, V )

+ P(	 = 1)I (U ; Z |	 = 1, V ) (93)

= α I (U ; X |V )+ (1 − α)I (U ; ?|V ) (94)

= α I (U ; X |V ). (95)

Substituting (95) in (89), we have

CEQ2
s (α) = max

U−X−Y V
[I (U ; Y )− I (U ; V )− α I (U ; X |V )]+.

(96)

Next, we use similar arguments to [9, Sec. V–C] to show

that CEQ
s (α) ≤ CEQ2

s (α) for any 0 ≤ α ≤ 1 and sufficiently
large n. The idea is that when the number of erasures of
the DM-EC in the latter channel model (Figure 4) is greater
than or equal to (1 − α)n, the wiretapper’s channel in the
former (Figure 3) is better than her channel in the latter, since
the wiretapper in the former is more capable and encounters
a smaller number of erasures. Thus, CEQ

s (α) ≤ CEQ2
s (α) for

this case. The result is established by using Sanov’s theorem in
method of types [24, Th. 11.4.1] to show that the probability
that the DM-EC causes erasures less than (1 − α)n goes to 0
as n → ∞.

In particular, we first show that, for 0 ≤ λ < α ≤ 1, we have
CEQ

s (α) ≤ CEQ2
s (λ). To do so, we show that every achievable

strong secrecy rate for the channel model in Figure 3 is also
achievable for the channel model in Figure 4. Fix λ such that
0 ≤ λ < α ≤ 1, and let Rs be an achievable strong secrecy rate
for the former channel model. Thus, there exists a sequence
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of (n, 2nRS ) channel codes
{
C

EQ
n

}

n≥1
such that

lim
n→∞P

(
Ŵ 	= W |CEQ

n

)
= 0, (97)

and lim
n→∞ max

S∈S
I
(

W ; Z̃S,V|CEQ
n

)
= 0. (98)

We show that the rate Rs is also an achievable strong secrecy
rate for the channel model in Figure 4 by showing that the
sequence of (n, 2nRs ) codes

{
C

EQ
n

}

n≥1
satisfies the constraints

lim
n→∞P

(
Ŵ 	= W |CEQ

n

)
= 0 and lim

n→∞I
(

W ; Z,V|CEQ
n

)
= 0

for this channel model.
The main channel in the two models is the same, and

hence, the sequence of (n, 2nRs ) codes
{
C

EQ
n

}

n≥1
achieves the

reliability constraint for both channel models. Thus, it remains
to show that

{
C

EQ
n

}

n≥1
achieves lim

n→∞I
(

W ; Z,V|CEQ
n

)
= 0.

Since lim
n→∞ maxS∈S I (W ; Z̃S ,V) = 0, then for any ε0 > 0,

there exists n0 ∈ N such that for all n ≥ n0, we have

max
S∈S

I
(

W ; Z̃S,V|CEQ
n

)

= I
(

W ; V|CEQ
n

)
+ max

S∈S
I
(

W ; Z̃S |V,CEQ
n

)
≤ ε0

2
. (99)

Let us define Z̃ � X ∪ {?}. For every zn ∈ Z̃n , define

N(zn) �
{
k ∈ �1, n� : zk =?

}
(100)

�(zn) � �

{
|N(zn)| ≤ �(1 − α)n�

}
. (101)

That is, N(zn) represents the number of erasures in the
sequence zn , while �(zn) indicates whether the sequence zn

has erasures less than or equal to �(1 − α)n�.

