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Abstract—A new model for the two-user multiple-access wire-
tap channel is considered. In this model, the legitimate (main)
channel is a discrete memoryless channel (DMC), and the
wiretapper chooses a fixed-length subset of the channel uses
where she has perfect access to the transmitted symbols of the
both users, while observing the remainder of the transmitted
codewords through a second DMC. As such, it generalizes the
existing multiple-access wiretap channel models and extends the
recently proposed new wiretap channel model to a multiple access
setting. An achievable strong secrecy rate region for the model is
derived. The achievability is established by solving a dual multi-
terminal secret key agreement problem in the source model,
where two independent sources are communicating confidential
keys to a common decoder over a public channel in the presence
of a compound wiretapping source. The secrecy of the two keys
in the dual source model is established by deriving a lemma
which provides a doubly exponential convergence rate for the
probability of the keys being uniform and independent from the
public discussion and the wiretapping source observation.

I. INTRODUCTION

The wiretap channel II (WTC-II) models a wiretap channel
(WTC) with a noiseless main channel and a wiretapper who
selects a fixed-length subset of the transmitted codeword
symbols to noiselessly observe, while observing erasures in
the remaining positions [1]. Authors in [1] have shown that
the secrecy capacity of this model is equal to the secrecy
capacity when the channel to the wiretapper is a discrete
memoryless (DM) binary erasure channel (EC), concluding
that the additional capability at the wiretapper of choosing
erasure positions does not deteriorate the secrecy capacity.

Reference [2] introduced a DM main channel to the WTC-
II in order to address a more general model with a wiretapper
that is more capable than a passive observer. Authors in [2]
derived inner and outer bounds for the capacity-equivocation
region. Later, the secrecy capacity of the channel was shown to
be equal to the secrecy capacity when the wiretapper has a DM
EC [3], showing that, once again, the secrecy capacity does
not degrade by the additional capability at the wiretapper. The
WTC-II with a DM main channel is recently extended to the
multiple access setting, with the wiretapper partially observing
one user or a superposition of two users, in [4].

In recent reference [5], we have introduced and identified
the strong secrecy capacity of a new WTC model in which
the main channel is a DMC and the wiretapper, in addition to
perfectly accessing a subset of the transmitted symbols of her
choosing, observes the output of a DMC in the remaining

Fig. 1. New multiple-access wiretap channel model.

positions instead of erasures. This new model includes as
special cases both the classical WTC [6] by setting the subset
size to zero, and the WTC-II with a DM main channel [2] by
setting the wiretapper DMC to an EC with erasure probability
one. Reference [5] thus quantifies the deterioration in secrecy
capacity with respect to the previous wiretap models.

In this paper, we extend the new WTC model to a two-user
multiple-access WTC (MAC-WT) [7]. The wiretapper in this
model noiselessly observes both the symbols of the two users
in the positions of the subset she chooses, while observing
the remainder of the two codewords through a DMC. An
achievable strong secrecy rate region is derived by solving
a dual multi-terminal secret key agreement problem [8] and
converting the solution to the original channel model using
probability distribution approximation arguments [9].

Notation: We use the convention A1:2 = (A1, A2) for ran-
dom variables (vectors) and their realizations. XS = {Xi}i∈S ,
S ⊆ N. pUX denotes a uniform distribution over X . V(pX , qX),
D(pX ||qX) denote the total variation distance and K-L diver-
gence between pX , qX . Conv(R) is the convex hull of R.

