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Abstract—This paper introduces the notion of cache-tapping
into information theoretic models of coded caching. In particular,
the wiretap II model with two receivers equipped with fixed-size
cache memories is considered. The adversary chooses a set of
symbols from cache placement, delivery, or both to tap into. The
legitimate parties know neither whether cache placement, deliv-
ery, or both transmissions are tapped, nor the positions of tapped
symbols. Only the size of overall tapped set is known. The strong
secrecy capacity, i.e., the maximum achievable file rate while
keeping the overall library strongly secure, is identified for the
instance of two library files. Achievability is established using a
code design which combines wiretap coding, security embedding
codes, one-time pad keys, and coded caching. The study overall
demonstrates that information theoretic security guarantees are
possible against a powerful adversary which optimizes its attack
over both phases of a cache-aided communication system.

I. INTRODUCTION

Caching is a technique proposed to reduce traffic in peak
time periods through storing popular contents at end users ear-
lier during less congested times. Reference [1] has introduced
an information theoretic model of the caching problem, termed
coded caching, and showed that, in a noiseless multi-receiver
setting, by carefully designing the cache contents, the server
can send delivery transmissions that are simultaneously useful
for multiple users. Coded caching has since been studied for
various network configurations and under various modeling
assumptions, see for example [2]–[4].

Coded caching with security concerns has been recently
studied in [4]–[8]. These works assume secure cache place-
ment, i.e., the adversary can neither access the placed cache
contents, nor tap into the communication that performs the
placement. At the other extreme, if the adversary has perfect
access to cache contents, the presence of cache memories
can not increase the secrecy capacity [9]. Given these two
settings, one might think of an intermediate setting in which
the adversary may have partial access to the placement phase.

In this work, we consider an adversary model of type II as
in [10]–[15], but in a cache-aided communication system. The
adversary chooses a fixed-size subset of symbols from either
cache placement, delivery, or both transmissions, to noiselessly
observe. The legitimate terminals do not know whether cache
placement, delivery, or both are tapped, the relative fractions
of tapped symbols in both, or their positions. Only the overall
size of the tapped set is known.

The challenge in caching stems from the fact that the
transmitter, who has access to a library of files, has no

knowledge about the future demands of the end users when
designing their cache contents. This remains to be the case
for security concerns. Additionally, one can envision that an
adversary might tap into placement or delivery phases, and
where the tapping occurs would be unknown to the legitimate
parties. The question then arises whether the secrecy capacity
of the model is invariant to the positions of the tapped symbols
varying between cache placement and delivery. In this paper,
we answer this question in the positive.

In caching literature up to date, the physical communication
which populates the cache memories at end users does not
need to be considered in the problem formulation, since cache
placement is secure. In order to model cache placement that is
tapped by an adversary, we consider length-n communication
over a two-user broadcast channel. Under this assumption,
the sizes of cache memories at end users are fixed. We note
that introducing variable memory sizes for which a rate-
memory tradeoff can be characterized, as in the usual setup
for caching, requires considering additional communication
blocks for placement, and is of future interest.

The contributions of this work are as follows.
• We introduce the notion of cache-tapping in which the

adversary is able to overhear a fixed-size set of symbols
either from cache placement, or delivery, or both.

• We derive the strong secrecy capacity, i.e., the maximum
achievable file rate, for the instance of two library files.

Notation: For a, b ∈ R, [a : b] , {i ∈ Z : a ≤ i ≤ b}. A[1:n]

is the sequence {A1, · · · , An}. AT is the T -fold Cartesian
product of A. For W1,W2 ∈ [1 : M ], W1 ⊕ W2 is the
integer output corresponding to the bit-wise XOR of W1,W2.
D(px||qx) is the Kullback-Leibler divergence between px, qx.

