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Secure Degrees of Freedom for the MIMO
Wire-Tap Channel With a Multi-Antenna
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Abstract— In this paper, a multiple antenna wire-tap channel
in the presence of a multi-antenna cooperative jammer is studied.
In particular, the secure degrees of freedom (s.d.o.f.) of this
channel is established, with Nt antennas at the transmitter,
Nr antennas at the legitimate receiver, and Ne antennas at
the eavesdropper, for all possible values of the number of
antennas, Nc, at the cooperative jammer. In establishing the
result, several different ranges of Nc need to be considered
separately. The lower and upper bounds for these ranges of
Nc are derived, and are shown to be tight. The achievability
techniques developed rely on a variety of signaling, beamforming,
and alignment techniques, which vary according to the (relative)
number of antennas at each terminal and whether the s.d.o.f.
is integer valued. Specifically, it is shown that, whenever the
s.d.o.f. is integer valued, Gaussian signaling for both transmission
and cooperative jamming, linear precoding at the transmit-
ter and the cooperative jammer, and linear processing at the
legitimate receiver, are sufficient for achieving the s.d.o.f. of
the channel. By contrast, when the s.d.o.f. is not an integer,
the achievable schemes need to rely on structured signaling at
the transmitter and the cooperative jammer, and joint signal
space and signal scale alignment. The converse is established by
combining an upper bound, which allows for full cooperation
between the transmitter and the cooperative jammer, with
another upper bound which exploits the secrecy and reliability
constraints.

Index Terms— MIMO wiretap channel, cooperative jamming,
secure degrees of freedom, beamforming, structured signaling,
real interference alignment.

I. INTRODUCTION

INFORMATION theoretically secure message transmission
in noisy communication channels was first considered in the

seminal work by Wyner [3]. Reference [4] subsequently iden-
tified the secrecy capacity of a general discrete memoryless
wire-tap channel. Reference [5] studied the Gaussian wire-tap
channel and its secrecy capacity. More recently, an extensive
body of work was devoted to study a variety of network
information theoretic models under secrecy constraint(s), see
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for example [6]–[23]. The secrecy capacity region for most
of multi-terminal models remain open despite significant
progress on bounds and associated insights. Recent work
thus includes efforts that concentrate on characterizing the
more tractable high signal-to-noise ratio (SNR) scaling behav-
ior of secrecy capacity region for Gaussian multi-terminal
models [21]–[26].

Among the multi-transmitter models studied, a recurrent
theme in achievability is enlisting one or more terminals
to transmit intentional interference with the specific goal
of diminishing the reception capability of the eavesdropper,
known as cooperative jamming [27]. For the Gaussian wire-tap
channel, adding a cooperative jammer terminal transmitting
Gaussian noise can improve the secrecy rate considerably [11],
albeit not the scaling of the secrecy capacity with power at
high SNR. Recently, [23] has shown that, for the Gaussian
wire-tap channel, adding a cooperative jammer and utilizing
structured codes for message transmission and cooperative
jamming, provide an achievable secrecy rate scalable with
power, i.e., a positive secure degrees of freedom (s.d.o.f.),
an improvement from the zero degrees of freedom of the
Gaussian wire-tap channel. More recently, [24] has proved
that, for this channel, the s.d.o.f. 1

2 , achievable by codebooks
constructed from integer lattices along with real interference
alignment, is tight. References [25], [26] have subsequently
identified the s.d.o.f. region for multi-terminal Gaussian
wire-tap channel models.

While the above development is for single-antenna termi-
nals, multiple antennas have also been utilized to improve
secrecy rates and s.d.o.f. for several channel models, see for
example [7]–[9], [21], [28]–[33]. The secrecy capacity of the
multi-antenna (MIMO) wire-tap channel, identified in [28],
scales with power only when the legitimate transmitter has an
advantage over the eavesdropper in the number of antennas.
It then follows naturally to utilize a cooperative jamming
terminal to improve the secrecy rate and scaling for multi-
antenna wire-tap channels as well which is the focus of this
work.

In this paper, we study the multi-antenna wire-tap channel
with a multi-antenna cooperative jammer. We characterize the
high SNR scaling of the secrecy capacity, i.e., the s.d.o.f.,
of the channel with Nc antennas at the cooperative jammer,
Nt antennas at the transmitter, Nr antennas at the receiver,
Ne antennas at the eavesdropper, under the assumption of
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known channel state information at all terminals. The achiev-
ability and converse techniques both are methodologically
developed for ranges of the parameters, i.e., the number of
antennas at each terminal. The upper and lower bounds for all
parameter values are shown to match one another. Presenting
this work in part, [1] and [2] are conference presentations
reporting the resulting s.d.o.f. for Nt = Nr only. Note that
the s.d.o.f. results in this paper match the achievability results
reported in [34] and [35], which are special cases for {Nt =
Nr = 1, Nc = Ne}, {Nt = Nr = Ne = N, Nc = 2N},
{Nt = Nr = Ne = N, Nc = 2N − 1}, and with real channel
gains.

We remark that secure degrees of freedom for single
and multiple antenna wire-tap channels have recently been
investigated under the assumption of unknown eavesdropper
channel state information at the legitimate terminals. The
secure degrees of freedom for the single-antenna wire-tap
channel with multiple helpers, multiple-access wire-tap chan-
nel, and interference wire-tap channel, with unknown and
static eavesdropper channel, have been derived in [36]. The
strongly secure degrees of freedom of the multiple antenna
wire-tap channel with unknown and varying eavesdropper
channel is established in [32] by showing the existence of
a universal scheme that can counter any eavesdropper state.
[32] thus quantifies the reduction in degrees of freedom that
results from universal immunity to eavesdropping. This paper,
by contrast, addresses the improvement provided by adding a
multi-antenna helper in the benchmark case that is the static
and known channel state information for the MIMO wiretap
channel.

The proposed achievable schemes for different ranges of
the values for Nc , Nt , Nr , and Ne all involve linear precoding
and linear receiver processing. The common goal to all these
schemes is to perfectly align the cooperative jamming signals
over the information signals observed at the eavesdropper
while simultaneously enabling information and cooperative
jamming signal separation at the legitimate receiver. We show
that whenever the s.d.o.f. of the channel is integer valued,
Gaussian signaling both at the transmitter and the coop-
erative jammer suffices to achieve the s.d.o.f. By contrast,
non-integer s.d.o.f. requires structured signaling along with
joint signal space and signal scale alignment in the complex
plane [37], [38]. The necessity of structured signaling follows
from the fact that fractional s.d.o.f. indicates sharing at least
one spatial dimension between information and cooperative
jamming signals at the receiver’s signal space. In this case,
sharing the same spatial dimension between Gaussian informa-
tion and jamming signals, which have similar power scaling,
does not provide positive degrees of freedom, and we need
for structured signals that can be separated over this single
dimension at high SNR. The tools that enable the signal scale
alignment are available in the field of transcendental number
theory [38]–[40], which we utilize.

The paper is organized as follows. Section II introduces the
channel model, and Section III provides the main results. For
clarity of exposition, we first present the converse and achiev-
ability for the MIMO wire-tap channel with Nt = Nr = N
in Sections IV and V. Section VI then extends the converse

and achievability proofs for the case Nt �= Nr . Section VII
discusses the results of this work and Section VIII concludes
the paper.

Overall, this study determines the value in jointly utilizing
signal scale and spatial interference alignment techniques for
secrecy and quantifies the impact of a multi-antenna helper
for the MIMO wire-tap channel by settling the question of
the secrecy prelog for the (Nt × Nr × Ne) MIMO wire-tap
channel in the presence of an Nc-antenna cooperative jammer,
for all possible values of Nc . In contrast with the single
antenna case, where integer lattice codes and real interference
alignment suffice to achieve the s.d.o.f. of the channel, in the
MIMO setting, one needs to utilize a variety of signaling,
beamforming, and alignment techniques, in order to coordi-
nate the transmitted and received signals for different values
of Nt , Nr , Ne , and Nc .

II. CHANNEL MODEL AND DEFINITIONS

First, we remark the notation we use throughout the paper:
Small letters denote scalars and capital letters denote random
variables. Vectors are denoted by bold small letters, while
matrices and random vectors are denoted by bold capital
letters.1 Sets are denoted using calligraphic fonts. All loga-
rithms are taken to be base 2. Throughout the paper, we use
j = √−1 to denote the imaginary unit in a complex number.
R, C, Q, and Z denote the sets of real, complex, rational,
and real-valued integer numbers, respectively. ZC denotes the
set of complex integers, i.e., ZC � {n + jm : n, m ∈ Z}.
The set of integers {−Q, · · · , Q} is denoted by (−Q, Q)Z.
0m×n denotes an m × n matrix of zeros, and In denotes an
n × n identity matrix. For matrix A, N(A) denotes its null
space, det(A) denotes its determinant, and ||A|| denotes its
induced norm. For vector V, ||V|| denotes its Euclidean norm,
and Vk

i denotes the i th to kth components in V. We use
Vn to denote the n-letter extension of the random vector V,
i.e., Vn = [V(1) · · · V(n)]. The operators T , H , and † denote
the transpose, Hermitian, and pseudo inverse operations. A cir-
cularly symmetric Gaussian random vector with zero mean and
covariance matrix K is denoted by CN(0, K).

As the channel model, we consider the MIMO wire-tap
channel with an Nt -antenna transmitter, Nr -antenna receiver,
Ne-antenna eavesdropper, and an Nc-antenna cooperative jam-
mer as depicted in Fig. 1. The received signals at the receiver
and eavesdropper, at the nth channel use, are given by

Yr (n) = Ht Xt (n) + HcXc(n) + Zr (n) (1)

Ye(n) = Gt Xt (n) + GcXc(n) + Ze(n), (2)

where Xt (n) and Xc(n) are the transmitted signals from the
transmitter and the cooperative jammer at the nth channel
use. Ht ∈ C

Nr ×Nt , Hc ∈ C
Nr ×Nc are the channel gain

matrices from the transmitter and the cooperative jammer to
the receiver, while Gt ∈ C

Ne×Nt , Gc ∈ C
Ne×Nc are the channel

gain matrices from the transmitter and the cooperative jammer
to the eavesdropper. It is assumed that the channel gains
are drawn independently from a complex-valued continuous

1The distinction between matrices and random vectors is clear from the
context.
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Fig. 1. (Nt × Nr × Ne) multiple antenna wire-tap channel with an Nc-antenna cooperative jammer.

distribution. All channel gains are assumed to be known at
all terminals. Zr (n) and Ze(n) are the complex Gaussian
noise at the receiver and eavesdropper at the nth channel use,
where Zr (n) ∼ CN(0, INr ) and Ze(n) ∼ CN(0, INe ) for all n.
Zr (n) is independent from Ze(n) and both are independent
and identically distributed (i.i.d.) across the time index2 n. The
power constraints on the transmitted signals at the transmitter
and the cooperative jammer are E

(
XH

t Xt
)
, E

(
XH

c Xc
) ≤ P .

The transmitter aims to send a message W to the receiver,
and keep it secret from the external eavesdropper. A stochastic
encoder, which maps the message W to the transmitted signal
Xn

t ∈ Xn
t , is used at the transmitter. The receiver uses

its observation, Yn
r ∈ Yn

r , to obtain an estimate Ŵ of the
transmitted message. Secrecy rate Rs is achievable if for any
ε > 0, there is a channel code (2nRs , n) satisfying3

Pe � Pr
(

Ŵ �= W
)

≤ ε, (3)

1

n
H (W |Yn

e ) ≥ 1

n
H (W ) − ε. (4)

The secrecy capacity of a channel, Cs(P), is defined as the
closure of all its achievable secrecy rates. For a channel with
complex-valued coefficients, the maximum secure degrees of
freedom (s.d.o.f.) is defined as

Ds � lim
P→∞

Cs(P)

log P
. (5)

The cooperative jammer transmits the signal Xn
c ∈ Xn

c in
order to reduce the reception capability of the eavesdrop-
per. However, this transmission affects the receiver as well,
as interference. The jamming signal, Xn

c , does not carry any
information. Additionally, there is no shared secret between
the transmitter and the cooperative jammer.

III. MAIN RESULT

We first state the s.d.o.f. results for Nt = Nr = N .
Theorem 1: The s.d.o.f. of the MIMO wire-tap channel with

an Nc-antenna cooperative jammer, N antennas at each of the

2Throughout the paper, we omit the index n whenever possible.
3We consider weak secrecy throughout this paper.

transmitter and receiver, and Ne antennas at the eavesdropper,
is almost surely4 (a.s.)

Ds =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[N + Nc − Ne]+, i f 0 ≤ Nc ≤ Ne − min{N, Ne}
2

N − min{N, Ne}
2

, i f Ne − min{N, Ne}
2

< Nc

≤ max{N, Ne}
N + Nc − Ne

2
, i f max{N, Ne} < Nc ≤ N + Ne,

N, i f Nc > N + Ne

(6)

Proof: The proof for Theorem 1 is provided in
Sections IV and V.

Next, in Theorem 2 below, we generalize the result in
Theorem 1 to Nt �= Nr .

Theorem 2: The s.d.o.f. of the MIMO wire-tap channel with
an Nc-antenna cooperative jammer, Nt -antenna transmitter,
Nr -antenna receiver, and Ne-antenna eavesdropper, is a.s.

Ds =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
{

Nr , [Nc + Nt − Ne]+
}
, if 0 ≤ Nc ≤ N1

min

{
Nt , Nr ,

Nr +[Nt −Ne]+

2

}
, if N1 < Nc ≤ N2

min

{
Nt , Nr ,

Nc +Nt −Ne

2

}
, if N2 < Nc ≤ N3,

min {Nt , Nr } , if Nc > N3,
(7)

where,

N1 = min

{

Ne,

[
Nr

2
+ Ne − Nt

2 − 1Ne>Nt

]+}
,

1Ne>Nt =
{

1, if Ne > Nt

0, if Ne ≤ Nt

4The subset of the channel gains for which the result does not hold has a
Lebesgue measure zero.
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N2 = Nr + [Ne − Nt ]+ ,

N3 = max {N2, 2 min {Nt , Nr } + Ne − Nt } .