II. CHANNEL MODEL

We consider the channel model in Fig. 1. The main chan-
nel {X1,X2,Y, pY |X1X2

} is a DMC which consists of two
finite input alphabets X1,X2, a finite output alphabet Y , and
a transition probability pY |X1X2

. In order to communicate
message Mj , j = 1, 2, which is uniformly distributed over
Mj = J1, 2nRj K, to the common receiver, and to keep it secret
from the wiretapper, transmitter j maps its message into the
codeword Xn

j = [Xj,1 · · · Xj,n] ∈ Xn using a stochastic
encoder. The messages M1, M2 are independent. The receiver,
upon receiving Yn ∈ Yn, outputs the estimates M̂j , j = 1, 2,
of the transmitted messages. Let Vn = [V1 · · · , Vn] ∈ Vn
denote the n-letter output of the DMC pV |X1X2

; V is a finite
alphabet. The wiretapper chooses the subset S ∈ S, with

S ,
{
S : S ⊆ J1, nK, |S| = µ ≤ n, α =

µ

n
∈ [0, 1]

}
, (1)



and observes ZnS = [ZS1 · · · ZSn ] ∈ Zn, where

ZSi =

{
{X1,i, X2,i}, i ∈ S
Vi, otherwise,

(2)

and Z = {X1 × X2} ∪ V . An (n, 2nR1 , 2nR2) channel code
Cn = {C1,n, C2,n} consists of the message sets Mj , the
stochastic encoders PXn

j |Mj ,Cj,n , j = 1, 2, and the decoder.
(R1, R2) is an achievable strong secrecy rate pair if there is a
sequence of (n, 2nR1 , 2nR2) codes, {Cn}n≥1, such that (s.t.)

lim
n→∞

P
(
M̂1:2 6= M1:2|Cn

)
= 0 Reliability,

lim
n→∞

max
S

I(M1:2;ZnS |Cn) = 0 Strong Secrecy.

III. MAIN RESULT

Theorem 1 For α ∈ [0, 1], an achievable strong secrecy rate
region for the new MAC-WT model in Fig. 1 is given by

R(α) = Conv
⋃

pU1X1
pU2X2

{
(R1, R2) :

R1 ≤ I(U1;Y |U2)− I(U1;V )− αI(U1;X1|V ),

R2 ≤ I(U2;Y |U1)− I(U2;V )− αI(U2;X2|V ), (3)

R1 +R2 ≤ I(U1:2;Y )− I(U1:2;V )− αI(U1:2;X1:2|V )
}
.

where the union is over all distributions pU1X1
pU2X2

which
satisfy the Markov chains U1−X1−Y V and U2−X2−Y V .

Proof: The proof is provided in Section IV. �

Remark 1 By setting the size of the subset S to zero, i.e.,
α = 0, in (3), we obtain the achievable strong secrecy rate
region derived in [10, Theorem 1] for the MAC-WT. The same
region was derived under a weak secrecy criterion in [7], [11].

Reference [4] provides achievable strong secrecy rate re-
gions for the two-user MAC-WT II, where the main channel is
a DMC and the wiretapper selects a subset of the channel uses
and observes erasures outside this subset, under two different
wiretapping scenarios. In the first scenario, the wiretapper,
in each position of the subset, decides to noiselessly observe
either the first or the second user’s transmitted symbol, while
in the second scenario, the wiretapper observes a noiseless
superposition of the two symbols. In the following corollary,
we provide an achievable rate region for the MAC-WT II when
the wiretapper observes both the transmitted symbols.

Corollary 1 An achievable strong secrecy rate region for the
two-user MAC-WT II with the wiretapper noiselessly observing
both the transmitted symbols in the positions of the subset, is

RII(α) = Conv
⋃

pU1X1
pU2X2

{
(R1, R2) :

R1 ≤ I(U1;Y |U2)− αI(U1;X1),

R2 ≤ I(U2;Y |U1)− αI(U2;X2), (4)

R1 +R2 ≤ I(U1:2;Y )− αI(U1:2;X1:2)
}
.

where the union is over all distributions pU1X1pU2X2 which
satisfy the Markov chains U1 −X1 − Y and U2 −X2 − Y .

Fig. 2. Protocol A: Secret key agreement in the source model.

The proof follows from (3) by setting the DMC pV |X1X2
to

an EC with erasure probability one, i.e., V = “?”.

Remark 2 Not surprisingly, the rate region achievable for the
first scenario in [4] is equal to the rate region achievable for
the MAC-WT II model with the more capable wiretapper in
(4). The reason is that when the wiretapper has the power of
choosing to observe either symbol in every tapped position,
each user ought to design their transmission according to the
worst case scenario in which the wiretapper decides to observe
only his symbols in all the positions she taps.