II. SYSTEM MODEL

Consider the communication system in Fig. 1, in which
the adversary taps into both the cache placement and de-
livery. The transmitter observes D ≥ 2 independent files,
W1,W2, · · · ,WD, each is uniform over [1 : 2nRs ]. Each re-
ceiver has a cache memory of size n

2 bits. The communication
occurs over two phases; cache placement and delivery. The
broadcast channel (BC) is noiseless during both phases. The
communication model is described as follows:

Cache placement phase: During this phase, the transmitter
sends a length-n binary signal, Xn

c , to both receivers. The
codeword Xn

c is a function of the library files only, i.e.,
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Fig. 1. The caching BC with a wire and cache tapping adversary of type II.

Xn
c , fc(W[1:D]). The transmitter does not know the receiver

demands during cache placement. Each receiver has a cache
memory of size n

2 bits in which they store a function of Xn
c ,

Mc,j , fc,j(X
n
c ); fc,j : {0, 1}n 7→ [1 : 2

n
2 ] and j = 1, 2.

Delivery phase: The two receivers announce their demands
d , (d1, d2) ∈ [1 : D]2 before delivery. The transmitter, in
order to satisfy these demands, encodes W[1:D] and d into the
binary signal Xn

d; for each d, the transmitter uses the encoder
fd : [1 : 2nRs ]D 7→ {0, 1}n and sends Xn

d , fd(W[1:D]).

Decoding: Receiver j uses the decoder gd,j : [1 : 2
n
2 ] ×

{0, 1}n 7→ [1 : 2nRs ], in order to output the estimate Ŵdj ,
gd,j(fc,j(X

n
c ),X

n
d) of his desired message Wdj ; j = 1, 2.

Adversary model: The adversary chooses S1, S2 ⊆ [1 : n].
The size of the sum of cardinalities of S1, S2, is fixed, i.e.,
|S1| = µ1, |S2| = µ2, µ1, µ2 ≤ n, µ1+µ2 ≤ µ. S1, S2 indicate
the positions tapped by the adversary during cache placement
and delivery. The adversary observes the length-2n sequence
Z2n
S = [ZnS1

,ZnS2
]; j = 1, 2, ZnSj , [ZSj ,1, · · · , ZSj ,n] ∈ Zn,

ZS1,i =

{
Xc,i, i ∈ S1

?, i /∈ S1

, ZS2,i =

{
Xd,i, i ∈ S2

?, i /∈ S2,
(1)

the alphabet Z = {0, 1, ?}, and “?” denotes an erasure.

The legitimate parties do not know the realizations of
S1, S2, nor the values of µ1, µ2. Only µ = µ1 +µ2 is known.
Let α1 , µ1

n , α2 , µ2

n , be the fractions of the tapped symbols
in cache placement and delivery, and let α = α1 + α2 be the
overall tapped ratio. Note that α1, α2 ∈ [0, 1] and α ∈ [0, 2].

A channel code C2n for this model consists of (i) D message
sets, (ii) cache encoder fc, (iii) cache decoders fc,j , j = 1, 2,
(iv) delivery encoders {fd}d∈[1:D]2 , and (v) the decoders
{gd,j}j=1,2, d∈[1:D]2 . The file rate Rs is achievable with strong
secrecy if there is a sequence {C2n}n≥1 satisfying

lim
n→∞

max
d∈[1:D]2

P((Ŵd1 6=Wd1) ∪ (Ŵd2 6=Wd2)) = 0, (2)

lim
n→∞

max
S1,S2⊆[1:n]: |S1|+|S2|≤µ

I(W[1:D];Z
n
S1
,ZnS2

) = 0. (3)

That is, Rs is the symmetric file rate under any demand vector
and adversarial strategy. The strong secrecy capacity Cs is the
supremum of all achievable rates Rs.

III. MAIN RESULT

The main result of this paper is the strong secrecy capacity
for the model in Section II when D = 2.

Theorem 1 For 0 ≤ α ≤ 2 and D = 2, the strong secrecy
capacity for the model in Section II is given by

Cs(α) = 1− α

2
. (4)

The proof for Theorem 1 is provided in Section IV.
Lower and upper bounds for the achievable strong secrecy

file rate when D > 2 are derived in the longer version of this
work [16]. The proof for the lower bound when D > 2 utilizes
the same channel coding structure as for D = 2 in Section IV,
but the cache placement and delivery schemes must differ. In
particular, uncoded placement and coded delivery are utilized.