For simplicity of notation, we drop C
EQ
n from the condi-

tioning in (99); it is understood implicitly that the mutual
information is calculated with respect to the code C

EQ
n . Since

�(Zn) is a deterministic function of Zn , the Markov chains
W − Xn − VnZn and WVn − Xn − Zn imply the Markov
chains W − Xn − VnZn�(Zn) and WVn − Xn − Zn�(Zn).
Also, �(Zn) is independent from Xn . Thus, we have

p�(Z)|W V(θ |w, v)

=
∑

x∈Xn

p�(Z)X|W V(θ, x|w, v)

=
∑

x∈Xn

pX|W V(x|w, v) p�(Z)|XW V(θ |x, w, v)

= p�(Z)(θ)
∑

x∈Xn

pX|W V(x|w, v) = p�(Z)(θ) (102)

p�(Z)|V(θ |v)
=
∑

x∈Xn

p�(Z)X|V(θ, x|v)

=
∑

x∈Xn

pX|V(x|v) p�(Z)|XV(θ |x, v)

= p�(Z)(θ)
∑

x∈Xn

pX|V(x|v) = p�(Z)(θ). (103)

From (102) and (103), W and �(Z) are conditionally

independent given V, and hence,

I (W ; Z|V) = I (W ; Z,�(Z)|V) (104)

= I (W ;�(Z)|V)+ I (W ; Z|V,�(Z)) (105)

= I (W ; Z|V,�(Z)) (106)

= P(�(Z) = 0)I (W ; Z|V,�(Z) = 0)

+ P(�(Z) = 1)I (W ; Z|V,�(Z) = 1). (107)

We upper bound each term in the right hand side of (107).
The first term is upper bounded by

I (W ; Z|V,�(Z) = 0)

= I
(
W ; Z|V, {|N(Z)| > �(1 − α)n�}) (108)

≤ I
(
W ; Z|V, {|N(Z)| = �(1 − α)n�}) (109)

≤ max
S∈S

I (W ; Z̃S |V). (110)

We also have that

I (W ; Z|V,�(Z) = 1) ≤ H (Z) ≤ n log(|X| + 1). (111)

Next we upper bound P(�(Z) = 1). Take ν such that λ <
ν < α, and hence, we have �(1−α)n� ≤ (1−ν)n < (1−λ)n.
Let 	1,	2, · · · ,	n be a sequence of i.i.d. binary random
variables which represents the erasure process of the DM-EC
in the model in Figure 4 (	i = 1 if Zi = Xi , and 	i = 0 if
Zi =?), where 	i is distributed according to Q	 = Bern(λ).
Let Qn

	 be the n-letter distribution of the sequence {	i }n
i=1.

For each ξ = l
n , with l ∈ ��νn�, n�, i.e., ν ≤ ξ < 1, define

the distribution P(ξ)	 = Bern(ξ), and let P be the set of all
of these distributions. Let T (P) denote the type class of the
distribution P , i.e., all possible n-length sequences with the
type (empirical distribution) P [24, Sec. 11.1]. Define the set

T �
{

T (P(ξ)	 ) : (1 − ξ) ≤ (1 − ν)
}

. Using Sanov’s theorem

[24, Th. 11.4.1], we have

P(�(Z) = 1) = PQn
	

(
|N(Z)| ≤ �(1 − α)n�

)
(112)

≤ PQn
	

(
|N(Z)| ≤ (1 − ν)n

)
(113)

= PQn
	

(∣
∣ {k ∈ �1, n� : 	k = 0

} ∣∣ ≤ (1 − ν)n
)

(114)

= PQn
	
(T)=PQn

	
(P)≤ (n + 1)2 2−nD(P∗

	||Q	),

(115)

where

P∗
	 = argmin

P(ξ)	 ∈P

D(P(ξ)	 ||Q	)

= argmin
ξ : ξ≥ν

(
ξ log

ξ

λ
+ (1 − ξ)

1 − ξ

1 − λ

)
= Bern(ν). (116)

Note that D(P∗
	||Q	) > 0 since ν 	= λ.