IV. PROOF FOR THEOREM 1

We first consider U1:2 = X1:2. We fix pX1:2 = pX1pX2 and
describe two protocols; each protocol defines a set of random
variables and induces a joint distribution over them.

Protocol A: This protocol considers a multi-terminal secret
key agreement problem in the source model, see Fig. 2. In
particular, let X1,X2,Y be i.i.d. according to the distribution
pX1

pX2
pY |X1:2

, where pY |X1:2
is the transition probability

of the main channel in Fig. 1. The sequence Xj , j = 1, 2,
observed at the jth source encoder, is randomly and in-
dependently binned into the two indices Mj = B(j)1 (Xj),
Cj = B(j)2 (Xj), where B(j)1 ,B(j)2 are uniform over J1, 2nRj K,
J1, 2nR̃j K. The indices M1:2 represent the confidential keys.
The messages C1:2 are transmitted over a noiseless public
channel to the decoder and observed by the wiretapper. The
decoder observes the sequence Y and C1:2, and outputs the
estimates X̂1:2, which are mapped to the estimates M̂1:2. Let
S, ZS ,∀S ∈ S, be as in (1), (2). The wiretapper is a compound
source ZS , {Z, pZS} whose distribution is only known to
belong to the finite class {pZS}S∈S , where |S| =

(
n
αn

)
≤ 2n.

Let 1A denotes the indicator function of the event A. The
induced distribution for protocol A is expressed as

P̃M1:2C1:2X1:2YZSX̂1:2
= pX1:2YZS P̃M1:2C1:2|X1:2

P̃X̂1:2|YC1:2

= pX1:2YZS 1{B(j)
1 (Xj)=Mj ,B(j)

2 (Xj)=Cj ,∀j=1,2} P̃X̂1:2|YC1:2

= P̃M1:2C1:2
P̃X1:2|M1:2C1:2

pYZS |X1:2
P̃X̂1:2|YC1:2

. (5)

Protocol B: This protocol considers the original channel
model in Fig. 1, with the addition of common randomness
Cj , j = 1, 2, that is available at all nodes, uniform over
J1, 2nR̃j K and independent from all other variables. The en-
coders and decoder are defined as in (5). The induced joint
distribution for protocol B, PM1:2C1:2X1:2YZSX̂1:2

, is equal to

pUM1:2
pUC1:2

P̃X1:2|M1:2C1:2
pYZS |X1:2

P̃X̂1:2|YC1:2
. (6)



From protocol A, P̃X1:2|M1:2C1:2
= P̃X1|M1C1

P̃X2|M2C2
.

Thus, for protocol B, the common randomness Ci available
at the jth transmitter, i, j = 1, 2, i 6= j, is not used to generate
Xj . At the end of the proof, we eliminate the common
randomness C1:2 by conditioning on certain instance of it.

The induced distributions in (5), (6) are random due to the
random binning. We have ignored the M̂ variables at this
stage, as we will introduce them later as deterministic func-
tions of the X̂ vectors after fixing the binning. The following
two lemmas provide conditions on the rates Rj , R̃j , j = 1, 2,
required for the closeness of the two induced distributions and
secrecy of protocol A. Lemma 1 provides an exponential decay
rate for the average, over the binning, of the total variation
distance between the induced distributions, which is used to
show a convergence in probability result that allows converting
the secrecy criterion from protocol A to protocol B.