IV. PROOF OF THEOREM 1

A. Converse

For the model in Theorem 1, when d ∈ {1, 2}2 is known to
the transmitter during cache placement, the model reduces to a
broadcast wiretap channel II over a length-2n communication
block, whose strong sum secrecy rate is upper bounded as

2Rs(α) ≤ 2− α, (5)

which follows from [14, Thm. 1]. Notice that (5) holds for
the worst-case demands, i.e., d1 6= d2. Since d = (d1, d2) is
unknown for the model in consideration, 1− α

2 constitutes an
upper bound for the strong secrecy file rate, when D = 2.

B. Restricted Adversary Models as Building Blocks

Before proceeding with the achievability proof for (4), it is
relevant to investigate the secrecy capacity of the model when
a fraction of cache placement, delivery, or both, is tapped. We
thus first consider the cases where the adversary taps into (i)
cache placement only, (ii) delivery only, (iii) both phases, with
the relative fractions of tapped symbols in each are known. For
each of these models and α ∈ [0, 1), we show that the strong
secrecy capacity is identical to 1−α

2 . These are building blocks
for the scenario in question in this paper which is when the
relative fractions are unknown, the achievability proof of which
is provided in Sections IV-C and IV-D.

1) The adversary taps into cache placement only: This
setting corresponds to α1 = α and α2 = 0, i.e., |S1| = µ
and S2 = ∅, where α ∈ [0, 1). The transmitter and receivers
know the values of α1, α2. Let {εn}n≥1 denote a sequence
of positive real numbers such that εn → 0 as n→∞.

The strong secrecy file rate 1 − α
2 is achieved as follows.

The transmitter divides Wl, l = 1, 2, into three independent
messages {W (1)

l ,W
(2)
l ,Wl,s}. W (1)

l ,W
(2)
l are uniform over

[1 : 2n
1−α−εn

2 ], and Wl,s is uniform over [1 : 2n
α+εn

2 ]. Define
Mc , {Mc,1,Mc,2}, where Mc,1 = W

(1)
1 ⊕W (1)

2 , Mc,2 =

W
(2)
1 ⊕W (2)

2 , and Md = {W (2)
d1
,W

(1)
d2
,Wd1,s,Wd2,s}.

During cache placement, the transmitter encodes Mc into
Xn
c using wiretap coding. Since the rate of Mc is less than 1−

α, Mc is strongly secure from the adversary who observes nα
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symbols of Xn
c [12], [13]. During the delivery, the transmitter

sends Xn
d as the binary representation of Md, whose length

is n bits, since the delivery phase is noiseless and secure.
Using Xn

c , receiver j = 1, 2, recovers Mc,j and stores it in
its cache; the size of Mc,j is smaller than n

2 bits, i.e., the cache
size at each receiver. Using Xn

d, both receivers recover Md.
Using Md and Mc,j , and for n large enough, receiver j cor-
rectly decodes Wdj . Since εn → 0 as n→∞, the achievable
strong secrecy file rate is Rs = 2× 1−α

2 + α
2 = 1− α

2 .
2) The adversary taps into delivery only: This setting

corresponds to α1 = 0, α2 = α; α ∈ [0, 1). The transmitter
and receivers know the values of α1, α2. The strong secrecy
rate 1− α

2 is achievable as follows. The transmitter performs
the same division of W1,W2, as in Setting 1, and randomly,
and independently from W1,W2, generates the independent
keys K1,K2, each is uniform over [1 : 2n

α+εn
2 ]. Let us define

Mc,1 = {W (1)
1 ⊕ W

(1)
2 ,K1}, Mc,2 = {W (2)

1 ⊕ W
(2)
2 ,K2},

Md = {W (2)
d1
,W

(1)
d2
}, and M̃d = {Wd1,s⊕K1,Wd2,s⊕K2}.