Proof: The proof for Theorem 2 is provided in
Section VI.

Remark 1: Theorem 2 provides a complete characterization
for the s.d.o.f. of the channel. The s.d.o.f. at Nc = N3 is equal
to min{Nt , Nr }, which is equal to the d.o.f of the (Nt × Nr )
point-to-point MIMO Gaussian channel. Thus, increasing the
number of antennas at the cooperative jammer, Nc , over N3
cannot increase the s.d.o.f. over min{Nt , Nr }.

Remark 2: For Nt ≥ Nr + Ne , the s.d.o.f. of the channel
is equal to Nr at Nc = 0, i.e., the maximum s.d.o.f. of
the channel is achieved without the help of the cooperative
jammer.

Remark 3: The converse proof for Theorem 2 involves
combining two upper bounds for the s.d.o.f. derived for two
different ranges of Nc. These two bounds are a straightforward
generalization of those derived for the symmetric case in
Theorem 1. However, combining them is more tedious since
more cases of the number of antennas at the different terminals
should be handled carefully. Achievability for Theorem 2
utilizes similar techniques to those used for Theorem 1 as
well, where handling more cases is required. For clarity of
exposition, we derive the s.d.o.f. for the symmetric case first
in order to present the main ideas, and then utilize these ideas
and generalize the result to the asymmetric case of Theorem 2.

For illustration purposes, the s.d.o.f. for Nt = Nr =
Ne = N , and Nc varying from 0 to 2N , is depicted in Fig. 2.
The s.d.o.f. curves with N even and odd are shown in Fig. 2a
and Fig. 2b, respectively.

We provide the discussion of the results of this work in
Section VII.

IV. CONVERSE FOR Nt = Nr = N

In Section IV-A, we derive the upper bound for the s.d.o.f.
for 0 ≤ Nc ≤ Ne . In Section IV-B, we derive the upper
bound for max{N, Ne} ≤ Nc ≤ N + Ne . The two bounds
are combined in Section IV-C to provide the desired upper
bound in (6).

A. 0 ≤ Nc ≤ Ne

Allow for full cooperation between the transmitter and the
cooperative jammer. This cooperation cannot decrease the
s.d.o.f. of the channel, and yields a MIMO wire-tap channel
with N + Nc-antenna transmitter, N-antenna receiver, and
Ne-antenna eavesdropper. It has been shown in [28] that,
at high SNR, i.e., P → ∞, the secrecy capacity of this
channel, Cs(P), takes the asymptotic form

Cs(P) = log det

(
IN + P

p
HG�HH

)
+ o(log P), (8)

where lim
P→∞

o(log P)
log P = 0, H ∈ C

N× (N+Nc ) and G ∈
C

Ne× (N+Nc ) are the channel gains from the combined trans-
mitter to the receiver and eavesdropper, and G� is the
projection matrix onto the null space of G, N(G). p �
dim

{
N(H)⊥ ∩ N(G)

}
, where N(H)⊥ is the space orthogonal

Fig. 2. Secure degrees of freedom for a MIMO wire-tap channel, with N
antennas at each of its nodes, and a cooperative jammer with Nc antennas,
where Nc varies from 0 to 2N . (a) N even. (b) N odd.

to the null space of H. Due to the randomly generated channel
gains, if a vector x ∈ N(G), then x ∈ N(H)⊥ a.s., for all
0 ≤ Nc ≤ Ne . Thus, p = dim(N(G)) = [N + Nc − Ne]+.

HG�HH can be decomposed as

HG�HH = �

[
0(N−p)× (N−p) 0(N−p)×p

0p× (N−p) �

]
� H , (9)

where � ∈ C
N×N is a unitary matrix and � ∈ C

p×p is
a non-singular matrix [28]. Let � = [�1 �2], where �1 ∈
C

N× (N−p) and �2 ∈ C
N×p . Substituting (9) in (8) yields

Cs(P) = log det

(
IN + P

p
�2�� H

2

)
+ o(log P) (10)

= log det

(
Ip + P

p
�� H

2 �2

)
+ o(log P) (11)

= log P pdet

(
1

P
Ip + 1

p
�

)
+ o(log P) (12)

= p log P + o(log P), (13)

where (11) follows from Sylvester’s determinant identity
and (12) follows from � being unitary.

Thus, the s.d.o.f. of the original channel, for 0 ≤ Nc ≤ Ne ,
is upper bounded as

Ds ≤ lim
P→∞

Cs(P)

log P
= lim

P→∞
p log P + o(log P)

log P
(14)

= [N + Nc − Ne]+. (15)

B. max{N, Ne} < Nc ≤ N + Ne
The upper bound we derive here is inspired by the con-

verse of the single antenna Gaussian wire-tap channel with
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a single antenna cooperative jammer derived in [24], though
as we will see shortly, the vector channel extension resulting
from multiple antennas does require care. Let φi , for i =
1, 2, · · · , 10, denote constants which do not depend on the
power P .

The secrecy rate Rs can be upper bounded as follows

n Rs = H (W ) (16)

= H (W ) − H (W |Yn
e ) + H (W |Yn

e )

− H (W |Yn
r ) + H (W |Yn

r ) (17)

≤ nε + H (W |Yn
e ) − H (W |Yn

r , Yn
e ) + nδ (18)

= I (W ; Yn
r |Yn

e ) + nφ1 (19)

= h(Yn
r |Yn

e ) − h(Yn
r |W, Yn

e ) + nφ1 (20)

≤ h(Yn
r |Yn

e ) − h(Yn
r |W, Yn

e , Xn
t , Xn

c ) + nφ1 (21)

= h(Yn
r , Yn

e ) − h(Yn
e ) − h(Zn

r ) + nφ1, (22)

where (18) follows since H (W ) − H (W |Yn
e ) ≤ nε

by the secrecy constraint in (4), H (W |Yn
r ) ≤ nδ by

Fano’s inequality, and H (W |Yn
r ) ≥ H (W |Yn

r , Yn
e ) by

the fact that conditioning does not increase entropy, (22)
follows since Zn

r is independent from {W, Yn
e , Xn

t , Xn
c },

and φ1 = ε + δ.
Let X̃t = Xt + Z̃t and X̃c = Xc + Z̃c, where Z̃t ∼

CN(0, Kt ) and Z̃c ∼ CN(0, Kc). The covariance matrices,
Kt and Kc, are chosen as Kt = ρ2IN and Kc = ρ2INc ,

where 0 < ρ ≤ 1/ max

{
||HH

c ||,
√

||GH
t ||2 + ||GH

c ||2
}

. Note

that X̃t and X̃c are noisy versions of the transmitted signals
Xt and Xc, respectively. Z̃t is independent from Z̃c and both
are independent from {Xt , Xc, Zr , Ze}. Z̃n

t and Z̃n
c are i.i.d.

sequences of the random vectors Z̃t and Z̃c. In addition, let
Z̃1 = −Ht Z̃t − HcZ̃c + Zr and Z̃2 = −Gt Z̃t − GcZ̃c + Ze.
Note that Z̃1 ∼ CN

(
0,	Z̃1

)
and Z̃2 ∼ CN

(
0,	Z̃2

)
, where

	Z̃1
= Ht Kt HH

t + HcKcHH
c + IN and 	Z̃2

= Gt Kt GH
t +

GcKcGH
c + INe . Z̃n

1 and Z̃n
2 are i.i.d. sequences of Z̃1

and Z̃2, since each of Zn
r , Zn

e , Z̃n
t , Z̃n

c is i.i.d. across time.
The choice of Kt and Kc above guarantees the finiteness
of h(Z̃t ), h(Z̃c), h(Z̃1), and h(Z̃2) as shown in Appendix A.
Starting from (22), we have

n Rs ≤ h(Yn
r , Yn

e ) − h(Yn
e ) + nφ2 (23)

= h(Yn
r , Yn

e , X̃n
t , X̃n

c ) − h(X̃n
t , X̃n

c |Yn
r , Yn

e ) (24)

− h(Yn
e ) + nφ2

≤ h(X̃n
t , X̃n

c ) + h(Yn
r , Yn

e |X̃n
t , X̃n

c )

− h(X̃n
t , X̃n

c |Yn
r , Yn

e , Xn
t , Xn

c ) − h(Yn
e ) + nφ2 (25)

≤ h(X̃n
t ) + h(X̃n

c ) + h(Yn
r |X̃n

t , X̃n
c )

+ h(Yn
e |X̃n

t , X̃n
c )−h(Z̃n

t , Z̃n
c )−h(Yn

e )+nφ2 (26)

= h(X̃n
t ) + h(X̃n

c ) + h(Z̃n
1 |X̃n

t , X̃n
c ) + h(Z̃n

2 |X̃n
t , X̃n

c )

−h(Yn
e ) + nφ3 (27)

≤ h(X̃n
t )+h(X̃n

c )+h(Z̃n
1)+h(Z̃n

2)−h(Yn
e )+nφ3 (28)

= h(X̃n
t ) + h(X̃n

c ) − h(Yn
e ) + nφ4, (29)

where (26) follows since Z̃n
t and Z̃n

c are independent from
{Xn

t , Xn
c , Yn

r , Yn
e }, φ2 = φ1 −h(Zr ), φ3 = φ2 −h(Z̃t )−h(Z̃c),

and φ4 = φ3 + h(Z̃1) + h(Z̃2).
We have utilized the noisy versions X̃t = Xt + Z̃t and X̃c =

Xc+Z̃c instead of Xt , Xc so that (24)-(29) hold whether Xt , Xc

are continuous or discrete random vectors. This requires
continuing the analysis with stochastically equivalent versions
of Yr , Ye in which they are expressed as functions of X̃t and/or
X̃c. To do so, we divide the Gaussian noise Zr , Ze into sums
of other independent Gaussian noise variables. The infinite
divisibility of the Gaussian distribution ensures such division
of Zr , Ze. We now consider the following two cases.

Case 1: Ne ≤ N
We first lower bound h(Yn

e ) in (29) as follows. Using the
infinite divisibility of Gaussian distribution, we can express a
stochastically equivalent form of Ze, denoted by Z′

e, as

Z′
e = Gt Z̃t + Z̃e. (30)

where5 Z̃e ∼ CN(0, INe − Gt Kt GH
t ) is independent from

{Z̃t , Z̃c, Xt , Xc, Zr }. Z̃n
e is an i.i.d. sequence of the random

vectors Z̃e. Using (30), a stochastically equivalent form of
Yn

e is

Y′
e

n = Gt X̃n
t + GcXn

c + Z̃n
e . (31)

Let Xt = [
Xt,1 · · · Xt,N

]T
, Z̃t = [Z̃t,1 · · · Z̃t,N ]T , and

X̃t = [X̃T
t1 X̃T

t2]T , where X̃t1 = [X̃t,1 · · · X̃t,Ne ]T , X̃t2 =
[X̃t,Ne+1 · · · X̃t,N ]T , and X̃t,k = Xt,k + Z̃t,k, k = 1, 2, · · · , N .
In addition, let Gt = [

Gt1 Gt2

]
, where Gt1 ∈ C

Ne×Ne and6

Gt2 ∈ C
Ne× (N−Ne ). Using (31), we have

h(Yn
e ) = h(Y′

e
n
) = h(Gt X̃n

t + GcXn
c + Z̃n

e ) (32)

≥ h(Gt X̃n
t ) = h(Gt1X̃n

t1 + Gt2X̃n
t2) (33)

≥ h(Gt1X̃n
t1 + Gt2X̃n

t2 |X̃n
t2) = h(Gt1X̃n

t1 |X̃n
t2) (34)

= h(X̃n
t1|X̃n

t2) + n log | det(Gt1)|. (35)

where the inequality in (33) follows since {GtX̃n
t } and

{GcXn
c + Z̃n

e } are independent, as for two independent random
vectors X and Y, we have h(X + Y) ≥ h(X).

Substituting (35) in (29) results in

n Rs ≤ h(X̃n
t1, X̃n

t2) + h(X̃n
c ) − h(X̃n

t1 |X̃n
t2)

− n log | det(Gt1)| + nφ4 (36)

= h(X̃n
t2) + h(X̃n

c ) + nφ5, (37)

where φ5 = φ4 − log | det(Gt1)|.
We now exploit the reliability constraint in (3) to derive

another upper bound for Rs , which we combine with the
bound in (37) in order to obtain the desired bound for the
s.d.o.f. when Ne ≤ N and N < Nc ≤ N + Ne . The reliability
constraint in (3) can be achieved only if [41]

n Rs ≤ I (Xn
t ; Yn

r ) = h(Yn
r ) − h(Yn

r |Xn
t ) (38)

= h(Yn
r ) − h(HcXn

c + Zn
r ). (39)

5The choice of Kt guarantees that INe − Gt Kt GH
t is a valid covariance

matrix.
6Note that when Ne = N , the vector X̃t2 and the matrix Gt2 vanish and

the analysis below holds in the same manner, by discarding X̃n
t2 and Gt2 .