Lemma 1 Let Xj , {Xj , pXj}, j = 1, 2, be two indepen-
dent sources. Xj is randomly binned into Mj = B(j)1 (Xj),
Cj = B(j)2 (Xj), where B(j)1 ,B(j)2 are independent and uniform
over J1, M̃jK, J1, C̃jK. For γj > 0, j = 1, 2, define the event
Dγj as Dγj , {xj ∈ Xj : − log pXj (xj) > γj}. Let
B , {B(j)1 (xj),B(j)2 (xj)}j=1,2,xj∈Xj . Then, we have

EB
(
V
(
PM1:2C1:2

, pUM1:2
pUC1:2

))
≤
∑
j=1,2

(
P(Xj /∈ Dγj )

+ 1/2(M̃jC̃j2
−γj )

1
2

)
, P is the induced distribution. (7)

Proof: See Appendix A. �
Lemma 2 below provides a doubly exponential convergence

rate for the probability that, in protocol A, the confidential
keys and the public messages are uniform, and independent
from the wiretapper’s observation ZS for any S ∈ S, which
is used, along with the union bound, to guarantee secrecy for
the exponentially many possibilities of the subset S.

Lemma 2 Let Xj , {Xj , pXj}, j = 1, 2, be two inde-
pendent sources, both correlated with the compound source
{ZS} , {Z, pZS} , S ∈ S , where |X1|, |X2|, |Z|, |S| < ∞.
Xj is randomly binned into Mj , Cj as in Lemma 1. For
γj , γij > 0, j, i = 1, 2, i 6= j, and any S ∈ S, define

DSj ,
{

(x1:2, z) ∈ X1 ×X2 ×Z : (xj , z) ∈ DSγj , (x1:2, z)
∈ DSγij

}
, where DSγj ,

{
(xj , z) : − log pXj |ZS (xj |z) > γj

}
,

and DSγij ,
{

(x1:2, z) : − log pXi|XjZS (xi|xj , z) > γij
}
.

If ∃δ ∈]0, 12 [ s.t. ∀S, minj=1,2 PpX1:2ZS

(
(X1:2, ZS) ∈ DSj

)
≥

1− δ2, then, we have, for every ε ∈ [0, 1], that

PB
(

max
S∈S

D(PM1:2C1:2ZS ||pUM1:2
pUC1:2

pZS ) ≥ 2ε̃
)

≤ |S||Z| min
j,i=1,2,i6=j

{
e

(
−ε2(1−δ)2γj

3M̃jC̃j

)
+ e

(
−ε2(1−δ)2γij

3M̃iC̃i

)}
, (8)

where ε̃ = maxj=1,2{ε+(δ+δ2) log(M̃jC̃j)+Hb(δ
2)}, Hb is

the binary entropy function, and P is the induced distribution.

Proof: See Appendix B. �

We now apply Lemma 1 to protocol A to show the closeness
of the two induced distributions. In Lemma 1, set Xj = Xj ,
M̃j = 2nRj , C̃j = 2nR̃j , γj = (1 − ε′)nH(Xj), j = 1, 2;
ε′ > 0 and Xj is defined as in protocol A, i.e., an i.i.d. se-
quence. Without loss of generality, we assume that ∀xj ∈ Xj ,
pXj (xj) > 0. Using Hoeffding inequality, ∃βj > 0 s.t.

P(Xj /∈ Dγj ) = P
(
− log pXj (Xj) ≤ (1− ε′)nH(Xj)

)
= P

( n∑
k=1

log
1

p(Xj,k)
≤ (1− ε′)nH(Xj)

)
≤ e−βjn. (9)

Substituting (9) and the choices for M̃j , C̃j , γj in (7), gives

EB
(
V(P̃M1:2C1:2X1:2YZSX̂1:2

, PM1:2C1:2X1:2YZSX̂1:2
)
)

= EB
(
V(P̃M1:2C1:2

, pUM1:2
pUC1:2

)
)
≤ 4 exp(−βn), (10)

as long as Rj + R̃j < (1−ε′)H(Xj),∀j = 1, 2, where β > 0.
For reliability of protocol A, we consider a Slepian-Wolf de-

coder, which implies that limn→∞ EB
(
PP̃ (X̂1:2 6= X1:2)

)
=

0 if R̃1 ≥ H(X1|X2, Y ), R̃2 ≥ H(X2|X1, Y ) and R̃1+R̃2 ≥
H(X1:2|Y ) [12, Theorem 10.3]. Thus, ∀S ∈ S [9, Lemma 1]

lim
n→∞

EB
(
V
(
P̃M1:2C1:2X1:2YZSX̂1:2

,

P̃M1:2C1:2X1:2YZS1{X̂1:2=X1:2}
))