During placement, the transmitter sends Xn
c as the binary

representation of Mc. During delivery, the transmitter encodes
Md into Xn

d using wiretap coding and uses M̃d as the random-
ization message. Using Xn

c , receiver j = 1, 2, recovers Mc,j

and stores it in its cache. From Xn
d, both receivers recover

Md, M̃d. Using Md, M̃d, Mc,j , and for large n, receiver j
correctly decodes Wdj . The adversary can only retrieve M̃d

using which it gains no information about W1,W2.
3) The legitimate terminals know α1,α2: Here, neither

α1 = 0 nor α2 = 0, but the legitimate terminals know α1, α2.
To achieve a strong secrecy file rate of 1 − α

2 , we use an
achievability scheme similar to Setting 1 when α1 ≥ α2, and
a scheme similar to Setting 2 when α1 < α2; along with
utilizing wiretap coding in both phases. The next question
then is whether the lack of assumed knowledge about α1, α2

decreases the strong secrecy capacity of the model. The
following setting provides a hint on the answer.

4) Either α1 = 0 or α2 = 0, the legitimate parties do
not know which is zero: The adversary taps into either cache
placement or delivery but not both. The legitimate parties do
not know which phase is tapped. Let α ∈ [0, 1). The strong
secrecy capacity is again 1− α

2 . The transmitter performs the
same division of W1,W2 as in Settings 1, 2, and generates
K1,K2 as in Setting 2. Let Mc , {Mc,1,Mc,2}, where

Mc,1 =W
(1)
1 ⊕W (1)

2 , Mc,2 =W
(2)
1 ⊕W (2)

2 ,

M̃c , {M̃c,1, M̃c,2}, M̃c,1 = K1, M̃c,2 = K2, and (6)

Md = {W (2)
d1
,W

(1)
d2
}, M̃d = {Wd1,s ⊕K1,Wd2,s ⊕K2}.

(7)

During placement, the transmitter encodes Mc into Xn
c

using wiretap coding and uses M̃c as the randomization
message. During delivery, the transmitter encodes Md into
Xn

d using wiretap coding and uses M̃d as the randomization
message. Receiver j stores Mc,j , M̃c,j in its cache, and uses
them, with Md, M̃d, to decode Wdj . The adversary can only
retrieve either {K1,K2} or {Wd1,s⊕K1,Wd2,s⊕K2}, using
which it gains no information about W1,W2.

Formal proofs for the aforementioned models satisfying (3)
are provided in [16, Appendix A-E]. The lack of knowl-
edge about which phase is tapped is tackled by encrypting
Wd1,s,Wd2,s, with the keys K1,K2, while ensuring the adver-
sary only retrieves either the keys or the encrypted bits but not
both, using which it gains no information about W1,W2. Next,
we generalize this idea to tackle the case when the adversary
taps into both phases with no knowledge of α1, α2, i.e., the
genenral model in consideration. In each phase, we construct
a security embedding code [17] in which nα single-bit layers
are embedded into one another. Doing so, we ensure that,
regardless the values for α1, α2, the adversary can retrieve
no more than nα1 bits from cache placement and nα2 bits
from delivery. By designing what the adversary retrieves to be
either a set of key bits and/or information bits encrypted with
distinct key bits, we guarantee no information is leaked.

C. Achievability for α ∈ [0, 1):

We now prove the achievability of (4) for α ∈ [0, 1). Recall
that nα1 = µ1, nα2 = µ2, nα = µ. For simplicity, let nα2 ,
nα1

2 be integers; minor modifications to the analysis can be
adopted otherwise. The transmitter (i) divides Wl, l = 1, 2,

into the independent messages W (1)
l ,W

(2)
l ,Wl,s; W

(1)
l ,W

(2)
l

are uniform over [1 : 2n
1−α
2 ], Wl,s is uniform over [1 : 2n

α
2 ],

and (ii) randomly and independently from W1,W2, generates
the independent keys K1,K2, each is uniform over [1 : 2n

α
2 ].

We ignored the small rate reduction εn, and will introduce it
later to the security analysis. The main ideas of the proof are

1) The transmitter uses wiretap coding with a randomization
message of size nα bits in both placement and delivery.
As the adversary taps into no more than nα bits in each
phase, a secure transmission rate of 1 − α is achievable
in each, as long as the randomization messages in the
two phases are independent. Using coded placement [1,
Appendix], a secure file rate of 1− α can be achieved.