Using (111) and (115), the second term in the right hand
side of (107) is upper bounded by

log(|X| + 1)n(n + 1)2 2−nD(P∗
	||Q	) −→

n→∞ 0. (117)

Thus, for ε0 > 0, there exists n1 ∈ N such that, for all n ≥ n1,

P(�(Z) = 1)I (W ; Z|V,�(Z) = 1) ≤ ε0

2
. (118)
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Using (99), (107), (110), and (118), we have, for sufficiently
large n, that

I
(

W ; Z,V|CEQ
n

)

= I
(

W ; V|CEQ
n

)
+ I

(
W ; Z|V,CEQ

n

)
(119)

≤ I
(

W ; V|CEQ
n

)
+ max

S∈S
I
(

W ; Z̃S |V,CEQ
n

)
+ ε0

2
≤ ε0.

(120)

Thus, for 0 ≤ λ < α ≤ 1, we have CEQ
s (α) ≤ CEQ2

s (λ).
The right hand side of (96) is a continuous function of α,
for 0 < α < 1 [9, Lemma 6]. Thus, by taking λ → α,
we have CEQ

s (α) ≤ CEQ2
s (α). Note that for α = 0, 1, we

have CEQ
s (α) = CEQ2

s (α). Thus, the secrecy capacity of the
original model in Figure 1 is upper bounded by (96). This
completes the proof for Theorem 1.

VI. DISCUSSION

In the converse proof for Theorem 1, we have shown
that the strong secrecy capacity Cs(α) for the new wiretap
channel model is equal to the strong secrecy capacity when the
wiretapper, in addition to observing μ transmitted symbols of
her choice noiselessly, observes the whole sequence Vn . This
is not surprising since observing noisy versions of the trans-
mitted symbols through the DMC pV |X in the same positions
where noiseless versions are available does not increase the
wiretapper’s information about the message. The expression
for the strong secrecy capacity in (7) is thus intuitive where
I (U, V ) represents the secrecy cost due to observing the whole
sequence Vn , and α I (U ; X |V ) represents the secrecy cost
due to observing a fraction α of the transmitted symbols
noiselessly, given the wiretapper’s knowledge of the V outputs
in these positions. Furthermore, the alternative characterization
for the strong secrecy capacity in (8) is again intuitively
pleasing, where the overall secrecy cost is represented by a
weighted sum of the secrecy costs due to the noiseless and
the noisy observations at the wiretapper, i.e., α I (U ; X) and
(1 − α)I (U ; V ).

It is worth noting that a problem similar to the model
considered in this paper appears in the context of Quantum
Cryptography when a transmitter and a receiver wish to agree
on a secret key over a quantum channel in the presence of
an external adversary [25], [26]. The adversary can apply
any arbitrary sequence of operations, allowed by the laws of
quantum physics, on the quantum states exchanged between
the transmitter and receiver. The security of the key follows
from the impossibility of applying such operations on a
quantum mechanical system without changing its overall state.
The legitimate terminals, by communicating over an additional
classical error-free channel, can estimate the number of errors
in the system, caused by the adversary, and abort the key
agreement protocol if the number of errors exceeds a certain
threshold. To sum up, like the models considered in this paper,
the adversary in the problem described above is limited only
in the fraction of time of being active. We refer the reader
to [27], [28], and references therein, for a comprehensive
treatment of the problems and utilized tools in quantum
information theory.

Finally, we note that extending the proposed achievability
approach in this paper to the case of a non-uniform message
at the transmitter, i.e., semantic secrecy, does not appear
straightforward. In particular, in order to handle the case of
a non-uniform message, we would need to characterize the
distribution of the source Xn given the wiretapper’s obser-
vation Zn

S , when conditioned over each key realization w,
i.e., pXn|Zn

S,W
(x|z, w), for all x ∈ Xn, z ∈ Zn , and w ∈

�1, 2nRs �, which is not easy.

VII. CONCLUSION

In this work, we have introduced a wiretap channel model
that generalizes the classical wiretap channel models, and
derived its strong secrecy capacity. The model generalizes
the classical wiretap channel [2], [3] to one with a wire-
tapper who chooses a fixed-length subset of the transmitted
codeword symbols to perfectly access, and generalizes the
wiretap channel II with a discrete memoryless main channel
in [8] to one with a wiretapper who observes the output
of a noisy channel instead of the erasures. The wiretapper
in this model is still passive, yet she is more capable than
a classical wiretapper since she can tap a subset of the
symbols of her choosing noiselessly, while still receiving the
remaining symbols through a channel. Our secrecy capacity
result quantifies the secrecy cost of this additional capability
of the wiretapper, with respect to the previous wiretap channel
models.