= 0. (11)

Next, we apply Lemma 2 to protocol A in order to establish
the secrecy criterion. In Lemma 2, for j = 1, 2, set Xj = Xj ,
M̃j = 2nRj , C̃j = 2nR̃j , ZS = ZS ,∀S ∈ S, where Xj ,S,ZS
are defined as in protocol A. Since Xj is i.i.d. and the channel
pV |X1:2

is a DMC, we have, ∀S ∈ S and j, i = 1, 2, i 6= j,

H(Xj |ZS) = H(Xj,S ,Xj,Sc |Xi,S ,Xj,S ,VSc)

= H(Xj,Sc |VSc) = (n− µ)H(Xj |V )

H(Xi|Xj ,ZS) = H(Xi,S ,Xi,Sc |Xj,S ,Xj,Sc ,Xi,S ,VSc),

= H(Xi,Sc |Xj,Sc ,VSc) = (n− µ)H(Xi|Xj , V ).

For ε̄ > 0, let γj = (1− ε̄)(n−µ)H(Xj |V ), γij = (1− ε̄)(n−
µ)H(Xi|Xj , V ). In order to compute PpX1:2ZS

(
(X1:2,ZS) /∈

DSj
)
, we only consider the tuples (x1:2, z) s.t. pXj |ZS (xj |z) >

0, or pXi|XjZS (xi|xj , z) > 0, since all the tuples (x1:2, z)
with pXj |ZS (xj |z) = pXi|XjZS (xi|xj , z) = 0 belong to DSj ,
for γj , γij <∞, by definition. For pXj |ZS and pXi|XjZS > 0,
we have, ∀S ∈ S, and j, i = 1, 2, i 6= j, that

pXj |ZS = pXj |Xj,SXi,SVSc
= pXj,Sc |VSc

=
∏
k∈Sc

p(xj,k|vk),

pXi|XjZS = pXi,Sc |Xj,ScVSc
=
∏
k∈Sc

p(xi,k|xj,k, vk).

Once again, using Hoeffding inequality and the choice for
γj , we have, for some βj > 0, j = 1, 2, and ∀S ∈ S, that

P
(
(Xj ,ZS) /∈ DSγj

)
= PpXjZS

(
− log pXj |ZS (Xj |ZS) ≤ γj

)
= P

( ∑
k∈Sc

log
1

p(Xj,k|Vk)
≤ (1− ε̄)(n− µ)H(Xj |V )

)
≤ exp(−β̃jn). (12)



Similarly, for j, i = 1, 2, i 6= j, ∃β̃ij > 0 s.t. P
(
(X1:2,ZS) /∈

DSγij
)
≤ exp(−β̃ijn). Taking δ2 = 2 exp(−β̃n), where β̃ =

min{β̃1, β̃2, β̃12, β̃21} > 0, gives P((X1:2,ZS) 6∈ DSj ) ≤ δ2,
∀S ∈ S and j = 1, 2. Since lim

n→∞
δ2 = 0, then, for n

large enough, δ2 ∈]0, 14 [. Thus, the conditions of Lemma 2
are satisfied. By substituting the choices for M̃j , C̃j , γj , γij

and |S||Zn| ≤ en
[
ln 2+ln(|X1|×|X2|+|V|)

]
in (8), we have,

∀ε, ε′ > 0, ε̃ = ε+ ε′, ∃n∗ ∈ N and κε, κ̃ > 0 s.t. ∀n ≥ n∗,

P(max
S∈S

D(P̃M1:2C1:2ZS ||pUM1:2
pUC1:2

pZS ) ≥ 2ε̃) ≤ e−κεe
κ̃n

,

if Rj + R̃j < (1− ε̄)(1− α)H(Xj |V ), ∀j = 1, 2, and,

R1 +R2 + R̃1 + R̃2 < (1− ε̄)(1− α)H(X1:2|V ). (13)