2) The randomization messages over the two phases can
deliver additional secure information, of rate α

2 per file,
via encryption. The overall achievable file rate is thus
Rs = 1 − α

2 . We use K1,K2 as the randomization
message for cache placement. Along with wiretap coding,
we employ a security embedding code [17], by using
bits of K1,K2 in a manner that allows the adversary
to be able to retrieve only the last nα1

2 bits from each.
In the delivery, we encrypt Wd1,s,Wd2,s, with K1,K2,
and use this encrypted information as the randomization
message. We employ again a security embedding code, in
the reverse order, so that the adversary can only retrieve
the first nα2

2 bits from each of Wd1,s⊕K1,Wd2,s⊕K2.
3) Due to the reversed embedding order, the adversary in the

delivery phase does not obtain any message bits encrypted
with key bits it has seen during cache placement. Since
{K1,K2}, {Wd1,s ⊕K1,Wd2,s ⊕K2}, are independent
and each is an independent sequence, the adversary can
not use the revealed key bits in cache placement to obtain
any information about the encrypted message bits to be
securely transmitted during delivery.
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We now describe the scheme in more detail. Let Mc, M̃c

be defined as in (6). Mc represents the message to be securely
transmitted during cache placement regardless the value of α1,
and M̃c is the randomization message. The transmitter further
divides M̃c,1, M̃c,2, into sequences of independent binary bits,
{M̃ (1)

c,1 , · · · , M̃
(nα2 )
c,1 }, {M̃ (1)

c,2 , · · · , M̃
(nα2 )
c,2 }.

Cache Placement Codebook Generation: Let mc, m̃c,1 =

{m̃(1)
c,1, · · · , m̃

(nα2 )
c,1 }, m̃c,2 = {m̃(1)

c,2, · · · , m̃
(nα2 )
c,2 } be the real-

izations of Mc, M̃c,1, M̃c,2 in (6). We construct the placement
code Cc,n, from which Xn

c is drawn, as follows. Randomly and
independently divide all the possible 2n length-n binary se-
quences into 2n(1−α) bins, indexed by mc ∈ [1 : 2n

1−α
2 ]2 and

each contains 2nα binary codewords. Further, randomly and
independently divide each bin mc into two sub-bins, indexed
by m̃

(1)
c,1 ∈ {0, 1} and each contains 2nα−1 codewords. The

sub-bins m̃(1)
c,1 are randomly and independently divided into

two smaller bins, indexed by m̃
(1)
c,2 and each contains 2nα−2

codewords. The process continues, going over m̃(2)
c,1 , m̃(2)

c,2 , · · · ,
m̃

(nα2−1)
c,2 , m̃(nα2 )

c,1 , until the remaining two codewords, after

each sequence of divisions, are indexed by m̃(nα2 )
c,2 ∈ {0, 1}.

Cache Encoder: Given w1, w2, i.e., {w(1)
l , w

(2)
l , wl,s}l=1,2,

the transmitter generates mc and m̃c = {m̃c,1, m̃c,2} as in (6).
Using Cc,n, the transmitter sends xnc which corresponds to mc,
m̃c,1, m̃c,2, i.e., xnc (mc, m̃

(1)
c,1, m̃

(1)
c,2, · · · , m̃

(nα2 )
c,1 , m̃

(nα2 )
c,2 ).

Let Md, M̃d = {M̃d,1, M̃d,2} be as in (7); M̃d,1 =
Wd1,s ⊕ K1, M̃d,2 = Wd2,s ⊕ K2. Md is the message to
be securely transmitted during delivery regardless the value
of α2, and M̃d is the randomization message. Similar to
cache placement, the transmitter further divides M̃d,1, M̃d,2,
into sequences of independent binary bits, {M̃ (1)

d,1 · · · M̃
(nα2 )

d,1 },
{M̃ (1)

d,2 · · · M̃
(nα2 )

d,2 }.
Delivery Codebook Generation: Let md, m̃d,1, m̃d,2 be the

realizations of Md, M̃d,1, M̃d,2. We construct the delivery
code Cd,n, from which Xn