NAFEA AND YENER: S.D.O.F. FOR THE MIMO WIRE-TAP CHANNEL WITH A MULTI-ANTENNA COOPERATIVE JAMMER 7425

Similar to (30), a stochastically equivalent form of Zr is given
by

Z′
r = HcZ̃c + Z̃r , (40)

where7 Z̃r ∼ CN(0, IN − HcKcHH
c ) is independent from

{Z̃t , Z̃c, Xt , Xc, Ze}. Z̃n
r is an i.i.d. sequence of the random

vectors Z̃r .
Let Xc = [

Xc,1 · · · Xc,Nc

]T , Z̃c = [Z̃c,1 · · · Z̃c,Nc ]T , and
X̃c = [X̃T

c1
X̃T

c2
]T , where X̃c1 = [X̃c,1 . . . X̃c,N ]T ,

X̃c2 = [X̃c,N+1 · · · X̃c,Nc ]T , and X̃c,k = Xc,k + Z̃c,k ,
k = 1, 2, · · · , Nc . In addition, let Hc = [

Hc1 Hc2

]
, where

Hc1 ∈ C
N×N and Hc2 ∈ C

N× (Nc−N). Using (40), we have

h(HcXn
c + Zn

r ) = h(HcXn
c + Z′

r
n
) = h(HcX̃n

c + Z̃n
r ) (41)

≥ h(HcX̃n
c ) = h(Hc1X̃n

c1
+ Hc2X̃n

c2
) (42)

≥ h(Hc1X̃n
c1

|X̃n
c2

) (43)

= h(X̃n
c1

|X̃n
c2

) + n log | det(Hc1)|. (44)

Substituting (44) in (39) yields

n Rs ≤ h(Yn
r ) − h(X̃n

c1
|X̃n

c2
) − n log | det(Hc1)|. (45)

Let Yr = [
Yr,1 · · · Yr,N

]T . Summing (37) and (45) results in

n Rs ≤ 1

2

{
h(Yn

r ) + h(X̃n
t2) + h(X̃n

c2
)
}

+ nφ6 (46)

≤ 1

2

n∑

i=1

{ N∑

k=1

h(Yr,k(i)) +
N∑

k=Ne+1

h(X̃t,k(i))

+
Nc∑

k=N+1

h(X̃c,k(i))

}
+ nφ6, (47)

where φ6 = 1
2

(
φ5 − log | det(Hc1)|

)
.

In Appendix B, we show, for i = 1, · · · , n, k = 1, · · · , N ,
and m = 1, · · · , Nc , that

h(Yr,k(i)) ≤ log 2πe + log(1 + h2 P) (48)

h(X̃t,k(i)), h(X̃c,m(i)) ≤ log 2πe + log(ρ2 + P), (49)

where h2 = max
k

(
||hr

t,k||2 + ||hr
c,k||2

)
; hr

t,k and hr
c,k denote

the transpose of the kth row vectors of Ht and Hc, respectively.
Using (47), (48), and (49), we have

Rs ≤ N

2
log(1 + h2 P) + Nc − Ne

2
log(ρ2 + P) + φ7, (50)

where φ7 = φ6 + N+Nc−Ne
2 log 2πe. Using (5), we get

Ds ≤ lim
P→∞

N
2 log(1+h2 P)+ Nc−Ne

2 log(ρ2+ P)+φ7

log P
(51)

= N + Nc − Ne

2
. (52)

Thus, the s.d.o.f. for Ne ≤ N and N < Nc ≤ N + Ne , is upper
bounded by N+Nc −Ne

2 .
Case 2: Ne > N
Another stochastically equivalent form of Ze is

Z′′
e = Gt Z̃t + GcZ̃c + Z̃′

e. (53)

7The choice of Kc guarantees that IN − HcKcHH
c is a valid covariance

matrix.

where8 Z̃′
e ∼ CN(0, INe −Gt Kt GH

t −GcKcGH
c ) is independent

from {Z̃t , Z̃c, Xt , Xc, Zr }. Z̃′n
e is an i.i.d. sequence of the ran-

dom vectors Z̃′
e. Using (53), another stochastically equivalent

form of Yn
e is given by

Y′′
e

n = Gt X̃t + GcX̃n
c + Z̃′n

e . (54)

Let us rewrite X̃c and Hc as follows. X̃c =
[X̃′T

c1
X̃′T

c2
]T , where X̃′

c1
= [X̃c,1 · · · X̃c,Ne−N ]T , X̃′

c2
=

[X̃′T
c21

X̃′T
c22

]T , X̃′
c21

= [X̃c,Ne−N+1 · · · X̃c,Ne ]T , and X̃′
c22

=
[X̃c,Ne+1 · · · X̃c,Nc ]T . Hc = [H′

c1
H′

c2
], where H′

c1
∈

C
N×(Ne−N) , H′

c2
= [H′

c21
H′

c22
], H′

c21
∈ C

N×N , and H′
c22

∈
C

N× (Nc−Ne). Let Gc = [
Gc1 Gc2

]
, where Gc1 ∈ C

Ne×(Ne−N)

and Gc2 ∈ C
Ne× (N+Nc−Ne). Using (54), we have

h(Yn
e ) = h(Y′′

e
n
) = h

(
[Gt Gc1]

[
X̃n

t
X̃′n

c1

]
+ Gc2X̃′n

c2
+Z̃′n

e

)
(55)

≥ h(X̃n
t , X̃′n

c1
|X̃′n

c2
) + n log | det[Gt Gc1]| (56)

= h(X̃n
t ) + h(X̃′n

c1
|X̃′n

c2
) + n log | det[Gt Gc1]|, (57)

where (57) follows since X̃n
t and X̃n

c are independent.
Substituting (57) in (29) gives

n Rs ≤ h(X̃′n
c2

) + nφ8, (58)

where φ8 = φ4 − log | det[Gt Gc1]|.
In order to obtain another upper bound for Rs , which we

combine with (58) to obtain the desired bound for Ne > N
and Ne < Nc ≤ N + Ne, we proceed as follows. Consider
a modified channel where the first Ne − N antennas at the
cooperative jammer are removed, i.e., the cooperative jammer
uses only the last N + Nc − Ne out of its Nc antennas. The
transmitted signals in the modified channel are Xn

t and X′n
c2

,
and hence, the legitimate receiver receives

Ȳn
r = Ht Xn

t + H′
c2

X′n
c2

+ Zn
r . (59)

Let R and R̄ denote reliable communication rates, i.e., the
achievable rates without the secrecy constraint, for the original
and the modified channels, respectively. Since the cooperative
jamming signal is additive interference for the legitimate
receiver, the reliable communication rate of the modified chan-
nel, R̄, is an upper bound for that of the original channel, R.
Since Rs satisfies the reliability and secrecy constraints in (3)
and (4), we have that

n Rs ≤ n R ≤ n R̄

≤ I (Xn
t ; Ȳn

r ) = h(Ȳn
r ) − h(H′

c2
X′n

c2
+ Zn

r ). (60)

Let Z̃c2 = [Z̃c,Ne−N+1 · · · Z̃c,Nc ]T ∼ CN(0, K′
c), where K′

c =
ρ2IN+Nc −Ne . Another stochastically equivalent form of Zr is
Z′′

r = H′
c2

Z̃c2 + Z̃′
r , where9 Z̃′

r ∼ CN(0, IN − H′
c2

K′
cH′H

c2
)

is independent from {Z̃t , Z̃c, Xt , Xc, Ze}, and Z̃′n
r is an i.i.d.

sequence of Z̃′
r . Thus, using (60), we have

n Rs ≤ h(Ȳn
r ) − h(H′

c2
X̃′n

c2
+ Z̃′n

r ) (61)

8The choice of Kt and Kc guarantees that INe − Gt Kt GH
t − GcKcGH

c is
a valid covariance matrix.

9The choice of Kc guarantees that IN − H′
c2

K′
cH′H

c2
is a valid covariance

matrix.
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≤ h(Ȳn
r ) − h(H′

c2
X̃′n

c2
) (62)

≤ h(Ȳn
r ) − h(X̃′n

c21
|X̃′n

c22
) − n log | det(H′

c21
)|. (63)

Let Ȳr = [Ȳr,1 · · · Ȳr,N ]T . Summing (58) and (63) yields

n Rs ≤ 1

2

{
h(Ȳn

r ) + h(X̃′n
c22

)
}

+ nφ9 (64)

≤ 1

2

n∑

i=1

⎧
⎨

⎩

N∑

k=1

h(Ȳr,k(i)) +
Nc∑

k=Ne+1

h(X̃c,k(i))

⎫
⎬

⎭
+ nφ9,

(65)

where φ9 = 1
2 {φ8 − log | det(H′

c21
)|}. In Appendix B, we also

show that

h(Ȳr,k(i)) ≤ log 2πe + log(1 + h̄2 P), (66)

where h̄2 = max
k

(
||hr

t,k||2 + ||h′r
c,k ||2

)
; h′r

c,k denotes the

transpose of the kth row vector of H′
c2

.
Similar to case 1, using (65), (66), and (49), the secrecy

rate is bounded as

Rs ≤ N

2
log(1 + h̄2 P)+ Nc −Ne

2
log(ρ2+ P)+nφ10, (67)

where φ10 = φ9 + N+Nc−Ne
2 log 2πe. Thus, the s.d.o.f., for

Ne > N and Ne < Nc ≤ N + Ne , is upper bounded as

Ds ≤ N + Nc − Ne

2
. (68)

C. Obtaining the Upper Bound

For Ne ≤ N , the upper bound for the s.d.o.f. derived in
Section IV-A is equal to N + Nc − Ne for all 0 ≤ Nc ≤ Ne.
In addition, the upper bound derived in Section IV-B,
at Nc = N , is equal to N − Ne

2 , c.f. equations (15) and (52).
As the former upper bound is greater than the latter for all
Ne
2 < Nc ≤ N , the s.d.o.f. is upper bounded by N − Ne

2 for
all Ne

2 < Nc ≤ N . Combining these statements, we have the
following upper bound for the s.d.o.f. for Ne ≤ N :

Ds ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N + Nc − Ne, if 0 ≤ Nc ≤ Ne

2
N − Ne

2
, if

Ne

2
< Nc ≤ N

N + Nc − Ne

2
, if N < Nc ≤ N + Ne,

N, if Nc > N + Ne .

(69)

Similarly, when Ne > N and for all Ne − N
2 < Nc ≤ Ne,

the upper bound derived for 0 ≤ Nc ≤ Ne in Section IV-A
is greater than the upper bound derived in Section IV-B at
Nc = Ne . Thus, the s.d.o.f. for Ne − N

2 < Nc ≤ Ne is upper
bounded by N

2 . In addition, the upper bound in (15) is equal to
zero for all 0 ≤ Nc ≤ Ne − N . Thus, the s.d.o.f. for Ne > N
is upper bounded as:

Ds ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ Nc ≤ Ne − N

N + Nc − Ne, if Ne − N < Nc ≤ Ne − N

2N

2
, if Ne − N

2
< Nc ≤ Ne

N + Nc − Ne

2
, if Ne < Nc ≤ N + Ne,

N, if Nc > N + Ne .

(70)

By combining the bounds for Ne ≤ N in (69) and for Ne >
N in (70), we obtain the upper bound for the s.d.o.f. in (6).
In the next section, we will show the achievability of (6).

V. ACHIEVABLILITY FOR Nt = Nr = N

In this section, we provide the achievability proof for
Theorem 1 by showing the achievability of (69) when Ne ≤ N ,
and the achievability of (70) when Ne > N . For both Ne ≤
N and Ne > N , we divide the range of the number of
antennas at the cooperative jammer, Nc , into five ranges and
propose an achievable scheme for each range. For all the
achievable schemes in this section, we have the n-letter signals,
Xn

t and Xn
c , as i.i.d. sequences. Since Xn

c is independent
from Xn

t , and each of them is i.i.d. across time, we have in
effect a memoryless wire-tap channel and the secrecy rate

Rs = [I (Xt ; Yr ) − I (Xt ; Ye)]+, (71)

is achievable by stochastic encoding at the transmitter [4].
The transmitted signals at the transmitter and the coopera-

tive jammer, for each of the following schemes, are

Xt = Pt Ut , Xc = PcVc, (72)

where Ut = [U1 · · · Ud ]T and Vc = [V1 · · · Vl]T are the
information and cooperative jamming streams, respectively.
Pt = [

pt,1 · · · pt,d
] ∈ C

N×d and Pc = [
pc,1 · · · pc,l

] ∈
C

Nc×l are the precoding matrices at the transmitter and the
cooperative jammer.

Signaling, precoding, and decoding techniques utilized in
this proof vary according to the relative number of antennas
at the different terminals and whether the s.d.o.f. of the
channel is integer valued or not an integer. In particular,
we show that Gaussian signaling both for transmission and
cooperative jamming is sufficient to achieve the integer valued
s.d.o.f., while achieving non-integer s.d.o.f. requires structured
signaling and cooperative jamming along with a combination
of linear receiver processing, and the complex field equivalent
of real interference alignment [37], [38]. Additionally, the lin-
ear precoding at the transmitter and the cooperative jammer
depends on whether Ne is equal to, smaller than, or larger
than N , and whether the number of antennas at the cooperative
jammer, Nc , results in a s.d.o.f. for the channel that is before,
after, or at the flat s.d.o.f. range in the s.d.o.f. plot versus Nc .
This leads to an achievability proof that involves 10 distinct
achievable schemes, which differ from each other in the type
of signals used (Gaussian or structured), and/or precoding at
the transmitter and cooperative jammer, and/or decoding at the
legitimate receiver.

Remark 4: Note that integer-valued s.d.o.f. can also be
achieved using structured signals. However, Gaussian signal-
ing often outperforms structured signaling for finite SNR; see
for example [42, Fig. 2]. Although our focus in this paper is
on characterizing the s.d.o.f., i.e., secrecy rate scaling at high
SNR, for the channel, we use Gaussian signaling whenever
possible for the achievability for this reason.

In order to extend real interference alignment to complex
channels, we need to utilize different results than those used
for real channels. For real channels, to analyze the decoder
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Fig. 3. An example for the achievability scheme for Case 1, when N = 4, Ne = 2, and Nc = 1.

performance, reference [43] proposed utilizing the conver-
gence part of Khintchine-Groshev theorem in the field of
Diophantine approximation [44], which deals with the approx-
imation of real numbers with rational numbers. For complex
channels, transforming the channel into a real channel with
twice the dimensions, as is usually the convention, is not
sufficient here, since real interference alignment relies on the
linear independence over rational numbers of the channel
gains, which does not continue to hold after such channel
transformation. Luckily, we can utilize a result in the field
of classification of transcendental complex numbers, which
provides a bound on the absolute value of a complex alge-
braic number with rational coefficients in terms of its height,
i.e., the maximum coefficient [38]–[40]. For complex channel
coefficients, this result ends up playing the same role of the
Khintchine-Groshev theorem for real coefficients.

Before continuing with the achievability proof for the dif-
ferent cases, we state the following lemma, which is utilized
to show the linear independence between the directions of the
received streams at the legitimate receiver.