As for current and future directions, exploring the multi-
terminal extensions of this new model is the natural next
step, similar to multi-terminal extensions for Wyner’s original
model, e.g., [29]–[34]. Additionally, it is of interest to seek
new and more powerful wiretapper models against which
information theoretic security guarantees can be established.

APPENDIX A
PROOF OF LEMMA 1

For w, f ∈ �1, W̃ � × �1, F̃�, we have

PW F (w, f ) =
∑

x∈X

pX (x)�{B1(x) = w}�{B2(x) = f }.

(121)

We also have that, for all x ∈ X,

EB

(
� {B1(x) = w}� {B2(x) = f }

)

= P(B1(x) = w)P(B2(x) = f ) = 1

W̃ F̃
. (122)

Thus, we have EB(PW F ) = 1
W̃ F̃

= pU
W pU

F . For all w and f ,
define the random variables

P1(w, f ) =
∑

x /∈Dγ

pX (x)�{B1(x) = w}�{B2(x) = f } (123)

P2(w, f ) =
∑

x∈Dγ

pX (x)�{B1(x) = w}�{B2(x) = f }. (124)
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Note that PW F (w, f ) = P1(w, f )+ P2(w, f ). Thus, we have

EB

(
V

(
PW F , pU

W pU
F

))

= 1

2
EB

⎛

⎝
∑

w, f

∣
∣
∣PW F (w, f )− EB (PW F (w, f ))

∣
∣
∣

⎞

⎠ (125)

= 1

2
EB

⎛

⎝
∑

w, f

∣
∣
∣∣
∣

2∑

i=1

(Pi (w, f )− EB (Pi (w, f )))

∣
∣
∣∣
∣

⎞

⎠ (126)

≤ 1

2

∑

w, f

EB |P1(w, f )− EB (P1(w, f ))|

+ 1

2

∑

w, f

EB |P2(w, f )− EB (P2(w, f ))| , (127)

where (127) follows from the triangle inequality. We now
upper bound each term on the right hand side of (127). For
the first term, we have

1

2

∑

w, f

EB

∣
∣
∣P1(w, f )− EB (P1(w, f ))

∣
∣
∣

≤
∑

w, f

EB (P1(w, f )) (128)

=
∑

w, f

∑

x /∈Dγ

pX (x) EB

(
� {B1(x) = w}� {B2(x) = f }

)

(129)

=
∑

x /∈Dγ

pX (x) = P(X /∈ Dγ ), (130)

where (128) follows from the triangle inequality.
For the second term in the right hand side of (127), we have

1

2

∑

w, f

EB

∣
∣∣P2(w, f )− EB (P2(w, f ))

∣
∣∣

= 1

2

∑

w, f

EB

√
(P2(w, f )− EB (P2(w, f )))2 (131)

≤ 1

2

∑

w, f

√
EB (P2(w, f )− EB (P2(w, f )))2 (132)

= 1

2

∑

w, f

√
VarB (P2(w, f )) ≤ 1

2

√
W̃ F̃

2γ
, (133)

where (132) follows from Jensen’s inequality and the concav-
ity of square root. The inequality in (133) follows because, for
all w and f , we have

VarB (P2(w, f ))

= VarB

⎛

⎝
∑

x∈Dγ

pX (x)�{B1(x) = w}�{B2(x) = f }
⎞

⎠ (134)

=
∑

x∈Dγ

VarB
(

pX (x)�{B1(x) = w}�{B2(x) = f }
)

(135)

≤
∑

x∈Dγ

p2
X (x) EB

(
�{B1(x) = w}�{B2(x) = f }

)
(136)

= 1

W̃ F̃

∑

x∈Dγ

p2
X (x) (137)

≤ 2−γ

W̃ F̃

∑

x∈Dγ

pX (x) ≤ 2−γ

W̃ F̃
, (138)

where (135) follows since the random variables{
pX (x)�{B1(x) = w}�{B2(x) = f }

}

x∈Dγ

are independent

due to the structure of the random binning, and (138) follows
because pX (x) ≤ 2−γ for all x ∈ Dγ . Lemma 1 follows from
substituting (130) and (133) in (127).