d is drawn, in a similar fashion as
Cc,n, with a reversed indexing of the sub-bins. Randomly and
independently divide all the 2n binary sequences into 2n(1−α)

bins, indexed by md ∈ [1 : 2n
1−α
2 ]2 and each contains 2nα

codewords. Further, randomly and independently divide each
bin md into two sub-bins, indexed by m̃(nα2 )

d,1 and each contains
2nα−1 codewords. The process continues going in a reverse
manner over m̃(nα2 )

d,2 , m̃
(nα2−1)
d,1 , m̃

(nα2−1)
d,2 · · · m̃(1)

d,1 until the last
two codewords in a sequence of divisions are indexed by m̃(1)

d,2.
Delivery Encoder: Given w1, w2, d = (d1, d2), the trans-

mitter (i) generates md, m̃d = {m̃d,1, m̃d,2} as in (7), (ii) uses
Cd,n to send xnd which corresponds to md, m̃d,1, m̃d,2, i.e.,
xnd(md, m̃

(nα2 )

d,1 , m̃
(nα2 )

d,2 , m̃
(nα2−1)
d,1 , m̃

(nα2−1)
d,2 , · · · , m̃(1)

d,1, m̃
(1)
d,2).

Decoding: Using Xn
c , receiver j recovers Mc,j , M̃c,j , and

stores them in its cache, j = 1, 2. The combined size of
Mc,j , M̃c,j does not exceed n

2 bits. Using Xn
d, both receivers

recover Md, M̃d. Using Md, M̃d, Mc,j , M̃c,j , and for large
n, receiver j correctly decodes its desired message Wdj .

Security Analysis: We slightly modify the scheme above as

follows. Let αε = α+2εn, α1,ε = α1 + εn, α2,ε = αε−α1,ε.
We (i) increase the sizes of K1,K2 to nαε

2 bits, instead of
nα2 , and zero-pad the bit strings of Wd1,s,Wd2,s accordingly,
(ii) decrease the sizes of W (1)

l , W (2)
l , l = 1, 2, to n 1−αε

2 bits.
Fix S1, S2 ⊆ [1 : n]. For fixed values of α1, α2, Cc,n can be
seen as a wiretap code with 2n(1−α1,ε) bins, indexed by

wc = (mc, m̃
(1)
c,1, m̃

(1)
c,2, · · · , m̃

(n
α2,ε

2 )
c,1 , m̃

(n
α2,ε

2 )
c,2 ). (8)

Each bin wc contains 2nα1,ε binary codewords, indexed by

w̃c = (m̃
(n
α2,ε

2 +1)
c,1 , m̃

(n
α2,ε

2 +1)
c,2 , · · · , m̃(nαε2 )

c,1 , m̃
(nαε2 )
c,2 ). (9)

Similarly, for fixed α1, α2, the code Cd,n is a wiretap code with
2n(1−α2,ε) bins, each of which is indexed by the message

wd = (md, m̃
(nαε2 )

d,1 m̃
(nαε2 )

d,2 · · · m̃(n
α2,ε

2 +1)

d,1 m̃
(n
α2,ε

2 +1)

d,2 ) (10)

Each bin wd contains binary 2nα2,ε codewords, indexed by

w̃d = (m̃
(n
α2,ε

2 )

d,1 , m̃
(n
α2,ε

2 )

d,2 , · · · , m̃(1)
d,1, m̃

(1)
d,2). (11)

Let {Bwc}2
n(1−α1,ε)

wc=1 , {Bwd
}2n(1−α2,ε)

wd=1 denote the partition
(bins) of Cc,n, Cd,n, which correspond to wc, wd, in (8), (10).
Let x2n , (xnc ,x

n
d) be the concatenation of xnc , xnd. Define

Bwc,wd
, {x2n = (xnc ,x

n
d) : x

n
c ∈ Bwc ,xnd ∈ Bwd

}. (12)