Lemma 1: Consider two matrices E1 ∈ C
N×K and E2 ∈

C
K×M , where N, M < K . If the matrix E2 is full column

rank and the matrix E1 has all of its entries independently
and randomly drawn according to a continuous distribution,
then rank(E1E2) = min(N, M) a.s.

Proof: The proof of Lemma 1 is given in Appendix C.

A. Case 1 (Ne ≤ N and 0 ≤ Nc ≤ Ne
2 )

The s.d.o.f. for this case is equal to N +Nc −Ne , i.e., integer
valued, for which we utilize Gaussian signaling and cooper-
ative jamming. Since Ne ≤ N , the transmitter exploits this
advantage by sending a part of its signal invisible to the
eavesdropper. There is no need for linear precoding at the
cooperative jammer for this case. Increasing the number of
the cooperative jammer antennas, Nc, increases the s.d.o.f. of
the channel.

The transmitted signals, Xt and Xc, are given by (72)
with d = N + Nc − Ne , l = Nc, Ut ∼ CN(0, P̄Id),
Vc ∼ CN(0, P̄Il), and P̄ = 1

α P , in accordance with the power
constraints on the transmitted signals at the transmitter and

the cooperative jammer, where α = max
{

l,
∑d

i=1 ||pt,i ||2
}

is a constant which does not depend on the power P . The
precoders Pc and Pt are given by Pc = Il , and

Pt = [
Pt,a Pt,n

] ∈ C
N×d , (73)

where Pt,a = G†
t Gc in order to align the information streams

over the cooperative jamming streams at the eavesdropper, and
the N − Ne columns of Pt,n are chosen to span N(Gt ). The
achievability scheme for this case, when N = 4, Ne = 2, and
Nc = 1, is depicted in Fig. 3.

Since Nc ≤ Ne
2 , the total number of superposed received

streams at the receiver, 2Nc + N − Ne , is less than or equal
to the number of its available spatial dimensions, N . Thus,
the receiver can decode all the information and cooperative
jamming streams at high SNR. Using (1), (2), and (72),
the received signals at the receiver and the eavesdropper are

Yr = [
Ht Pt Hc

]
[

Ut

Vc

]
+ Zr , (74)

Ye =
[
Gt G

†
t Gc 0Ne× (N−Ne )

] [ Ut
l
1

Ut
d
l+1

]
+ GcVc + Ze (75)

= Gc(Ut
l
1 + Vc) + Ze. (76)

We lower bound the secrecy rate in (71) as follows. First,
in order to compute I (Xt ; Yr ), we show that the matrix
[Ht Pt Hc] ∈ C

N× (d+l) in (74) is full column-rank a.s.
The columns of Pt,a = G†

t Gc are linearly independent a.s.
due to the randomly generated channel gains, and the N − Ne

columns of Pt,n are linearly independent as well, since they
span an N − Ne-dimensional subspace. In addition, each of
the columns of Pt,a is linearly independent from the columns
of Pt,n a.s. since Gt Pt,a = Gc, and hence Gt pti �= 0 for all
i = 1, 2, · · · , l. Thus Pt = [Pt,a Pt,n] is full column rank a.s.
The matrix [Ht Pt Hc] can be written as

[
Ht Pt Hc

] = [
Ht Hc

]
[

Pt 0N×l

0l×d Il

]
. (77)

The matrix [Ht Hc] has all of its entries independently and
randomly drawn according to a continuous distribution, while
the second matrix on the right hand side (RHS) of (77) is full
column rank a.s. By applying Lemma 1 to (77), we have that
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the matrix [Ht Pt Hc] is full column rank a.s. Thus, using (74),
we obtain the lower bound

I (Xt ; Yr ) ≥ d log P + o(log P). (78)

Next, using (75), we upper bound I (Xt ; Ye) as follows:

I (Xt ; Ye) = h(Ye) − h(Ye|Xt ) (79)

= h(Gc(Ut
l
1 + Vc) + Ze) − h(GcVc + Ze) (80)

= log
det(INe + 2P̄GcGH

c )

det(INe + P̄GcGH
c )

(81)

= log
det(Il + 2P̄GH

c Gc)

det(Il + P̄GH
c Gc)

(82)

= log
2ldet( 1

2 Il + P̄GH
c Gc)

det(Il + P̄GH
c Gc)

(83)

≤ l. (84)

Substituting (78) and (84) in (71), we have

Rs ≥ d log P + o(log P) − l (85)

= (N + Nc − Ne) log P + o(log P) − Nc, (86)

and hence, using (5), we conclude that the achievable s.d.o.f.
is Ds ≥ N + Nc − Ne .

B. Case 2 (Ne ≤ N, Ne
2 < Nc ≤ N, and Ne Is Even)

Unlike case 1, the s.d.o.f. for this case does not increase
by increasing Nc . For all Nc in this case, the transmitter
sends the same number of information streams, while the
cooperative jammer utilizes a linear precoder which allows
for discarding any unnecessary antennas. The s.d.o.f. here is
integer valued, and we use Gaussian signaling for transmission
and cooperative jamming.

In particular, for Ne is even, Nc = Ne
2 , and Ne ≤ N ,

the achievable s.d.o.f., using the scheme in Section V-A,
is equal to N − Ne

2 . However, from (69), we observe that the
s.d.o.f. is upper bounded by N − Ne

2 for all Ne
2 < Nc ≤ N .

Thus, when Ne ≤ N and Ne is even, the scheme for Nc = Ne
2

in Section V-A can be used to achieve the s.d.o.f. for all
Ne
2 < Nc ≤ N by discarding the remaining Nc − Ne

2 antennas.
That is, the cooperative jammer uses the precoder

Pc =
[

Il

0(Nc−l)×l

]
, (87)

with l = Ne
2 , to utilize only Ne

2 out of its Nc antennas, and
the transmitter utilizes

Pt = [
Pt,a Pt,n

]
, (88)

Pt,a = G†
t GcPc ∈ C

N×l , Pt,n ∈ C
N× (N−Ne ) is defined as

in (73), in order to send d = N − Ne
2 Gaussian information

streams. Following the same analysis as in the previous case,
the achievable s.d.o.f. is N − Ne

2 for all Ne
2 < Nc ≤ N , where

Ne is even and Ne ≤ N .

C. Case 3 (Ne ≤ N, Ne
2 < Nc ≤ N, and Ne Is Odd)

The s.d.o.f. for this case is equal to N − Ne
2 , which

is not an integer. As Gaussian signaling cannot achieve

fractional s.d.o.f. for the channel, we utilize structured signal-
ing both for transmission and cooperative jamming for this
case. In particular, we propose utilizing joint signal space
alignment and the complex field equivalent of real interference
alignment [37], [38].

The decoding scheme at the receiver is as follows. The
receiver projects its received signal over a direction that
is orthogonal to all but one information and one coopera-
tive jamming streams. Then, the receiver decodes these two
streams from the projection using complex field analogy of
real interference alignment. Finally, the receiver removes the
decoded information and cooperative jamming streams from
its received signal, leaving N − 1 spatial dimensions for the
other N − Ne+1

2 information and Ne−1
2 cooperative jamming

streams.
Before continuing with the details for the achievability

scheme for this case, we provide the following example, which
illustrates the ideas utilized for this case.

Example 1: Consider a multi-antenna wire-tap channel with
4-antenna transmitter, 4-antenna receiver, 3-antenna eaves-
dropper, and 2-antenna cooperative jammer as shown in Fig. 4.

The transmitter sends 3 structured information streams,
U1, U2, U3, and the cooperative jammer sends 2
structured jamming streams, V1, V2. The streams U1, V1
are integer valued, while the streams U2, U3, V2, are
complex integers. That is, U2 = U2,Re + jU2,Im, U3 =
U3,Re + jU3,Im, and V2 = V2,Re + j V2,Im, where{
U1, U2,Re, U2,Im, U3,Re, U3,Im, V1, V2,Re, V2,Im

}
are i.i.d.

random variables uniform over a set of integers that scales
with the transmit power as it will be explained later in (89).
The transmitter chooses its precoder as in (88) so that
U3 is sent over N(Gt ), and hence U3 is invisible to the
eavesdropper, and that U1, V1 and U2, V2 are perfectly
aligned at the eavesdropper. There is no need for linear
precoding at the cooperative jammer for this example. The
legitimate receiver projects its received signal over a single
dimension that is orthogonal to {U2, U3, V2}, and hence,
only U1 and V1 remain in this dimension. The received
signal after projection is of the form f1U1 + f2V1 + Z ,
where f1, f2 are the coefficients resulting from multiplying
the channel gains with the projection matrix, and Z is the
projection of the Gaussian noise over the single dimension.
The receiver utilizes a hard decision decoder which maps
f1U1 + f2V1 + Z to the nearest point in the constellation
of f1U1 + f2V1. It has been shown in [43] that U1, V1 can
be uniquely decoded from f1U1 + f2V1. Thus, the receiver
decodes U1, V1, subtracts them from its original received
signal, and then utilizes the remaining 3 dimensions in
its signal space to decode U2, U3, V2. Thus, the receiver
utilizes 2.5 dimensions to decode the information streams,
i.e., 2.5 useful dimensions, where each of U2 and U3 is
decoded from a separate dimension while both U1 and V1
are decoded from a single dimension (each occupies half
of that dimension), leading to 2.5 achievable s.d.o.f. for the
channel.

Now, we continue with the detailed explanation for the
achievability scheme for this case. The transmitted signals
are given by (72), with d = N − Ne−1

2 , l = Ne+1
2 , Pc, Pt
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Fig. 4. An example for the achievability scheme for Case 3, when N = 4, Ne = 3, and Nc = 2.

are defined as in (87) and (88), and Ui = Ui,Re + jUi,Im,
Vk = Vk,Re + j Vk,Im, i = 2, 3, · · · , d and k = 2, 3, · · · , l. The
random variables U1, V1, {Ui,Re}d

i=2, {Ui,Im}d
i=2, {Vi,Re}l

i=2,
and {Vi,Im}l

i=2 are i.i.d. uniform over the set {a(−Q, Q)Z}.
The values for a and the integer Q are chosen as

Q =
⌊

P
1−ε
2+ε

⌋
= P

1−ε
2+ε − ν (89)

a = γ P
3ε

2(2+ε) , (90)

in order to satisfy the power constraints, where ε is an
arbitrarily small positive number, and ν, γ are constants that
do not depend on the power P . Justification for the choice of
a and Q is provided in Appendix D.

The received signal at the eavesdropper is

Ye = G̃c(Ut
l
1 + Vc) + Ze, (91)

where G̃c = GcPc. We upper bound the second term in (71),
I (Xt ; Ye), as follows:

I (Xt ; Ye) ≤ I (Xt ; Ye, Ze) (92)

= I (Xt ; Ye|Ze) (93)

= H (Ye|Ze) − H (Ye|Ze, Xt ) (94)

= H
(

G̃c(Ut
l
1 + Vc)

)
− H

(
G̃cVc

)
(95)

= H (Ut
l
1 + Vc) − H (Vc) (96)

= H

(
U1 + V1, U2,Re + V2,Re, U2,Im + V2,Im,

· · · , Ul,Re + Vl,Re, Ul,Im + Vl,Im

)

− H
(
V1, V2,Re, V2,Im, · · · , Vl,Re, Vl,Im

)

(97)

≤ log(4Q + 1)2l−1 − log(2Q + 1)2l−1 (98)

= (2l − 1) log
4Q + 1

2Q + 1
(99)

≤ 2l − 1, (100)

where (93) follows since Xt and Ze are independent, and (98)
follows since the entropy of a uniform random variable over

the set {a(−2Q, 2Q)Z} upper bounds the entropy of each of
U1+V1, U2,Re+V2,Re, U2,Im +V2,Im, · · · , Ul,Im +Vl,Im. Equa-
tion (96) follows since the mappings Ut

l
1+Vc → G̃c(Ut

l
1+Vc)

and Vc → G̃cVc are bijective. The reason for this is that
the entries of G̃c are rationally independent, as illustrated in
Definition 1 below, and that (Ut

l
1 + Vc) and Vc belong to Z

l
C

.
Definition 1: A set of complex numbers {c1, c2, · · · , cL}

are rationally independent, i.e., linearly independent over Q,
if there is no set of rational numbers {ri }, ri �= 0 for all
i = 1, 2, · · · , L, such that

∑L
i=1 ri ci = 0.

Next, we derive a lower bound for I (Xt ; Yr ). The received
signal at the legitimate receiver is given by

Yr = AUt + H′
cVc + Zr , (101)

where A = Ht Pt = [a1 a2 · · · ad ] and H′
c = HcPc =[

hc,1 hc,2 · · · hc,l
]
. The receiver chooses b ∈ C

N such that
b ⊥ span

{
a2, · · · , ad , hc,2, · · · , hc,l

}
and obtains

Ỹr = DYr (102)

where

D �
[

bH

0(N−1)×1 IN−1

]
. (103)

Note that (d − 1) + (l − 1) = N − Ne−1
2 + Ne+1

2 − 2 = N − 1,
and hence the dimension of span

{
a2, · · · , ad , hc,2, · · · , hc,l

}

is at most N −1. This shows the existence of a vector b ∈ C
N

such that b ⊥ span
{
a2, · · · , ad , hc,2, · · · , hc,l

}
.

Due to the fact that channel gains are continuous and
randomly generated, a1 and hc,1 are linearly independent
from span

{
a2, · · · , ad , hc,2, · · · , hc,l

}
, and hence, b is not

orthogonal to a1 and hc,1 a.s. Thus, we have

Ỹr =
[

Ỹr1

ỸN
r2

]
=
[

bH a1 01× (d−1)

Ã

][
U1

Ut
d
2

]

+
[

bH hc,1 01× (l−1)

H̃c

] [
V1

Vc
l
2

]
+
[

bH Zr

Zr
N
2

]
, (104)
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where Ã = [
ã1 ã2 · · · ãd

] ∈ C
(N−1)×d , ãi = ai

N
2 for all i =

1, 2, · · · , d . Similarly, H̃c = [h̃c,1 h̃c,2 · · · h̃c,l ] ∈ C
(N−1)×l ,

where h̃c,i = hc,i
N
2 for all i = 1, 2, · · · , l.