APPENDIX B
PROOF OF LEMMA 2

We first state the following lemma, which provides a
variation of Chernoff bound.

Lemma 6: (A variation on Chernoff bound:) Let
U1,U2, · · · ,Un be a sequence of non-negative independent
random variables with respective means E(Ui ) = m̄i .
If Ui ∈ [0, b], for all i ∈ �1, n�, and

∑n
i=1 m̄i ≤ m̄, then, for

every ε ∈ [0, 1], we have

P

(
n∑

i=1

Ui ≥ (1 + ε)m̄

)

≤ exp

(
−ε2 m̄

3b

)
. (139)

Proof: The proof is adapted from [9, Appendix C]. The
details are relegated to Appendix C. �

A. High Probability Z-Set

For all S ∈ S, define the set

AS �
{

z ∈ Z : PpX |Z S

(
(X, z) ∈ DS

γ

)
≥ 1 − δ

}
. (140)

Recall that PpX Z S

(
(X, ZS) ∈ DS

γ

)
≥ 1−δ2 by assumption.

Using Markov inequality, we have

PpZ S
(Ac

S) = PpZ S

(
PpX |Z S

(
(X, ZS) /∈ DS

γ

)
≥ δ
)

(141)

≤ 1

δ
EpZ S

(
PpX |Z S

(
(X, ZS) /∈ DS

γ

))
(142)

= 1

δ
PpX Z S

(
(X, ZS) /∈ DS

γ

)
(143)

≤ δ2

δ
= δ. (144)

B. Typical and Non-Typical Events

For all w, f ∈ �1, W̃ � × �1, F̃�, z ∈ Z, and S ∈ S, define
the random variables

P S
1 (w, f |z) =

∑

x∈X

pX |ZS(x |z)�{B1(x) = w}

×�{B2(x) = f }�
{
(x, z) ∈ DS

γ

}
(145)

P S
2 (w, f |z) =

∑

x∈X

pX |ZS(x |z)�{B1(x) = w}

×�{B2(x) = f }�
{
(x, z) /∈ DS

γ

}
. (146)
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Thus, we have, for all w, f, z, and S, that

PW F |ZS(w, f |z)
=
∑

x∈X

pX |ZS(x |z)�{B1(x) = w}�{B2(x) = f } (147)

= P S
1 (w, f |z)+ P S

2 (w, f |z). (148)

Note that, for fixed z ∈ Z and S ∈ S, each of the the random
variables P S

i (w, f |z), i = 1, 2, is identically distributed for
all w, f ∈ �1, W̃ �×�1, F̃� due to the symmetry in the random
binning. We then fix z ∈ Z and S ∈ S, and let P S

1 (w, f |z) =∑
x∈XUx(w, f, z, S), where

Ux(w, f, z, S) = pX |ZS(x |z)�{B1(x) = w}
×�{B2(x) = f }�

{
(x, z) ∈ DS

γ

}
. (149)

The random variables {Ux(w, f, z, S)}x∈X are non-negative
and independent, and for all x ∈ X,

Ux (w, f, z, S) ≤ pX |ZS(x |z) �
{
(x, z) ∈ DS

γ

}
< 2−γ , (150)

where pX |ZS(x |z) < 2−γ , for all (x, z) ∈ DS
γ . Also, we have

∑

x∈X

EB(Ux(w, f, z, S))