Since the partitioning of Cc,n, Cd,n, is random, each Bwc,wd
is

a random code resulting from the Cartesian product of the ran-
dom bins Bwc ,Bwd

and contains 2nαε length-2n codewords.
W̃c, W̃d, are independent, and so are {W̃c, W̃d}, {Wc,Wd};
Wc, W̃c,Wd, W̃d are the random variables corresponding to
the realizations in (8)-(11). We thus can apply [12, (94)-(103)]
to show that, for every S1, S2, wc, wd, ε > 0, and some γ > 0,

PBwc,wd
(D(PZnS1

ZnS2
|Wc=wc,Wd=wd

||PZnS1
ZnS2

) > ε) ≤ e−enγ

(13)

PZnS1
ZnS2
|Wc=wc,Wd=wd

is the induced distribution at the ad-
versary when xnc (wc, w̃c), xnd(wd, w̃d) are the transmitted
signals and PZnS1

ZnS2
is the output distribution at the adversary.

The number of messages wc, wd is 2n(2−αε) and the number
of subsets S1, S2 is

(
2n
αn

)
< 22n; their combined number is at

most exponential in n. Using (13) and the union bound [13],

lim
n→∞

max
S1,S2

I(Wc,Wd;Z
n
S1
,ZnS2

) = 0. (14)

Let {W (1)
dl,s
· · ·W (nαε2 )

dl,s
}, {K(1)

l · · ·K
(nαε2 )

l } denote the bit
strings of Wdl,s,Kl, l = 1, 2. For notational simplicity, define

W(1)
s = {W (i)

d1,s
,W

(i)
d2,s
}n

α2,ε
2

i=1 ,W(2)
s = {W (i)

d1,s
,W

(i)
d2,s
}n

αε
2

i=n
α2,ε

2 +1

K(1) = {K(i)
1 ,K

(i)
2 }

n
α2,ε

2
i=1 , K(2) = {K(i)

1 ,K
(i)
2 }

nαε2
i=n

α2,ε
2 +1

W
(1)
⊕K = {W (i)

d1,s
⊕K(i)

1 ,W
(i)
d2,s
⊕K(i)

2 }
n
α2,ε

2
i=1

W
(2)
⊕K = {W (i)

d1,s
⊕K(i)

1 ,W
(i)
d2,s
⊕K(i)

2 }
nαε2
i=n

α2,ε
2 +1

.

W
(2)
s −{Mc,Md,W

(1)
s ,W

(2)
⊕K}−{ZnS1

,ZnS2
} is a Markov
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chain, since {Mc,Md,W
(1)
s }, {W(2)

s ,K(2)}, are independent
and only W

(2)
⊕K is transmitted. Using (6)-(11), we have [16]

I(W1,W2;Z
n
S1
,ZnS2

)

= I(W
(1)
1 ,W

(2)
1 ,W

(1)
2 ,W

(2)
2 ,W1,s,W2,s;Z

n
S1
,ZnS2

) (15)

= I(W
(1)
1 ⊕W (1)

2 ,W
(2)
1 ⊕W (2)

2 ,W
(2)
d1
,W

(1)
d2
,

Wd1,s,Wd2,s;Z
n
S1
,ZnS2

) (16)

= I(Mc,Md,W
(1)
s ,W(2)

s ;ZnS1
,ZnS2

) (17)

≤ I(Mc,Md,W
(1)
s ,W

(2)
⊕K;ZnS1

,ZnS2
) (18)

= I(Mc,W
(1)
s ,Wd;Z

n
S1
,ZnS2

) (19)

= H(ZnS1
,ZnS2

)−H(ZnS1
,ZnS2

,W(1)
s ,W

(1)
⊕K |Mc,Wd)

+H(W
(1)
⊕K |Mc,Wd,W

(1)
s ,ZnS1

,ZnS2
) +H(W(1)

s ) (20)

≤ H(ZnS1
,ZnS2

)−H(ZnS1
,ZnS2

,K(1),W
(1)
⊕K |Mc,Wd)

+H(W(1)
s ) + ε′n (21)

≤ H(ZnS1
,ZnS2

)−H(K(1)|Mc,Wd)