Remark 3 By setting j = 1, i = 2, instead of the minimum,
in the RHS of (8), Lemma 2 results in the maximum rate
R1 + R̃1, and the corresponding rate R2 + R̃2 (according to
the maximum sum rate) such that the probability in the LHS
of (8) is vanishing. By switching i and j, the Lemma gives
the maximum rate R2 + R̃2, and the corresponding rate R1 +
R̃1 according to the maximum sum rate. Using this, one can
deduce the maximum rate region, i.e., the maximum individual
and sum rates, required for a vanishing probability.

Let Dn , maxS D(P̃M1:2C1:2ZS ||pUM1:2
pUC1:2

pZS ), Kn ,
{Dn ≥ r}, r > 0. From (13),

∑∞
n=1 P(Kn) < ∞. By

the Borel-Cantelli lemma, P
(
Kn infinitely often (i.o.)

)
= 0.

This implies that ∀r > 0, P
(
{Dn < r} i.o.

)
= 1. Thus,

the sequence Dn converges to zero almost surely, and hence,
converges to zero in probability as well. We conclude that,

lim
n→∞

P
(
max
S∈S

D(P̃M1:2C1:2ZS ||pUM1:2
pUC1:2

pZS ) > 0
)

= 0. (14)

Now, we show that protocol B is also reliable and secure
with the rate conditions above. Equations (10), (11) imply that

lim
n→∞

EB
(
V(PM1:2C1:2X1:2YZSX̂1:2

,

PM1:2C1:2X1:2YZS1{X̂1:2=X1:2})
)

= 0. (15)

By applying Markov inequality to (10), we have, ∀r > 0,
∞∑
n=1

PB
(
V(P̃M1:2C1:2

, pUM1:2
pUC1:2

) > r
)
≤ 4

r

∞∑
n=1

e−βn <∞.

By Borel-Cantelli lemma, lim
n→∞

P
(
V(P̃M1:2C1:2

, pUM1:2
pUC1:2

) >

0
)

= 0. Thus, by using the union bound and (14), we have

lim
n→∞

PB
(

max
S∈S

D(PM1:2C1:2ZS ||pUM1:2
pUC1:2

pZS ) > 0
)

≤ lim
n→∞

PB
(

max
S∈S

D(P̃M1:2C1:2ZS ||pUM1:2
pUC1:2

pZS ) > 0
)

+ lim
n→∞

PB
(
V(P̃M1:2C1:2

, pUM1:2
pUC1:2

) > 0
)

= 0. (16)

The selection lemma [13, Lemma 2.2] when applied to (15),
(16), implies that there is at least one binning realization b∗,
with a corresponding joint distribution p∗ for protocol B, s.t.,

lim
n→∞

V
(
p∗
M1:2C1:2X1:2YZSX̂1:2

,

p∗M1:2C1:2X1:2YZS1{X̂1:2=X1:2}
)

= 0, and (17)

lim
n→∞

1{
maxS∈S D(p∗M1:2C1:2ZS

||pUM1:2
pUC1:2

pZS )>0
} = 0, (18)

with Mj = b
∗(j)
1 (Xj), Cj = b

∗(j)
2 (Xj), j = 1, 2. We introduce

p∗
M̂1:2|X̂1:2

= 1{M̂j=b
∗(j)
1 (X̂j),∀j=1,2} to (17). Then,

EC1:2

(
P(M̂1:2 6= M1:2|C1:2)