=
∑

x∈X

pX |ZS(x |z) EB

(
�{B1(x) = w}�{B2(x) = f }

)

×�

{
(x, z) ∈ DS

γ

}
(151)

= 1

W̃ F̃

∑

x∈X

pX |ZS(x |z)�
{
(x, z) ∈ DS

γ

}
(152)

= 1

W̃ F̃
PpX |Z S

(
(X, z) ∈ DS

γ

)
. (153)

By applying Lemma 6 to the random variables

{Ux(w, f, z, S)}x∈X, with m̄ = PpX |Z S

(
(X,z)∈DS

γ

)

W̃ F̃
and

b = 2−γ , we have, for every ε1 ∈ [0, 1] and z ∈ AS , that

PB

(
P S

1 (w, f |z) ≥ 1 + ε1

W̃ F̃

)

≤ P

⎛

⎝
∑

x∈X

Ux(w, f, z, S) ≥ 1 + ε1

W̃ F̃
PpX |Z S

(
(X, z) ∈ DS

γ

)
⎞

⎠

(154)

≤ exp

⎛

⎝
−ε2

1 PpX |Z S

(
(X, z) ∈ DS

γ

)
2γ

3W̃ F̃

⎞

⎠ (155)

≤ exp

(
−ε2

1 (1 − δ)2γ

3W̃ F̃

)

, (156)

where (154) follows since PpX |Z S

(
(X, z) ∈ DS

γ

)
≤ 1,

and (156) follows because, for all z ∈ AS , we have
PpX |Z S

(
(X, z) ∈ DS

γ

)
≥ 1 − δ.

We also have have that,

EpZ S

⎛

⎝
∑

w, f

P S
2 (w, f |ZS)

⎞

⎠

= EpZ S

(∑

x∈X

pX |ZS(x |ZS)�
{
(x, ZS) /∈ DS

γ

}

×
∑

w, f

�{B1(x) = w}�{B2(x) = f }
)

(157)

=
∑

z∈Z

pZS(z)
∑

x∈X

pX |ZS(x |z)�
{
(x, z) /∈ DS

γ

}
(158)

=
∑

(x,z)/∈DS
γ

pX ZS(x, z) (159)

= PpX Z S

(
(X, ZS) /∈ DS

γ

)
≤ δ2, (160)

where (158) follows since every x ∈ X is assigned to only one
pair (w, f ), and hence,

∑

w, f

�{B1(x) = w}�{B2(x) = f } = 1. (161)

C. Good Binning Functions

Let b � (b1, b2) : X �→ �1, W̃ � × �1, F̃� be
a realization of the random binning B. Recall that the
random variable P S

1 (w, f |z) is identically distributed for
every w and f . We then define the class G of binning
functions b as

G �
{

b : P S
1 (w, f |z) < 1 + ε1

W̃ F̃
,

for all S ∈ S and z ∈ AS

}
. (162)

Using the union bound and (156), we have that

PB
(
Gc) = PB

(
P S

1 (w, f |z) ≥ 1 + ε1

W̃ F̃
,

for some S ∈ S, or z ∈ AS

)
(163)

= PB

⎛

⎝
⋃

S∈S

⋃

z∈AS

P S
1 (w, f |z) ≥ 1 + ε1

W̃ F̃

⎞

⎠ (164)

≤
∑

S∈S

∑

z∈AS

PB

(
P S

1 (w, f |z) ≥ 1 + ε1

W̃ F̃

)
(165)

≤
∑

S∈S

|AS| exp

(
−ε2

1 (1 − δ)2γ

3W̃ F̃

)

(166)

≤ |S||Z| exp

(
−ε2

1 (1 − δ)2γ

3W̃ F̃

)

. (167)
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Take b such that b ∈ G, and set W = b1(X) and F = b2(X).
For every S ∈ S, we have

D

(
PW F ZS ||pU

W pU
F pZS

)

= EpZ S

(
D

(
PW F |ZS ||pU

W pU
F

))
(168)