Next, the receiver uses Ỹr1 to decode the information stream
U1 and the cooperative jamming stream V1 as follows. Let
Z ′ = bH Zr ∼ CN(0, ||b||2), f1 = bH a1, and f2 = bH hc,1.
Thus, Ỹr1 is given by

Ỹr1 = f1U1 + f2V1 + Z ′. (105)

Once again, with randomly generated channel gains, f1 =
bH a1 and f2 = bH hc,1 are rationally independent a.s. Thus,
the mapping (U1, V1) → f1U1 + f2V1 is invertible [43].
The receiver employs a hard decision decoder which maps
Ỹr1 ∈ Ỹr1 to the nearest point in the constellation R1 = f1U1+
f2V1, where U1,V1 = {a(−Q, Q)Z}. Then, the receiver
passes the output of the hard decision decoder through the
bijective mapping f1U1+ f2V1 → (U1, V1) in order to decode
both U1 and V1.

The receiver can now use

¯̄Yr = ỸN
r2

− ã1 U1 − h̃c,1V1 (106)

= [
ã2 · · · ãd

]
Ut

d
2 + [

h̃c,2 · · · h̃c,l
]

Vc
l
2 + Zr

N
2

(107)

= B
[

Ut
d
2

Vc
l
2

]
+ Zr

N
2 , (108)

to decode U2, · · · , Ud , where,

B �
[
ã2 · · · ãd h̃c,2 · · · h̃c,l

]
∈ C

(N−1)×(N−1), (109)

is full rank a.s. To show that B is full rank a.s., let H̄t and H̄c

be generated by removing the first row from Ht and Hc, and
let P̄t and P̄c be generated by removing the first column from
Pt and Pc, respectively. B can be rewritten as

B = [
H̄t H̄c

]
[

P̄t 0N× (l−1)

0Nc× (d−1) P̄c

]
. (110)

Note that
[
H̄t H̄c

]
has all of its entries independently and

randomly drawn from a continuous distribution, and the sec-
ond matrix in the RHS of (110) is full column rank. Using
Lemma 1, the matrix B is full rank a.s.

Hence, by zero forcing, the receiver obtains

Ŷr = B−1 ¯̄Yr =
[

Ut
d
2

Vc
l
2

]
+ Z̄r , (111)

where Z̄r = B−1Zr
N
2 ∼ CN

(
0, B−1B−H

)
. Thus, at high

SNR, the receiver can decode the other information streams,
U2, · · · , Ud , from Ŷr .

The mutual information between the transmitter and receiver
is lower bounded as follows:

I (Xt ; Yr ) ≥ I (Ut ; Ỹr ) (112)

= I (U1, Ut
d
2; Ỹr1 , ỸN

r2
) (113)

= I (U1, Ut
d
2; Ỹr1) + I (U1, Ut

d
2 ; ỸN

r2
|Ỹr1) (114)

= I (U1; Ỹr1) + I (Ut
d
2 ; Ỹr1 |U1) + I (U1; ỸN

r2
|Ỹr1)

+ I (Ut
d
2; ỸN

r2
|U1, Ỹr1) (115)

≥ I (U1; Ỹr1) + I (Ut
d
2 ; ỸN

r2
|U1, Ỹr1), (116)

where (112) follows since Ut − Xt − Yr − Ỹr forms a
Markov chain. We next lower bound each term in the RHS
of (116).

We lower bound the first term, I (U1; Ỹr1) as follows, see
also [37], [43]. Let Pe1 denote the probability of error in

decoding U1 at the receiver, i.e., Pe1 � Pr
(

Û1 �= U1

)
, where

Ûi , i = 1, 2, · · · , d , is the estimate of Ui at the legitimate
receiver. Thus, using Fano’s inequality, we have

I (U1; Ỹr1) = H (U1) − H (U1|Ỹr1) (117)

≥ H (U1) − 1 − Pe1 log |U1| (118)

= (
1 − Pe1

)
log(2Q + 1) − 1. (119)

From (105), since the mapping (U1, V1) → f1 U1 + f2V1
is invertible, the only source of error in decoding U1 from
Ỹr1 is the additive Gaussian noise Z ′. Note that, since Z ′ ∼
CN(0, ||b||2), Re{Z ′} and Im{Z ′} are i.i.d. with N

(
0, ||b||2

2

)

distribution, and |Z ′| ∼ Rayleigh
( ||b||√

2

)
. Thus, we have

Pe1 � Pr
(

Û1 �= U1

)
(120)

≤ Pr
(
(Û1, V̂1) �= (U1, V1)

)
(121)

≤ Pr

(
|Z ′| ≥ dmin

2

)
(122)

= exp

(
−d2

min

4||b||2
)

, (123)

where dmin is the minimum distance between the points in the
constellation R1 = f1U1 + f2V1.

In order to upper bound Pe1 , we lower bound dmin. To do
so, similar to [37], we extend real interference alignment [43]
to complex channels. In particular, we utilize the following
results from number theory:

Definition 2 [38]: The Diophantine exponent ω(z) of z ∈
C

n is defined as

ω(z) � sup

{
v : |p + z.q| ≤ (||q||∞)−v for
infinetly many q ∈ Z

n, p ∈ Z

}
, (124)

where q = [q1 q2 · · · qn]T and ||q||∞ = max
i

|qi |.
Lemma 2 [38]: For almost all z ∈ C

n, the Diophantine
exponent ω(z) is equal to n−1

2 .
Lemma 2 implies the following:
Corollary 1: For almost all z ∈ C

n and for all ε > 0,

|p + z.q| > (max
i

|qi |)− (n−1+ε)
2 , (125)

holds for all q ∈ Z
n and p ∈ Z except for finitely many of

them.
Since the number of integers that violate the inequality in (125)
is finite, there exists a constant κ such that, for almost all
z ∈ C

n and all ε > 0, the inequality

|p + z.q| > κ(max
i

|qi |)− (n−1+ε)
2 , (126)

holds for all q ∈ Z
n and p ∈ Z.
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Thus, for almost all channel gains, the minimum dis-
tance dmin is lower bounded as follows:

dmin = inf
Y ′

r1
,Y ′′

r1
∈R1

|Y ′
r1

− Y ′′
r1

| (127)

= inf
U1,V1∈{a(−2Q,2Q)Z} | f1 U1 + f2 V1| (128)

= inf
U1,V1∈(−2Q,2Q)Z

a| f1|
∣
∣
∣∣U1 + f2

f1
V1

∣
∣
∣∣ (129)

≥ κ
a| f1|
(2Q)

ε
2

(130)

≥ κγ | f1|2− ε
2 P

ε
2 , (131)

where (130) follows from (126), and (131) follows by substi-
tuting (89) and (90) in (130). Substituting (131) in (123) gives
the following bound on Pe1 ,

Pe1 ≤ exp(−μPε), (132)

where μ = κ2γ 2| f1|22−ε

4||b||2 is a constant which does not depend
on the power P . Thus, using (119) and (132), we have

I (U1; Ỹr1) ≥ (
1 − exp(−μPε)

)
log(2Q + 1) − 1. (133)

Next, we lower bound the second term in the RHS of (116),
I (Ut

d
2; ỸN

r2
|U1, Ỹr1). Let B̃ = [

0(N−1)×1 IN−1
] − 1

f2
h̃c,1bH ,

and

¯̄Y′
r = B

[
Ut

d
2

Vc
l
2

]
+ B̃Zr (134)

Ŷ′
r = B−1 ¯̄Y′

r =
[

Ut
d
2

Vc
l
2

]
+ B−1B̃Zr , (135)

where B is defined as in (109). Thus, we have

I
(

Ut
d
2; ỸN

r2
|U1, Ỹr1

)

= I
(

Ut
d
2; ÃUt + H̃cVc + Zr

N
2

∣
∣U1, f2 V1 + Z ′) (136)

= I

(
Ut

d
2; B

[
Ut

d
2

Vc
l
2

]
+ Zr

N
2 − 1

f2
h̃c,1bH Zr

∣
∣
∣
∣ f2V1 + Z ′

)

(137)

= I (Ut
d
2; ¯̄Y′

r | f2V1 + Z ′) (138)

≥ I (Ut
d
2; ¯̄Y′

r ) (139)

≥ I (Ut
d
2; Ŷ′

r ) (140)

= H (Ut
d
2) − H (Ut

d
2 |Ŷ′

r ) (141)

≥ H (Ut
d
2) − Pd

e2
log(2Q + 1)2(d−1) − 1 (142)

= 2(d − 1)
(

1 − Pd
e2

)
log(2Q + 1) − 1, (143)

where Pd
e2

� Pr
(
(Û2, Û3, · · · , Ûd) �= (U2, U3, · · · , Ud )

)
,

(136) follows from (104), (139) follows since Ut
d
2 and f2 V1+

Z ′ are independent, (140) follows since Ut
d
2 − ¯̄Y′

r − Ŷ′
r forms

a Markov chain, and (142) follows from Fano’s inequality.
Let Ẑr � �Zr = [Ẑr2 · · · ẐrN ]T , where � = B−1B̃.

Thus, Ẑr ∼ CN(0,��H ) and |Ẑri | ∼ Rayleigh(σi ), where
σ 2

i = ��H (i, i), i = 2, 3, · · · , N . Using the union bound,
we have

Pd
e2

= Pr
(
(Û2, Û3, · · · , Ûd ) �= (U2, U3, · · · , Ud)

)
(144)

≤
d∑

i=2

Pr
(

Ûi �= Ui

)
(145)

≤
d∑

i=2

Pr
(
|Ẑri | ≥ a

2

)
(146)

=
d∑

i=2

exp

(

− a2

8σ 2
i

)

(147)

≤ (d − 1) exp

(
− γ 2

8σ 2
max

P
3ε

2+ε

)
(148)

= (d − 1) exp(−μ′ Pε′
), (149)

where σmax = max
i

σi , μ′ = γ 2

8σ 2
max

, ε′ = 3ε
2+ε , and (148)

follows by substituting (90) in (147).
Substituting (149) in (143) yields

I
(

Ut
d
2; ỸN

r2
|U1, Ỹr1

)

≥
(

2d − 2 − 2(d − 1)2 exp(−μ′ Pε′
)
)

log(2Q + 1) − 1.

(150)

Using (89), (116), (133), and (150), we have

I (Xt ; Yr ) ≥
[

2d − 1 − exp(−μPε)

− 2(d − 1)2 exp(−μ′ Pε′
)

]
log

(
2P

1−ε
2+ε − 2ν + 1

)
− 2

(151)

= 1 − ε

2 + ε

[
2d − 1 − exp(−μPε) − 2(d − 1)2 exp(−μ′ Pε′

)
]

× log P + o(log P). (152)

Using the upper bound in (100) and the lower bound
in (152), we get

Rs ≥ 1 − ε

2 + ε

[
2d − 1 − exp(−μPε)

− 2(d − 1)2 exp(−μ′ Pε′
)

]
log P+o(log P)−(2l−1)

(153)

= 1 − ε

2 + ε

[
2N − Ne − exp(−μPε)

− 1

2
(2N −Ne −1)2 exp(−μ′ Pε′

)

]
log P+o(log P)−Ne.

(154)

Thus, it follows that the s.d.o.f. is lower bounded as

Ds ≥ (1 − ε)(2N − Ne)

2 + ε
. (155)

Since ε > 0 can be chosen arbitrarily small, we can achieve
s.d.o.f. of N − Ne

2 .

D. Case 4 (Ne ≤ N, N < Nc ≤ N + Ne, and
N + Nc − Ne Is Even)

Since Nc > N for this case, the cooperative jammer, unlike
the previous three cases, chooses its precoder such that Nc −N
of its jamming streams are sent invisible to the receiver,
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in order to allow for more space for the information streams at
the receiver. The s.d.o.f. for this case is integer valued, which
we can achieve using Gaussian information and cooperative
jamming streams.

The transmitted signals are given by (72), with d =
N+Nc −Ne

2 , l = Nc+Ne−N
2 , Ut ∼ CN

(
0, P̄Id

)
, Vc ∼

CN
(
0, P̄Il

)
,

Pc = [Pc,I Pc,n], (156)

where Pc,I is given by

Pc,I =
[

Ig

0(Nc−g)×g

]
, (157)

g = Ne+N−Nc
2 , and Pc,n ∈ C

Nc× (Nc−N) is a matrix whose
columns span N(Hc), Pt is defined as in Section V-B, and P̄ =
1
α′ P , where α′ = max

{∑d
i=1 ||pt,i ||2, g +∑l

i=g+1 ||pc,i ||2
}

.
At high SNR, the receiver can decode the d information and
the g cooperative jamming streams, where d + g = N .