)
= V

(
p∗
M1:2M̂1:2C1:2

,

pUM1:2
pUC1:2

1{M̂1:2=M1:2}
)
−→
n→∞

0, (19)

follows from (17). Using the union bound and (18), we have

PC1:2

(
max
S

D(p∗M1:2ZS |C1:2
||pUM1:2

p∗ZS |C1:2
) > 0

)
≤ 1{

maxS D(p∗M1:2C1:2ZS
||pUM1:2

pUC1:2
pZS )>0

}
+ P

(
max
S

D(p∗M1:2ZS |C1:2
||pUM1:2

p∗ZS |C1:2
) > 0, and

∀S, p∗M1:2C1:2ZS = pUM1:2
pUC1:2

pZS

)
−→
n→∞

0, (20)

as the second term in the RHS of (20) is equal to zero.
Applying the selection lemma to (19), (20), implies that

there exists c∗1:2 s.t. both P(M̂1:2 6= M1:2|C1:2 = c∗1:2) and
maxS I(M1:2;ZS |C1:2 = c∗1:2) converge to 0 as n→∞. We
use p̃∗(x1:2|m1:2, c

∗
1:2) and (p̃∗(x̂1:2|y, c∗1:2), b

∗(j)
1 (x̂j), j =

1, 2) as the encoder and decoder for the original model; p̃∗

is the induced distribution in protocol A, corresponding to b∗.
So far, we have considered the case U1:2 = X1:2. Now,

we prefix two independent channels, pX1|U1
, pX2|U2

, at the
transmitters of the original model and repeat the same steps
in the proof above. In particular, the main channel in the new
model is pY |U1U2

and the wiretapper channel is described by
pX1|U1

pX2|U2
and (2). The rate conditions required for the

success of the Slepian-Wolf decoder in protocol A are R̃1 ≥
H(U1|U2, Y ), R̃2 ≥ H(U2|U1, Y ), R̃1 + R̃2 ≥ H(U1:2|Y ).
Taking ε̄ → 0, the rate conditions required for secrecy of
protocol A, resulting from Lemma 2, are, for j = 1, 2,

Rj + R̃j ≤ αH(Uj |Xj) + (1− α)H(Uj |V ), and

R1 +R2 + R̃1 + R̃2 ≤ αH(U1:2|X1:2) + (1− α)H(U1:2|V ).

Combining these conditions establish the achievability of the
union of the region in (3). The convex hull of the union follows
by time sharing independent codes and the fact that maximiz-
ing the secrecy constraint over S in the whole block-length
is upper bounded by its maximization over the individual
segments of the time sharing.

V. CONCLUSION

In this paper, we have extended the recently proposed
new WTC model [5] to the two-user multiple-access channel,
where the main channel is a DMC and the wiretapper selects
a subset of the channel uses to perfectly access the transmitted
symbols of the both users, while observing the remainder
of the transmitted codewords through a second DMC. We
have derived an achievable strong secrecy rate region for the
proposed model. This result quantifies the secrecy penalty
of this additional capability at the wiretapper. Future work
includes upper bounds for the model and other multi-terminal
settings with more capable wiretappers.



APPENDIX A
PROOF OF LEMMA 1

Using the triangle inequality, we obtain

V(PM1:2C1:2
, pUM1:2

pUC1:2
) ≤ V(PM1:2C1:2

, pUM1
pUC1

PM2C2
)

+ V(pUM1
pUC1

PM2C2 , p
U
M1:2

pUC1:2
) =

∑
j=1,2

V(PMjCj , p
U
Mj
pUCj ).

Using [5, Appendix. A], we have, for j = 1, 2,

EB
(
V(PMjCj , p

U
Mj
pUCj )

)
≤ P(Xj /∈ Dγj ) +

1

2

√
M̃jC̃j2−γj .

APPENDIX B
PROOF OF LEMMA 2

For all S ∈ S, D(PM1:2C1:2ZS ||pUM1:2
pUC1:2

pZS ) is equal to

EpZS
(
D(PM1:2C1:2|ZS ||PM1C1|ZSp

U
M2
pUC2

)
)

+ D(pM1C1ZS ||pUM1
pUC1

pZS ). (21)

Thus, the probability in the LHS of (8) is upper bounded by

PB
(

max
S∈S

EpZS
(
D(PM1:2C1:2|ZS ||PM1C1|ZSp

U
M2
pUC2

)
)
> ε̃
)

+ PB
(

max
S∈S

D(PM1C1ZS ||pUM1
pUC1

pZS ) > ε̃
)
. (22)

We upper bound each term in (22). For all S ∈ S, define

AS ,
{
z ∈ Z : PpX1:2|ZS

(
(X1:2, z) ∈ DS1

)
≥ 1− δ

}
.