= EpZ S

⎛

⎝
∑

w, f

PW F |ZS(w, f |ZS) log
PW F |ZS(w, f |ZS)

pU
W pU

F

⎞

⎠

(169)

= EpZ S

(∑

w, f

2∑

i=1

P S
i (w, f |ZS)

× log
(

W̃ F̃
2∑

i=1

P S
i (w, f |ZS)

))
(170)

= EpZ S

(∑

w, f

2∑

i=1

P S
i (w, f |ZS)

× log

∑2
i=1 P S

i (w, f |ZS)
1

W̃ F̃

∑2
i=1
∑
w, f P S

i (w, f |ZS)

)
(171)

≤ EpZ S

⎛

⎝
2∑

i=1

∑

w, f

P S
i (w, f |ZS) log

W̃ F̃ P S
i (w, f |ZS)

∑
w, f P S

i (w, f |ZS)

⎞

⎠

(172)

=
2∑

i=1

EpZ S

⎛

⎝
∑

w, f

P S
i (w, f |ZS) log

(
W̃ F̃ P S

i (w, f |ZS)
)
⎞

⎠

+ EpZ S

⎛

⎝
2∑

i=1

∑

w, f

P S
i (w, f |ZS) log

1
∑
w, f P S

i (w, f |ZS)

⎞

⎠

(173)

where (171) follows because

∑

w, f

2∑

i=1

P S
i (w, f |ZS) =

∑

w, f

PW F |ZS(w, f |ZS) = 1, (174)

and (172) follows from the log-sum inequality.
Now, we upper bound each term in (173). For b ∈ G and

every S ∈ S, we have

EpZ S

⎛

⎝
∑

w, f

P S
1 (w, f |ZS) log

(
W̃ F̃ P S

1 (w, f |ZS)
)
⎞

⎠

= EpZ S

(∑

w, f

P S
1 (w, f |ZS)

× log
(

W̃ F̃ P S
1 (w, f |ZS)

)
� {ZS ∈ AS}

)

+ EpZ S

(∑

w, f

P S
1 (w, f |ZS)

× log
(

W̃ F̃ P S
1 (w, f |ZS)

)
� {ZS /∈ AS}

)

(175)

< log(1 + ε1)+
∑

x,z

pX ZS(x, z)

× log
(

W̃ F̃ P S
1 (w, f |z)

)
� {z /∈ AS} (176)

≤ log(1 + ε1)+ log(W̃ F̃) PpZ S
(ZS /∈ AS) (177)

≤ ε1 + δ log(W̃ F̃), (178)

where (176) follows because, for every b ∈ G and S ∈ S,
we have W̃ F̃ P S

1 (w, f |ZS) < (1 + ε) for ZS ∈ AS and every
w, f , and (178) follows from (144).

Using (160), we have, for every S ∈ S, that

EpZ S

⎛

⎝
∑

w, f

P S
2 (w, f |ZS) log

(
W̃ F̃ P S

2 (w, f |ZS)
)
⎞

⎠

≤ log(W̃ F̃) EpZ S

⎛

⎝
∑

w, f

P S
2 (w, f |ZS)

⎞

⎠ ≤ δ2 log(W̃ F̃).

(179)

We also have, for every S ∈ S, that

EpZ S

⎛

⎝
2∑

i=1

∑

w, f

P S
i (w, f |ZS) log

1
∑
w, f P S

i (w, f |ZS)

⎞

⎠

= EpZ S

(
Hb

(
PpX |Z S

(
(X, ZS) ∈ DS

γ

)))
(180)

≤ Hb

(
EpZ S

(
PpX |Z S

(
(X, ZS) ∈ DS

γ

)))
(181)

= Hb

(
PpX Z S

(
(X, ZS) ∈ DS

γ

))
(182)

≤ Hb(1 − δ2) = Hb(δ
2), (183)

where (181) follows from Jensen’s inequality and the concav-
ity of Hb, and (183) follows since Hb(x) is monotonically
decreasing in x ∈ ( 1

2 , 1
)
. Equation (180) follows since∑2

i=1
∑
w, f P S

i (w, f |ZS) = 1, and
∑
w, f P S

1 (w, f |ZS) =
PpX |Z S

(
(X, ZS) ∈ DS

γ

)
.