The received signals at the legitimate receiver and the
eavesdropper are given by

Yr = Ht Pt Ut + [
HcPc,I 0N× (Nc−N)

] [ Vc
g
1

Vc
l
g+1

]
+ Zr (158)

= [
Ht Pt HcPc,I

]
[

Ut

Vc
g
1

]
+ Zr (159)

Ye = G̃c(Ut
l
1 + Vc) + Ze, (160)

where G̃c = GcPc.
The matrix

[
Ht Pt HcPc,I

] ∈ C
N×N in (159) can be

rewritten as
[
Ht Pt HcPc,I

] = [
Ht Hc

]
[

Pt 0N×g

0Nc×d Pc,I

]
. (161)

By applying Lemma 1 on (161), the matrix
[
Ht Pt HcPc,I

]
is

full rank a.s. Thus,

I (Xt ; Yr ) ≥ d log P + o(log P). (162)

Using similar steps as from (79) to (84), we can show that

I (Xt ; Ye) = log
det(Il + 2P̄G̃H

c G̃c)

det(Il + P̄G̃H
c G̃c)

≤ l. (163)

Thus, the achievable secrecy rate in (71) is lower bounded as

Rs ≥ d log P + o(log P) − l (164)

= N +Nc −Ne

2
log P +o(log P)− Nc +Ne−N

2
, (165)

and, using (5), the s.d.o.f. is lower bounded as

Ds ≥ N + Nc − Ne

2
. (166)

E. Case 5 (Ne ≤ N, N < Nc ≤ N + Ne, and
N + Nc − Ne Is Odd)

As in case 3, the s.d.o.f. for this case is not an integer,
and as in case 4, we have Nc > N , which allows the
cooperative jammer to send some signals invisible to the
receiver. Consequently, the achievable scheme for this case

combines the techniques used in Sections V-C and V-D.
The transmitted signals are given by (72) with d =

N+Nc−Ne+1
2 , l = Nc+Ne−N+1

2 , Pt and Pc are defined as in
Section V-D with g = Ne+N−Nc+1

2 , and Ut , Vc are defined as
in Section V-C. Similar to the proof in Appendix D, the values
of Q and a are chosen as in (89) and (90), with

γ = 1
⎛

⎝max

⎧
⎨

⎩

‖|pt,1||2 + 2
∑d

i=2 ||pt,i ||2,
2g − 1 + 2

∑l
i=g+1 ||pc,i ||2

⎫
⎬

⎭

⎞

⎠

1
2

, (167)

and ν are constants that do not depend on the power P .
The legitimate receiver uses the projection and cancellation

technique described in Section V-C in order to decode the
information streams. The received signal at the eavesdropper
is the same as in (160), with l = Nc+Ne−N+1

2 . Similar to the
derivation from (92) to (100), we have

I (Xt ; Ye) ≤ 2l − 1. (168)

Let A = Ht Pt = [a1 · · · ad ], and H′
c = HcPc,I =

[hc,1 · · · hc,g]. The received signal at the legitimate receiver
is

Yr = [
A H′

c

]
[

Ut

Vc
g
1

]
+ Zr . (169)

As in case 3, we have that d + g − 2 = N − 1, and hence
the dimension of span

{
a2, · · · , ad , hc2 , · · · , hcg

}
is at most

N − 1, and there exists b ∈ C
N such that b is orthogonal to

span
{
a2, · · · , ad , hc2 , · · · , hcg

}
. The receiver chooses such b

and multiplies its received signal by the matrix D given
in (103) to obtain Ỹr = [

Ỹr1 (ỸN
r2

)T
]T

, where

Ỹr1 = f1U1 + f2V1 + Z ′, (170)

ỸN
r2

= ÃUt + H̃cVc
g
1 + Zr

N
2 , (171)

f1, f2, Z ′, Ã, and H̃c, are defined as in Section V-C. In order
to decode U1 and V1, the receiver passes Ỹr1 through a hard
decision decoder, Ỹr1 → f1 U1 + f2 V1, and passes the
output of the hard decision decoder through the bijective map
f1 U1 + f2 V1 → (U1, V1), where f1 and f2 are rationally
independent.

Using similar steps to the derivation from (112) to (152) in
Section V-C, we obtain

I (Xt ; Yr ) ≥ 1 − ε

2 + ε

[
2d − 1 − exp

(−μPε
)

− 2(d − 1)2 exp(−μ′ Pε′
)
]

log P + o(log P),

(172)

where ε > 0 is arbitrarily small, ε′ = 3ε
2+ε , and μ,μ′ are

constants which do not depend on P .
Thus, the achievable secrecy rate in (71) is lower bounded

as

Rs ≥ 1 − ε

2 + ε

[
2d − 1 − exp(−μPε) − (d − 1)2 exp(−μ′ Pε′

)
]

× log P + o(log P) − (2l − 1) (173)
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= 1 − ε

2 + ε

[
N + Nc − Ne − exp(−μPε)

− 1

2
(N + Nc − Ne − 1)2 exp(−μ′ Pε′

)
]

log P

+ o(log P) − (Nc + Ne − N), (174)

and hence the s.d.o.f is lower bounded as

Ds ≥ (1 − ε)(N + Nc − Ne)

2 + ε
. (175)

Since ε > 0 can be chosen arbitrarily small, Ds = N+Nc−Ne
2

is achievable for this case, which completes the achievability
of (69). Next, we show the achievability of (70), where
Ne > N , i.e., the eavesdropper has more antennas than the
legitimate receiver.

F. Case 6 (Ne > N and Ne − N < Nc ≤ Ne − N
2 )

Unlike the previous five cases, since Ne > N , no informa-
tion streams can be sent invisible to the eavesdropper. In fact,
the precoder at the transmitter is not adequate for achieving
the alignment of the information and cooperative jamming
streams at the eavesdropper. We need to design both precoders
at the transmitter and the cooperative jammer to take part in
achieving the alignment condition. The s.d.o.f. here is integer
valued, and hence we can utilize Gaussian streams.

The transmitted signals are given by (72), with d = l =
N + Nc − Ne , and Ut , Vc ∼ CN

(
0, P̄Id

)
. The matrices

Pt and Pc are chosen as follows. Let G = [Gt − Gc] ∈
C

Ne× (N+Nc ), and let Q ∈ C
(N+Nc )×d be a matrix whose

columns are randomly10 chosen to span N(G). Write the
matrix Q as Q = [

QT
1 QT

2

]T
, where Q1 ∈ C

N×d and
Q2 ∈ C

Nc×d . Set Pt = Q1 and Pc = Q2. P̄ = 1
α′′ P , where

α′′ = max
{∑d

i=1 ||pt,i ||2,∑d
i=1 ||pc,i ||2

}
.

The choice of Pt and Pc results in Gt Pt = GcPc. Thus,
the eavesdropper receives

Ye = GcPc(Ut + Vc) + Ze. (176)

Similar to going from (79) to (84), it follows that we have

I (Xt ; Ye) ≤ N + Nc − Ne . (177)

The received signal at the receiver in turn is given by

Yr = [
Ht Pt HcPc

]
[

Ut

Vc

]
+ Zr . (178)

Note that, without conditioning on Gt and Gc, the matrix
Q has all of its entries independently and randomly drawn
according to a continuous distribution. Thus, each of Pt and
Pc is full column rank a.s. Thus, by using Lemma 1, we can
show that the matrix [Ht Pt HcPc] is full column rank a.s.
Using (178), we have

I (Xt ; Yr ) ≥ (N + Nc − Ne) log P + o(log P). (179)

Hence, using (177), (179), (71), and (5), the s.d.o.f. is lower
bounded as Ds ≥ N + Nc − Ne.

10Out of all possible sets of d = N + Nc − Ne linearly independent vectors
which span N(G), the columns of Q are the elements of one randomly chosen
set.

G. Case 7 (Ne > N, Ne − N
2 < Nc ≤ Ne, and N Is Even)

The s.d.o.f. for this case does not increase by increasing Nc .
The scheme in Section V-F for Nc = Ne − N

2 , i.e., d = N
2 ,

can be used to achieve the s.d.o.f. for all Ne − N
2 < Nc ≤ Ne ,

when Ne > N and N is even. However, since dim(N(G)) =
N + Nc − Ne > N

2 , the d = N
2 columns of the matrix Q are

randomly chosen as linearly independent vectors from N(G).
Following the same analysis as in Section V-F, we can show
that the s.d.o.f. is lower bounded as Ds ≥ N

2 .

H. Case 8 (Ne > N, Ne − N
2 < Nc ≤ Ne, and N Is Odd)

The difference here from Section V-G is that the s.d.o.f. is
not an integer, and hence, structured signaling for transmission
and cooperative jamming is needed, and the difference from
V-C is that Ne > N , and hence both the precoders at the
transmitter and cooperative jammer have to participate in
achieving the alignment condition at the eavesdropper.

The transmitted signals are given by (72), with d = l =
N+1

2 , Ut and Vc are defined as in Section V-C, and the values
for Q and a are chosen as in (89) and (90), with

γ = 1
(

max

{ ‖|pt,1||2 + 2
∑d

i=2 ||pt,i ||2,
||pc,1||2 + 2

∑d
i=2 ||pc,i ||2

}) 1
2

, (180)

and ν are constants which do not depend P . Pt , Pc are chosen
as in Section V-G, with d = N+1

2 . The eavesdropper’s received
signal is the same as in (176). Similar to (92)-(100), we have

I (Xt ; Ye) ≤ N. (181)

The receiver employs the decoding scheme in Sections V-C
and V-E. Following similar steps as in Sections V-C and V-E,
we have

I (Xt ; Yr ) ≥ (1 − ε)N

2 + ε
log P + o(log P). (182)

Using (181), (182), (71), and (5), the s.d.o.f. is lower bounded
as Ds ≥ (1−ε)N

2+ε , and since ε > 0 is arbitrarily small,
the s.d.o.f. of N

2 is achievable for this case.

I. Case 9 (Ne > N, Ne < Nc ≤ N + Ne, and
N + Nc − Ne Is Even)

In Sections V-G and V-H, we observe that the flat s.d.o.f.
range extends to Nc = Ne , and not Nc = N as in
Sections V-B and V-C. Achieving the alignment of information
and cooperative jamming at the eavesdropper requires that
Nc > Ne in order for the cooperative jammer to begin sending
some jamming signals invisible to the legitimate receiver.
For this case, in addition to choosing its precoding matrix
jointly with the transmitter to satisfy the alignment condition,
the cooperative jammer chooses its precoder to send Nc − Ne

jamming streams invisible to the receiver. The s.d.o.f. here is
integer valued, for which we utilize Gaussian streams.

The transmitted signals are given by (72) with d = l =
N+Nc−Ne

2 , and Ut , Vc are defined as in Section V-F. Let
Pt = [

Pt,1 Pt,2
]
, and Pc = [

Pc,1 Pc,2
]
, where Pt,1 ∈ C

N×g ,
Pt,2 ∈ C

N× (Nc−Ne), Pc,1 ∈ C
Nc×g , Pc,2 ∈ C

Nc× (Nc−Ne),
and g = Ne+N−Nc

2 . The matrices Pt and Pc are chosen
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as follows. Let G = [Gt − Gc] ∈ C
Ne× (N+Nc ), and let

G′ ∈ C
(Ne+N)× (N+Nc ) be expressed as

G′ =
[

Gt −Gc

0N×N Hc

]
. (183)

Let Q′ ∈ C
(N+Nc )× (Nc−Ne) be randomly chosen such that

its columns span N(G′), and let the columns of the matrix
Q ∈ C

(N+Nc )×g be randomly chosen as linearly independent
vectors in N(G), and not in N(G′). Write the matrix Q as
Q = [

QT
1 QT

2

]T
, and the matrix Q′ as Q′ = [

Q′T
1 Q′T

2

]T
,

where Q1 ∈ C
N×g , Q2 ∈ C

Nc×g , Q′
1 ∈ C

N× (Nc−Ne), and
Q′

2 ∈ C
Nc× (Nc−Ne). Set Pt,1 = Q1, Pt,2 = Q′

1, Pc,1 = Q2,
and Pc,2 = Q′

2.
This choice of Pt and Pc results in Gt Pt = GcPc and

HcPc,2 = 0N× (Nc−Ne). Thus, the received signals at the
receiver and eavesdropper are given by

Yr = [
Ht Pt HcPc,1

]
[

Ut

Vc
g
1

]
+ Zr (184)

Ye = GcPc(Ut + Vc) + Ze. (185)

Using (185), and similar to going from (79) to (84), we have

I (Xt ; Ye) ≤ N + Nc − Ne

2
. (186)

Because of the assumption of randomly generated channel
gains, each of Pt and Pc is full column rank a.s. Using
Lemma 1, we have the matrix

[
Ht Pt HcPc,1

]
is full column

rank a.s., and hence, using (184), we have

I (Xt ; Yr ) ≥ N + Nc − Ne

2
log P + o(log P). (187)

Thus, using (186), (187), (71), and (5), the s.d.o.f. is lower
bounded as Ds ≥ N+Nc−Ne

2 .

J. Case 10 (Ne > N, Ne < Nc ≤ N + Ne, and
N + Nc − Ne Is Odd)

The s.d.o.f. for this case is not an integer, and we have
Nc > Ne , and hence, we utilize here precoding as in
Section V-I, and signaling and decoding scheme as in
Section V-H; Ut , Vc are defined as in Section V-H, and Pt , Pc

are chosen as in Section V-I, with d = N+Nc−Ne+1
2 and

g = Ne+N−Nc +1
2 . Using the same decoding scheme as in

Section V-H, we obtain that the s.d.o.f. is lower bounded as
Ds ≥ N+Nc−Ne

2 for this case, which completes the achiev-
ability proof of (70). Thus, we have completed the proof for
Theorem 1.

VI. EXTENDING TO THE GENERAL CASE: THEOREM 2

The converse and achievability proofs for Theorem 2
involve the same techniques as those utilized for Theorem 1.
However, one needs to carefully handle the antenna configu-
rations when Nt �= Nr . In the following, we summarize how
to extend the main ideas presented in Sections IV and V in
order to prove Theorem 2.

A. Converse

The converse proof for Theorem 2 follows similar steps as
in Section IV. In particular, we derive the following two upper
bounds which hold for two different ranges of Nc .