Using Markov inequality, we have, for all S ∈ S,

PpZS (AcS) ≤ 1

δ
PpX1:2ZS

(
(X1:2, ZS) /∈ DS1

)
≤ δ. (23)

Let 1{x,m,c,J} , 1{B(j)
1 (xj)=mj ,B(j)

2 (xj)=cj ,∀j∈J}
, where

J ⊆ {1, 2}. For any m1:2, c1:2, z ∈ Z , S ∈ S, define

PS1 (m1:2, c1:2|z) =
∑
x1:2

p(x1:2|z)1{x,m,c,{1,2}}1{(x1:2,z)∈DS1 }

PS2 (m1:2, c1:2|z) =
∑
x1:2

p(x1:2|z)1{x,m,c,{1,2}}1{(x1:2,z)/∈DS1 },

hence PM1:2C1:2|ZS = PS1 + PS2 . For every x2 ∈ X2, define

Ux2
=
∑
x1∈X1

p(x1:2|z)1{x,m,c,{2}}1{(x1:2,z)∈DS1 }.

{Ux2}x2∈X2 are independent. For (x1:2, z) ∈ DS1 , we have
(x1:2, z) ∈ DSγ21 and p(x2|x1, z) ≤ 2−γ21 . Thus,

Ux2 ≤
∑
x1

p(x1|z)p(x2|x1, z)1{(x1:2,z)∈DSγ21}
≤ 2−γ21 , and

m̄ =
∑
x2

EB(Ux2
) =

1

M̃2C̃2

PpX1:2|ZS
((X1:2, z) ∈ DS1 ).

Also, notice that
∑
m1c1

PS1 (m1:2, c1:2|z) =
∑
x2
Ux2

since∑
m1c1

1{x,m,c,{1}} = 1. Using a variation of Chernoff bound
[5, Lemma 3], we have, for all ε ∈ [0, 1] and z ∈ AS , that

PB
(
PS1 (m1:2, c1:2|z) ≥

1 + ε

M̃2C̃2

PM1C1|ZS (m1, c1|z)
)

≤ P
(∑

x2

Ux2
≥ 1 + ε

M̃2C̃2

∑
m1,c1

PM1C1|ZS (m1, c1|z)
)

≤ P
(∑

x2

Ux2 ≥ (1 + ε)m̄
)
≤ exp

(−ε2(1− δ)2γ21

3M̃2C̃2

)
,

(24)

where m̄ ≥ (1− δ)(M̃2C̃2)−1,∀z ∈ AS .
Let b be a realization of B. Note that PS1 is identically

distributed for all m1:2, c1:2 due to the symmetry in the
binning. We then define the class G of binning functions as

G ,
{
b : PS1 (m1:2, c1:2|z) <

1 + ε

M̃2C̃2

PM1C1|ZS (m1, c1|z),

∀S ∈ S, and ∀z ∈ AS
}
. (25)

Using the union bound and (24), we have

PB(Gc) ≤ |S||Z| exp
(−ε2(1− δ)2γ21

3M̃2C̃2

)
. (26)

Using the same analysis as in [5, Appendix. B], we show that,
∀S ∈ S and b ∈ G,

EpZS
(
D(PM1:2C1:2|ZS ||PM1C1|ZSp

U
M2
pUC2

)
)

≤ ε+ (δ + δ2) log(M̃2C̃2) +Hb(δ
2) ≤ ε̃.

Thus, the first probability in (22) is upper bounded by PB(Gc)
in (26). Using similar arguments, we show that the second

probability in (22) is upper bounded by |S||Z|e(
−ε2(1−δ)2γ1

3M̃1C̃1
).

Finally, by rewriting (21) with switching the roles of (M1, C1)
and (M2, C2) and repeating the proof, we obtain the second
term in the minimum in (8), which completes the proof.
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