By substituting (178), (179), and (183) in (173), we have,
for every b ∈ G and S ∈ S, that

D

(
PW F ZS ||pU

W pU
F pZS

)

< ε1 + (δ + δ2) log(W̃ F̃)+ Hb(δ
2) = ε̃. (184)

Thus, we have

PB

(
max
S∈S

D
(
PW F ZS ||pU

W pU
F pZS

) ≥ ε̃

)

= 1 − PB

(
max
S∈S

D

(
PW F ZS ||pU

W pU
F pZS

)
< ε̃

)
(185)

= 1 − PB

(
D

(
PW F ZS ||pU

W pU
F pZS

)
< ε̃, for all S ∈ S

)

(186)

≤ 1 − PB(G) = PB(G
c) (187)

≤ |S||Z| exp

(
ε2

1 (1 − δ)2γ

3W̃ F̃

)

, (188)
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where the inequality in (187) follows because (184) implies
that

PB

(
D

(
PW F ZS ||pU

W pU
F pZS

)
<ε̃, for all S ∈ S

)
≥ PB(G).

(189)

This completes the proof for Lemma 2. The analysis in this
proof is adapted from [35, Appendix].

APPENDIX C
PROOF OF LEMMA 6

Let U1,U2, · · · ,Un be a sequence of non-negative inde-
pendent random variables, which satisfy the conditions of the
Lemma. For any θ > 0, we have

P

( n∑

i=1

Ui ≥ (1 + ε)m̄

)

= P

(
eθ
∑n

i=1 Ui ≥ eθ(1+ε)m̄) (190)

≤
E

(
eθ
∑n

i=1 Ui

)

eθ(1+ε)m̄ (191)

=
∏n

i=1 E
(
eθUi

)

eθ(1+ε)m̄ (192)

≤
∏n

i=1

(
1 + eθb−1

b E(Ui )
)

eθ(1+ε)m̄ (193)

≤
∏n

i=1 e
eθb−1

b m̄i

eθ(1+ε)m̄ (194)

≤ e
eθb−1

b m̄

eθ(1+ε)m̄ (195)

= exp

(
−
[
θ(1 + ε)− eθb − 1

b

]
m̄

)
, (196)

where (191) follows from Markov’s inequality. (193) follows
because eθx ≤ 1 + eθb−1

b x for x ∈ [0, b], as ex is a convex
function in x , (194) follows because 1 + x ≤ ex for all x ≥ 0,
and (195) follows because

∑n
i=1 m̄i ≤ m̄.

The value of θ which maximizes the right hand side of (196)
is θ∗ = 1

b ln(1 + ε) > 0, for which we have

P

(
n∑

i=1

Ui ≥ (1 + ε)m̄

)

≤ exp

(
− m̄

b
[(1 + ε) (ln(1 + ε)− 1)+ 1]

)
. (197)

By considering Taylor’s expansion of x[ln(x) − 1] around
x = 1, we have, for all x ≥ 1, that

x[ln(x)− 1] + 1 ≥ 1

2
(x − 1)2 − 1

6
(x − 1)3. (198)

We also have, for x ∈ [1, 2], that

1

2
(x − 1)2 − 1

6
(x − 1)3 ≥ 1

3
(x − 1)2. (199)

Thus, for all x ∈ [1, 2], we have

x[ln(x)− 1] + 1 ≥ 1

3
(x − 1)2. (200)

By applying (200), with x = (1 + ε), to the right hand side
of (197), we have, for ε ∈ [0, 1], that

P

(
n∑

i=1

Ui ≥ (1 + ε)m̄

)

≤ exp

(
− m̄

3b
ε2
)
. (201)
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