1) 0 ≤ Nc ≤ Ne: When Nt �= Nr , the range of Nc for
which the first upper bound holds is the same as in the case
when Nt = Nr = N in Section IV-A. However, unlike in
Section IV-A, when Nt �= Nr , this range of Nc is further
subdivided into two ranges. The first upper bound on the
s.d.o.f. we derive here is again Ds ≤ [Nt + Nc − Ne]+, yet,
the maximum s.d.o.f. for the channel is equal to min{Nt , Nr }.
Hence, for the case Nr < Nt + Nc − Ne, the maximum s.d.o.f.,
Nr , is reached at an Nc that is smaller than Ne . In particular,
using similar analysis as in Section IV-A, we have

Rs ≤ Cs(P) = ρ log P + o(log P), (188)

where, for 0 ≤ Nc ≤ [
Ne − [Nt − Nr ]+

]+, ρ = [Nc + Nt −
Ne]+. Since [Nc+Nt −Ne]+ ≤ Nr for

[
Ne − [Nt − Nr ]+

]+ ≤
Nc ≤ Ne , we have, for 0 ≤ Nc ≤ Ne ,

Ds ≤ min{Nr , [Nc + Nt − Ne]+}. (189)

2) Nr + [Ne − Nt ]+ < Nc ≤ 2 min {Nt , Nr } + Ne − Nt :
Following similar steps as in Section IV-B, where the two
cases we consider here are Ne ≤ Nt and Ne > Nt , the s.d.o.f.
for this range of Nc is upper bounded as

Ds ≤ Nc + Nt − Ne

2
. (190)

It easy to see that, when Nt = Nr = N , the range of Nc

for which the second upper bound in (190) holds is reduced
to the range max{N, Ne} < Nc ≤ N + Ne in Section IV-B.
However, when Nt �= Nr , the range of Nc is different.
In particular, we have that Nc > Nr + [Ne − Nt ]+ because,
when Ne > Nt , (190) holds only when Nc > Nr + Ne − Nt so
that the number of antennas at the cooperative jammer in the
modified channel, c.f. (59), is greater than Nr . We also have
that Nc ≤ 2 min{Nt , Nr } + Ne − Nt . This is because, when
Nt < Nr , we have Nc+Nt −Ne

2 = Nt at Nc = Nt +Ne, and when
Nt > Nr , we have Nc+Nt −Ne

2 = Nr at Nc = 2Nr + Ne − Nt .
3) Obtaining the Upper Bound: For each of the following

cases, we use the two bounds in (189) and (190) to obtain the
upper bound for the s.d.o.f.

i) Nt ≥ Nr + Ne

For this case, we use the trivial bound for the s.d.o.f.,
Ds ≤ Nr for all the values of Nc .

ii) Nr ≥ Nt ≥ Ne and Nr ≥ Nt + Ne

Using the bound in (189), we have

Ds ≤ Nc + Nt − Ne, for 0 ≤ Nc ≤ Ne,

where at Nc = Ne , we have Ds ≤ Nt , which is the
maximum achievable s.d.o.f. for this case.

iii) Nt ≥ Ne and Nt − Ne < Nr < Nt + Ne

Combining the bounds in (189) and (190), as in
Section IV-C, yields

Ds ≤

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Nc + Nt − Ne, if 0 ≤ Nc ≤ Nr + Ne − Nt

2
Nr + Nt − Ne

2
, if

Nr + Ne − Nt

2
< Nc ≤ Nr

Nc + Nt − Ne

2
, if Nr < Nc ≤ 2 min{Nt , Nr }

+Ne − Nt .

(191)
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iv) Ne > Nt and Nr ≥ 2Nt

Using the bound in (189), we have

Ds ≤ [Nc + Nt − Ne]+, for 0 ≤ Nc ≤ Ne .

v) Ne > Nt and Nr < 2Nt

By combining the bounds in (189) and (190), we have

Ds ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[Nc +Nt −Ne]+, if 0 ≤ Nc ≤ Nr

2
+ Ne − Nt

Nr

2
, if

Nr

2
+ Ne − Nt < Nc

≤ Nr + Ne − Nt

Nc +Nt −Ne

2
, if

Nr + Ne − Nt < Nc ≤
2 min{Nt , Nr } + Ne − Nt .

(192)

One can easily verify that the cases cited above cover
all possible combinations of number of antennas at various
terminals. By merging the upper bounds for these cases in one
expression, we obtain (7) as the upper bound for the s.d.o.f.
of the channel.

B. Achievability
The s.d.o.f. for the channel when Nt is not equal to Nr ,

given in (7), is achieved using techniques similar to what we
presented in Section V. There are few cases, of the number of
antennas, where the achievability is straightforward. One such
case is when Nt ≥ Nr + Ne, where the transmitter can send Nr

Gaussian information streams invisible to the eavesdropper,
and the maximum possible s.d.o.f. of the channel, i.e., Nr ,
is achieved without the help of the cooperative jammer,
i.e., Nc = 0. Another case is when Nr ≥ Nt + min{Nt , Ne},
where the receiver’s signal space is sufficient for decoding
the information and jamming streams, at high SNR, for all
0 ≤ Nc ≤ Ne, arriving at the s.d.o.f. of Nt (the maximum
possible s.d.o.f.) at Nc = Ne . Thus, there is no constant period
in the s.d.o.f. characterization for this case where the s.d.o.f.
keeps increasing by increasing Nc , and Gaussian signaling and
cooperative jamming are sufficient to achieve the s.d.o.f. of the
channel.

We consider the five cases of the number of antennas at the
different terminals listed in Section VI-A.3. In the following,
we summarize the achievable schemes for these cases. Let
d and l denote the number of information and cooperative
jamming streams. Pt , Pc are the precoding matrices at the
transmitter and the cooperative jammer.

i) Nt ≥ Nr + Ne

The transmitter sends Nr Gaussian information streams
over N(Gt ). Ds = Nr is achievable at Nc = 0.

ii) Nr ≥ Nt ≥ Ne and Nr ≥ Nt + Ne

For 0 ≤ Nc ≤ Ne , d = Nc + Nt − Ne and l = Nc

Gaussian streams are transmitted. Choose Pt to send
Nt − Ne information streams over N(Gt ) and align the
remaining information streams over cooperative jam-
ming streams at the eavesdropper. Ds = Nc + Nt − Ne.

iii) Nt ≥ Ne and Nt − Ne < Nr < Nt + Ne:
1) For 0 ≤ Nc ≤ Nr +Ne−Nt

2 :
The same scheme as in case (ii) is utilized. Ds =
Nc + Nt − Ne .

2) For Nr +Ne−Nt
2 < Nc ≤ Nr and Nr + Nt − Ne is

even:
The same scheme as in case (iii-1), with d =
Nr +Nt −Ne

2 and l = Nr +Ne−Nt
2 , is utilized. The

cooperative jammer uses only Nr +Ne−Nt
2 of its Nc

antennas. Ds = Nr +Nt −Ne
2 .

3) For Nr +Ne−Nt
2 < Nc ≤ Nr and Nr + Nt − Ne is

odd:
d = Nr +Nt −Ne+1

2 and l = Nr +Ne−Nt +1
2 structured

streams, as defined in Section V-C, are transmitted.
The cooperative jammer uses only Nr +Ne−Nt +1

2
of its Nc antennas. Pt is chosen as in case (ii).
The legitimate receiver uses the projection and
cancellation technique, as in Section V-C. Ds =
Nr +Nt −Ne

2 .
4) For Nr < Nc ≤ 2 min{Nt , Nr } + Ne − Nt and

Nc + Nt − Ne is even:
d = Nc+Nt −Ne

2 and l = Nc+Ne−Nt
2 Gaussian

streams are transmitted. The cooperative jammer
chooses Pc to send Nc − Nr cooperative jamming
streams over N(Hc). Pt is chosen as in case (ii).
Ds = Nc+Nt −Ne

2 .
5) For Nr < Nc ≤ 2 min{Nt , Nr } + Ne − Nt and

Nc + Nt − Ne is odd:
d = Nc+Nt −Ne+1

2 and l = Nc+Ne−Nt +1
2 structured

streams are transmitted. Pt , Pc are chosen as in
case (iii-4). The legitimate receiver uses the projec-
tion and cancellation technique. Ds = Nc+Nt −Ne

2 .

iv) Ne > Nt and Nr ≥ 2Nt

For 0 ≤ Nc ≤ Ne , d = l = [Nc + Nt − Ne]+ Gaussian
streams are transmitted. Both Pt , Pc are chosen to align
the information streams over the cooperative jamming
streams at the eavesdropper as in Section V-F. Ds =
[Nc + Nt − Ne]+.

v) Ne > Nt and Nr < 2Nt :

1) For 0 ≤ Nc ≤ Nr
2 + Ne − Nt :

The same scheme as in case (iv) is utilized. Ds =
[Nc + Nt − Ne]+.

2) For Nr
2 + Ne − Nt < Nc ≤ Nr + Ne − Nt and Nr

is even:
d = l = Nr

2 Gaussian streams are transmitted.
Pt , Pc are chosen as in case (iv). Ds = Nr

2 .
3) For Nr

2 + Ne − Nt < Nc ≤ Nr + Ne − Nt and Nr

is odd:
d = l = Nr +1

2 structured streams are transmitted.
Pt , Pc are as in case (iv). The legitimate receiver
uses the projection and cancellation technique.
Ds = Nr

2 .
4) For Nr + Ne − Nt < Nc ≤ 2 min{Nt , Nr }+ Ne − Nt

and Nc + Nt − Ne is even:
d = l = Nc+Nt −Ne

2 Gaussian streams are transmit-
ted. Both Pt , Pc are chosen to align the informa-
tion and the cooperative jamming streams at the
eavesdropper. Pc is also chosen to send Nc − Nr

cooperative jamming streams over N(Hc) as in
Section V-I. Nc > Nr + Ne − Nt achieves the above
two conditions. Ds = Nc+Nt −Ne

2 .
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Fig. 5. Ds versus Nc when Nr = Ne = 8 and Nt increases from Nr to Nr + Ne .

5) For Nr + Ne − Nt < Nc ≤ 2 min{Nt , Nr }+ Ne − Nt

and Nc + Nt − Ne is odd:
d = l = Nc+Nt −Ne+1

2 structured streams are
transmitted. Pt , Pc are chosen as in case (v-4).
The receiver uses the projection and cancellation
technique. Ds = Nc+Nt −Ne

2 .

Using the achievable schemes described above for the
different cases of the number of antennas, and their analysis
as in Section V, we have (7) as the achievable s.d.o.f., which
completes the proof for Theorem 2.

VII. DISCUSSION

At this point, it is useful to discuss the results and the
implications of this work. Theorem 1, c.f. (6), shows the
behavior of the s.d.o.f., for an (N × N × Ne) multi-antenna
Gaussian wire-tap channel with an Nc-antenna cooperative
jammer, associated with increasing Nc form 0 to N + Ne.
The s.d.o.f. first increases linearly by increasing Nc from 0
to Ne − �min{N,Ne }

2 �, that is to say adding one antenna at the
cooperative jammer provided the system to have one additional
degrees of freedom. The s.d.o.f. remains constant in the Nc

range of Ne−�min{N,Ne }
2 � to max{N, Ne}, and starts to increase

again for Nc from max{N, Ne} to N + Ne , until the s.d.o.f.
arrives at its maximum value, N , at Nc = N + Ne . This
behavior transpires both when the eavesdropper antennas are
fewer or more than that of the legitimate receiver.

The reason for the flat s.d.o.f. range is as follows:
At high SNR, achieving the secrecy constraint requires
i) the entropy of the cooperative jamming signal, Xn

c , to be
greater than or equal to that of the information signal visible
to the eavesdropper, and ii) Xn

c to completely cover the
information signal, Xn

t , at the eavesdropper. For Ne ≤ N ,

part of Xn
t can be sent invisible to the eavesdropper, and the

information signal visible to the eavesdropper can be covered
by jamming for all Nc . For 0 ≤ Nc ≤ Ne

2 , the spatial
resources at the receiver are sufficient, at high SNR, for
decoding information and jamming signals which satisfy the
above constraints. Thus, increasing the possible entropy of Xn

c

by increasing Nc from 0 to
⌊

Ne
2

⌋
allows for increasing the

entropy of Xn
t , and hence, the achievable secrecy rate and the

s.d.o.f. increase. At Nc =
⌈

Ne
2

⌉
, the possible entropy of Xn

c

and, correspondingly, the maximum possible entropy of Xn
t ,

result in information and jamming signals which completely
occupy the receiver’s signal space. Thus, increasing the pos-
sible uncertainty of Xn

c by increasing Nc from
⌈

Ne
2

⌉
to N

is useless, since, in this range, Xn
c is totally observed by the

receiver which has its signal space already full at Nc =
⌈

Ne
2

⌉
.

Increasing Nc over N increases the possible entropy of
Xn

c and simultaneously increases the part of Xn
c that can be

transmitted invisible to the receiver, leaving more space for
Xn

t at the receiver. This allows for increasing the secrecy rate,
and hence, the s.d.o.f. starts to increase again. For Ne > N ,
the s.d.o.f. is equal to zero for all 0 ≤ Nc ≤ Ne − N ,
where Xn

c cannot cover the information at the eavesdropper
for this case. The s.d.o.f. starts to increase again, after the flat
range, at Nc > Ne , since sending jamming signals invisible
to the receiver while satisfying the covering condition at the
eavesdropper requires that Nc > Ne .

The difference in the slope for the increase in the s.d.o.f.
in the ranges before and after the flat range, for both Ne ≤ N
and Ne > N , can be explained as follows. For 0 ≤ Nc ≤
Ne − min{N,Ne }

2 , each additional antenna at the cooperative
jammer allows for utilizing two more spatial dimensions at the
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Fig. 6. Ds versus Nc when Nr = 8, Ne = 20 and Nt increases from Nr to Ne .

Fig. 7. Ds versus Nc when Nt = Ne = 8 and Nr increases from Nt to Nt + Ne .

receiver; one spatial dimension is used for the jamming signal
and the other is used for the information signal. By contrast,
for max{N, Ne} < Nc ≤ N + Ne , each additional antenna
at the cooperative jammer sets one spatial dimension at the
receiver free from jamming, and this spatial dimension is
shared between the extra cooperative jamming and information
streams.

It is important to note that the result that suggests that
increasing the cooperative jammer antennas is not useful in
the range Ne − min{N,Ne }

2 < Nc ≤ max{N, Ne} applies only
to the prelog of the secrecy capacity, i.e., is specific to the
high SNR behavior. This should not be taken to mean that
additional antennas do not improve secrecy rate, but only the
secrecy rate scaling with power in the high SNR.