−H(ZnS1
,ZnS2

, |Mc,K
(1),Wd) +H(W(1)

s ) + ε′n (22)
= H(ZnS1

,ZnS2
)−H(ZnS1

,ZnS2
, |Wc,Wd)

−H(K(1)) +H(W(1)
s ) + ε′n (23)

= I(Wc,Wd;Z
n
S1
,ZnS2

) + ε′n, (24)

ε′n → 0 as n→∞. (21) follows since, given {Mc,W
(1)
s ,Wd}

and for large n, the adversary can decode K(1) using ZnS1
,ZnS2

,
and (24) follows since K(1), W(1)

s , are identically distributed.
Using (14) and (24), (3) is satisfied. The achievable strong
secrecy file rate is Rs = 2× 1−α

2 + α
2 = 1− α

2 .

D. Achievability for α ∈ [1, 2]:

We adapt the scheme in Section IV-C as follows. The
messages W1,W2, are uniform over [1 : 2n

2−α
2 ]. The trans-

mitter randomly and independently from W1,W2, gener-
ates (i) the independent keys K1,K2, each is uniform over
[1 : 2n

2−α
2 ], and (ii) the independent dummy messages

W̃ , W̃K , each is uniform over [1 : 2n(α−1)]; {K1,K2} and
{W̃ , W̃K} are independent. Let Md,1 = Wd1 ⊕K1, Md,2 =

Wd2 ⊕ K2. Let {W (1)
dl
· · ·W (n 2−α

2 )

dl
}, {K(1)

l · · ·K
(n 2−α

2 )

l },
{M (1)

d,l · · ·M
(n 2−α

2 )

d,l }, be the bit strings of Wdl ,Kl,Md,l.
During cache placement, the transmitter generates Cc,n as

follows. Randomly and independently divide all the 2n length-
n binary sequences into 2 bins, indexed by K

(1)
1 ∈ {0, 1},

and each contains 2n−1 codewords. The two bins are further
randomly and independently divided into two sub-bins, in-
dexed by K(1)

2 ∈ {0, 1}, and each contains 2n−2 codewords.
The process continues, going over K(2)

1 ,K
(2)
2 · · ·K

(n 2−α
2 )

2 ,
until the remaining 2n(α−1) codewords, after each sequence
of divisions, are indexed by W̃K . The transmitter sends the
codeword Xn

c (K
(1)
1 ,K

(1)
2 , · · · ,K(n 2−α

2 )
1 ,K

(n 2−α
2 )

2 , W̃K).
In the delivery phase, the transmitter generates the codebook
Cd,n as follows. The transmitter randomly and independently
divide the 2n length-n binary sequences into 2 bins, indexed
by M

(n 2−α
2 )

d,1 ∈ {0, 1}, and each contains 2n−1 codewords.

The two bins are further randomly and independently divided
into two sub-bins, indexed by M

(n 2−α
2 )

d,2 ∈ {0, 1}, and each
contains 2n−2 codewords. The process continues, going in a
reverse order over M (n 2−α

2 −1)
d,1 ,M

(n 2−α
2 −1)

d,2 , · · · ,M (1)
d,1,M

(1)
d,2,

until the remaining 2n(α−1) codewords, after each sequence
of divisions, are indexed by W̃ . The transmitter sends the
codeword Xn

d(M
(n 2−α

2 )

d,1 ,M
(n 2−α

2 )

d,2 , · · · ,M (1)
d,1,M

(1)
d,2, W̃ ).

The remainder of the analysis follows similar steps as when
α ∈ [0, 1). The achievable secrecy file rate is Rs = 1− α

2 .

V. CONCLUSION

We have introduced the caching broadcast channel with a
a wire and cache tapping adversary of type II. In this model,
each receiver is equipped with a fixed-size cache memory,
and the adversary is able to tap into a subset of its choosing
of the transmitted symbols during cache placement, delivery,
or both. The legitimate terminals only know the size of the
overall tapped subset. The strong secrecy capacity is identified
when the transmitter’s library has two files. The achievability
scheme highlights the robustness of wiretap coding against a
clever adversary who jointly optimizes its chosen attack over
both phases of communication in a cache-aided system.
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