Theorem 2 generalizes the results above to the case where
the number of transmit antennas at the transmitter, Nt , is not

equal to the number of receive antennas at the legitimate
receiver, Nr . Although the maximum possible s.d.o.f. of
the channel for this case is limited to min{Nt , Nr } = Nd ,
increasing Nt over Nr , or increasing Nr over Nt , do change
the behavior of the s.d.o.f. associated with increasing Nc

until the maximum possible s.d.o.f. is reached. Let us start at
Nt = Nr = Nd . For Nt ≥ Ne , increasing Nt over Nd = Nr

increases the number of the information streams that can be
sent invisible to the eavesdropper, and hence the s.d.o.f. with-
out the help of the cooperative jammer, i.e., Nc = 0, increases.
This results in increasing the range of Nc for which the s.d.o.f.
remains constant by increasing Nc, since the receiver’s signal
space gets full at a smaller Nc and remains full until Nc is
larger than Nd = Nr . In addition, increasing Nt over Nd , when
Nt ≥ Ne, results in decreasing the value of Nc at which the
maximum s.d.o.f. of the channel, Nd , is achievable, arriving at
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Nt ≥ Nr + Ne , where the s.d.o.f. of Nd is achievable without
the help of the cooperative jammer. Fig. 5 illustrates this
behavior. When Ne > Nt , increasing Nt over Nd decreases the
value of Nc at which the s.d.o.f. is positive, and decreases the
value of Nc at which the s.d.o.f. of Nd is achievable, arriving
at Nt > Ne , where the channel renders itself to the previous
case. This behavior is demonstrated in Fig. 6. For both the
cases Nt ≥ Ne and Nt < Ne, increasing Nr over Nd = Nt ,
results in increasing the available space at the receiver’s signal
space, and hence the constant period decreases, arriving at
Nr ≥ Nt + Ne when Nt ≥ Ne, or at Nr ≥ 2Nt when
Ne > Nt , where the constant period vanishes. Fig. 7 illustrates
the behavior of the s.d.o.f. curve associated with increasing Nr

over Nt .

VIII. CONCLUSION

In this paper, we have studied the multi-antenna wire-tap
channel with a Nc-antenna cooperative jammer, Nt -antenna
transmitter, Nr -antenna receiver, and Ne-antenna eavesdrop-
per. We have completely characterized the s.d.o.f. for this
channel for all possible values of the number of antennas at
the cooperative jammer, Nc. We have shown that when the
s.d.o.f. of the channel is integer valued, it can be achieved by
linear precoding at the transmitter and cooperative jammer,
Gaussian signaling both for transmission and jamming, and
linear processing at the legitimate receiver. By contrast, when
the s.d.o.f. is not an integer, we have shown that a scheme
which employs structured signaling both at the transmitter
and the cooperative jammer, along with joint signal space and
signal scale alignment achieves the s.d.o.f. of the channel.
We have seen that, when Nt ≥ Ne , the transmitter uses its
precoder to send a part of its information signal invisible
to the eavesdropper, and to align the remaining part over
jamming at the eavesdropper, while the cooperative jammer
uses its precoder to send a part of its jamming signal invisible
to the receiver, whenever possible. When Ne > Nt , more
intricate precoding at the transmitter and cooperative jammer
is required, where both the transmitter and cooperative jammer
choose their precoders to achieve the alignment of informa-
tion and jamming at the eavesdropper, and simultaneously,
the cooperative jammer designs its precoder, whenever pos-
sible, to send a part of the jamming signal invisible to the
receiver.

The converse was established by allowing for full cooper-
ation between the transmitter and cooperative jammer for a
certain range of Nc , and by incorporating both the secrecy
and reliability constraints, for the other values of Nc. We note
that while this paper settles the degrees of freedom of this
channel, its secrecy capacity is still open. Additionally, while
the model considered here assumes channels to be known,
universal secrecy as in [32] should be considered in the future.

APPENDIX A
CHOICE OF Kt AND Kc

The covariance matrices Kt and Kc are chosen so that they
are positive definite, i.e., Kt , Kc � 0, and hence non-singular,
in order to guarantee the finiteness of h(Z̃t ) and h(Z̃c) in (26).

In addition, positive definite Kt and Kc result in positive
definite 	Z̃1

and 	Z̃2
, and hence, h(Z̃1) and h(Z̃2) in (28)

are also finite.
For INe − Gt KtGH

t to be a valid covariance matrix for Z̃e

in (30), Kt has to satisfy Gt Kt GH
t � INe , which is equivalent

to

||K
1
2
t GH

t || ≤ 1. (193)

Recall that ||K
1
2
t GH

t || is the induced norm for the matrix

K
1
2
t GH

t .
Similarly, for IN − HcKcHH

c , INe − Gt Kt GH
t − GcKcGH

c ,
and IN −H′

c2
K′

cH′H
c2

to be valid covariance matrices for Z̃r , Z̃′
e,

and Z̃′
r , in (40), (53), (61), Kt , Kc, K′

c have to satisfy

||K
1
2
c HH

c || ≤ 1, ||K
1
2
t GH

t ||2 + ||K
1
2
c GH

c ||2 ≤ 1,

and

||K′ 1
2

c H′H
c2

|| ≤ 1. (194)

In order to satisfy the conditions (193) and (194), we choose
Kt = ρ2IN , Kc = ρ2IK , where

0 < ρ ≤ 1

max

{ ||GH
t ||, ||HH

c ||, ||H′H
c2

||,√
||GH

t ||2 + ||GH
c ||2

} (195)

= 1

max

{
||HH

c ||,
√

||GH
t ||2 + ||GH

c ||2
} . (196)

APPENDIX B
DERIVATION OF (48),(49), AND (66)

In order to upper bound h(Yr,k(i)), for all i = 1, 2, · · · , n
and k = 1, 2, · · · , N , we first upper bound the variance of
Yr,k(i), denoted by Var

(
Yr,k(i)

)
. Let hr

t,k and hr
c,k denote the

transpose of the kth row vectors of Ht and Hc, respectively. Let
Zr (i) = [

Zr,1(i) · · · Zr,N (i)
]T . Using (1), Yr,k(i) is expressed

as

Yr,k(i) = hrT

t,kXt (i) + hrT

c,kXc(i) + Zr,k(i). (197)

Thus, Var
(
Yr,k(i)

)
can be bounded as

Var
(
Yr,k(i)

) ≤ E
(
Yr,k(i)Y

∗
r,k(i)

)
(198)

= E
(
|hrT

t,kXt (i)|2
)

+ E
(
|hrT

c,kXc(i)|2
)

+ E
(
|Zr,k(i)|2

)

(199)

≤ ||hr
t,k||2 E

(
||Xt (i)||2

)
+ ||hr

c,k ||2 E
(
||Xc(i)||2

)
+ 1

(200)

≤ 1 +
(
||hr

t,k||2 + ||hr
c,k ||2

)
P, (201)

where (200) follows from Cauchy-Schwarz inequality and
monotonicity of expectation, and (201) follows from the power
constraints at the transmitter and cooperative jammer.

Define h2 = max
k

(
||hr

t,k||2 + ||hr
c,k ||2

)
. Since h(Yr,k(i))

is upper bounded by the entropy of a complex Gaussian
random variable with the same variance, we have, for all
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i = 1, 2, · · · , n and k = 1, 2, · · · , N ,

h(Yr,k(i)) ≤ log 2πe
(

1 +
(
||hr

t,k||2 + ||hr
c,k ||2

)
P
)

(202)

≤ log 2πe + log(1 + h2 P). (203)

Similarly, we have

Ȳr,k(i) = hrT

t,kXt (i) + h′rT

c,k X′
c2

(i) + Zr,k(i), (204)

where h′r
c,k is the transpose of the k-th row vector of H′

c2
.

Thus, we have,

h(Ȳr,k(i)) ≤ log 2πe + log(1 + h̄2 P), (205)

where h̄2 = max
k

(
||hr

t,k||2 + ||h′r
c,k ||2

)
.

Next, we upper bound h(X̃t,k(i)). The power constraint at
the transmitter, for i = 1, 2, · · · , n, is E

(
XH

t (i) Xt (i)
) =∑N

k=1 E
(|Xt,k(i)|2

) ≤ P . Thus, E
(|Xt,k(i)|2

) ≤ P for all
i = 1, 2, · · · , n, and k = 1, 2, · · · , N . Recall that X̃t,k(i) =
Xt,k(i) + Z̃t,k(i), where Xt,k(i) and Z̃t,k(i) are independent,
and the covariance matrix of Z̃t is Kt = ρ2IN , where 0 < ρ ≤
min

{
1

||HH
c || ,

1√
||GH

t ||2+||GH
c ||2

}
. Thus, Var

(
X̃t,k(i)

)
is upper

bounded as

Var
(

X̃t,k(i)
)

= Var
(
Xt,k(i)

)+ Var
(

Z̃t,k(i)
)

(206)

≤ E
(
|Xt,k(i)|2

)
+ ρ2 ≤ P + ρ2. (207)

Thus, for i = 1, 2, · · · , n and k = 1, 2, · · · , N , we have

h(X̃t,k(i)) ≤ log 2πe + log(ρ2 + P). (208)

Similarly, using the power constraint at the cooperative jam-
mer, we have, for i = 1, · · · , n and m = 1, · · · , K ,

h(X̃c,m(i)) ≤ log 2πe + log(ρ2 + P). (209)

APPENDIX C
PROOF OF LEMMA 1

Consider two matrices Q ∈ C
M×K and W ∈ C

K×N

such that Q is full row-rank and W has all of its entries
independently drawn from a continuous distribution, where
K > N, M . Let L = min{N, M}. We show that QW has a
rank L a.s. The matrices Q and W can be written as

Q = [
q1 q2 · · · qK

]
, (210)

W = [
w1 w2 · · · wN

]
, (211)

where q1, q2, · · · , qK are the K length-M column vectors of
Q, and w1, w2, · · · , wN are the N length-K column vectors
of W.

Let wm,i denotes the entry in the mth row and i th column of
W. Let QW = [s1 s2 · · · sN ], where si is a length-M column
vector, i = 1, 2, · · · , N . When M ≥ N , QW = [s1 s2 · · · sL ],
and when M < N , {s1, s2, · · · , sL } are the first L columns
of QW. In order to show that the matrix QW has rank L,
we show that, in either case, {s1, s2, · · · , sL } are a.s. linearly
independent, i.e.,

L∑

i=1

λi si = 0M×1 (212)

if and only if λi = 0 for all i = 1, 2, · · · , L.

Each si , for i = 1, 2, · · · , L, can be viewed as a linear
combination of the K columns of Q with coefficients that are
the entries of the i th column of W, i.e.,

si =
K∑

m=1

wm,i qm . (213)

Using (213), we can rewrite (212) as

K∑

m=1

ϕmqm = 0M×1 (214)

where, for m = 1, 2, · · · , K ,

ϕm =
L∑

i=1

λiwm,i . (215)

The K columns of Q are linearly dependent since each of
them is of length M and K > M . Thus, equation (214) has
infinitely many solutions for {ϕm}K

m=1.
Each of these solutions for ϕm’s constitutes a system of

K linear equations
{
ϕm = ∑L

i=1 λiwm,i , m = 1, 2, · · · , K
}
.

The number of unknowns in this system, i.e., λ’s, is L. Since
the number of equations in this system, K , is greater than
the number of unknowns, L, this system has a solution for
{λi }L

i=1 only if the elements {wm,i : m = 1, 2, · · · , K , and
i = 1, 2, · · · , L} are dependent. Since the entries of W are
all randomly and independently drawn from some continuous
distribution, the probability that these entries are dependent
is zero.

Moreover, consider the set with infinite cardinality, where
each element in this set is a structured W that causes the
system of equations in (215) to have a solution for {λi }L

i=1 for
one of the infinitely many solutions of {ϕm}K

m=1 to (214). This
set with infinite cardinality has a measure zero in the space
C

K×L , since this set is a subspace of C
K×L with a dimension

strictly less than K × L. We conclude that (212) a.s. has no
non-zero solution for {λi }L

i=1. Thus, QW has rank L a.s.
If QW has rank L a.s. , then so does (QW)T = WT QT .

Setting E1 = WT and E2 = QT , we have E1 ∈ C
N×K has

all of its entries independently drawn from some continuous
distribution, E2 ∈ C

K×M is full column-rank, K > N, M , and
E1E2 has rank L = min{N, M} a.s. Thus, Lemma 1 is proved.

APPENDIX D
DERIVATION OF (89) AND (90)

The power constraints at the transmitter and cooperative
jammer are E

(
XH

t Xt
) ≤ P and E

(
XH

c Xc
) ≤ P . Using (72),

we have

E
(

XH
t Xt

)

= E
(

UH
t PH

t Pt Ut

)
(216)

=
d∑

i=1

d∑

m=1

pH
t,mpt,i E

(
U∗

mUi
)

(217)

=
d∑

i=1

||pt,i ||2E
(
|Ui |2

)
(218)
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= ||pt,1||2E
(
|U1|2

)
+

d∑

i=2

||pt,i ||2
(

E
(

U2
i,Re

)
+ E

(
U2

i,Im

))

(219)

≤
(

||pt,1||2 + 2
d∑

i=2

||pt,i ||2
)

a2 Q2, (220)

where (218) follows since Ui and Um , for i �= m, are indepen-
dent, and (220) follows since E

(
U2

1

)
, E

(
U2

i,Re

)
, E

(
U2

i,Im

)
≤

a2 Q2, for i = 2, 3, · · · , d .
Similarly, using (72) and (87), we have

E
(

XH
c Xc

)
= E

(
VH

c PH
c PcVc

)
=

l∑

i=1

E
(
|Vi |2

)
(221)

= E
(

V 2
1

)
+

l∑

i=2

(
E
(

V 2
i,Re

)
+ E

(
V 2

i,Im

))

(222)

≤ (2l − 1)a2Q2. (223)

From (220) and (223), in order to satisfy the power con-
straints, we need that

a2 Q2 ≤ γ 2 P, (224)

where,

γ 2 = 1

max
{

2l − 1, ||pt,1||2 + 2
∑d

i=2 ||pt,i ||2
} . (225)

Let us choose the integer Q as

Q =
⌊

P
1−ε
2+ε

⌋
= P

1−ε
2+ε − ν, (226)

where ν is a constant which does not depend on the power P .
Thus,

a = γ P
3ε

2(2+ε) , (227)

satisfies the condition in (224). Thus, the power constraints at
the transmitter and cooperative jammer are satisfied.
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