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Abstract—A new model for the interference channel with
confidential messages (IC-CM) is introduced, where each receiver,
besides his noisy observations, is provided with a fixed-length
subset, of his choosing, of noiseless observations for the transmit-
ted codewords of both users, making confidential communication
more challenging than the previous such model. In addition, in
the same spirit, a broadcast channel with confidential messages
(BC-CM), where the receivers noiselessly tap into subsets of their
choice of the transmitted codeword, is considered. Achievable
strong secrecy rate regions for both models are derived. In both
models, the size of the subset quantifies a secure rate trade-off
between the two receivers. The case of the new BC-CM model
with one receiver’s noisy observations are degraded with respect
to the other receiver, and only the degraded receiver is provided
with the subset of noiseless observations, is highlighted. In this
case, the receiver with the degraded noisy observations has a
positive rate after a certain threshold of his noiseless observations,
i.e., with the aid of these symbols.

I. INTRODUCTION

The wiretap channel (WTC) models a legitimate transmitter
and receiver communicating in the presence of a wiretapper
who observes the legitimate communication through a noisy
channel [1]. Reference [2] has introduced WTC II which mod-
els a WTC with a noiseless main channel and a wiretapper who
taps into a fixed subset of her choice of the transmitted bits [2].
The WTC II hence models a wiretapper more capable than the
classical observer. Interestingly, the secrecy capacity for the
WTC II does not increase when this more capable wiretapper
is replaced with a binary erasure wiretapper channel [2].

Reference [3] has introduced a noisy main channel to the
WTC II, and derived inner and outer bounds for its secrecy
capacity. Later, reference [4] has derived the secrecy capacity
for the model, showing that the secrecy capacity, once again,
does not increase by replacing the more capable wiretapper
with an erasure channel. Recently, reference [5] has introduced
a new model for the WTC, in which the wiretapper noiselessly
observes a subset of the transmitted symbols of her choice and
observes the remaining symbols through a noisy channel, and
derived its strong secrecy capacity. The new WTC model is
extended to the multiple access channel in [6].

In this paper, we study the extension of the new WTC model
in [5] to the interference channel with confidential messages
(IC-CM) and broadcast channel with confidential messages
(BC-CM) [7], [8]. We first consider a new IC-CM model,

Fig. 1. The new interference channel with confidential messages model.

with each receiver, besides his noisy observations, is provided
with noiseless observations for a subset, of his choice, of the
transmitted codewords of both users. Next, we propose a BC-
CM where each receiver chooses a subset of the transmitted
codeword to noiselessly observe. We derive achievable strong
secrecy rate regions for both models. Achievability is estab-
lished by solving a dual secret key agreement problem in the
source model and converting the solution to the original model
[5], [9]. We observe that the rate regions highlight the role of
the size of the subset at each receiver which induces a trade-off
between their rates.

We further focus on a special case of the new BC-CM,
with one receiver’s noisy observations are degraded versions of
the other receiver’s noisy observations, and only the degraded
receiver is provided with a subset of noiseless observations. In
the achievable rate region for this case, the receiver with the
degraded noisy observations achieves a positive secrecy rate
after a certain threshold on his noiseless observations, i.e., the
weaker receiver is aided to the point of achieving a positive
rate by the symbols he chooses to tap.

Notation: pUX denotes a uniform distribution over X . We
use [1 : n] , {1, · · · , n}. AS , {Ai}i∈S , S ⊆ N. 1A denotes
the indicator function. V(pX , qX), D(pX ||qX) denote the total
variation distance and K-L divergence between pX and qX .

II. CHANNEL MODELS

A. Interference Channel with Confidential Messages
Consider the model in Fig. 1. The channel pY1Y2|X1X2

is
a discrete memoryless channel (DMC) with two finite input
alphabets X1,X2, and two finite output alphabets Y1,Y2.
Transmitter j, j = 1, 2, wishes to send a message Mj reliably
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Fig. 2. The new broadcast channel with confidential messages model.

to receiver j, while keeping Mj secret from the other user’s
receiver. Mj , j = 1, 2, are independent and uniform over [1 :
2nRj ]. Transmitter j maps Mj into Xn

j , [Xj,1, · · · , Xj,n] ∈
Xnj using a stochastic encoder. Receiver j, j = 1, 2, besides
observing Yn

j , [Yj,1, · · · , Yj,n] ∈ Ynj , chooses the subset
Sj ∈ Sj , Sj , {Sj ⊆ [1 : n] : |Sj | = µj , αj =

µj
n }, and

observes ZnSj = [Z
Sj
1 , · · · , ZSjn ] ∈ Zn, Z , {X1×X2}∪{?},

Z
Sj
i = {X1,i, X2,i} if i ∈ Sj , and ZSji =?, otherwise. (1)

Receiver j, upon observing Yn
j ,Z

n
Sj

, outputs the estimate M̂j .
An (n, 2nR1 , 2nR2) code Cn , {C1,n, C2,n} consists of two

message sets, two stochastic encoders PXj |MjCj,n , j = 1, 2,
and two decoders. (R1, R2) is an achievable strong secrecy
rate pair if there is a sequence of codes {Cn}n≥1 such that

lim
n→∞

P((M̂1, M̂2) 6= (M1,M2)|Cn) = 0, (2)

lim
n→∞

max
S2∈S2

I(M1;Y
n
2 ,Z

n
S2
|Cn) = 0 (3)

lim
n→∞

max
S1∈S1

I(M2;Y
n
1 ,Z

n
S1
|Cn) = 0. (4)

The strong secrecy capacity region is the closure of all
achievable strong secrecy rate pairs (R1, R2).

B. Broadcast Channel with Confidential Messages

This model is described in Fig. 2. The channel pY1Y2|X
is a DMC with a finite input alphabet X and two finite
output alphabets Y1,Y2. The transmitter sends a message Mj

to receiver j, j = 1, 2, while keeping Mj secret from the
other receiver. Mj , j = 1, 2, are independent and uniform over
[1 : 2nRj ]. The transmitter maps M1,M2 into the codeword
Xn ∈ Xn using a stochastic encoder. As in Section II-A,
receiver j, j = 1, 2, (i) chooses the subset Sj ∈ Sj , (ii)
observes Yn

j ∈ Ynj and ZnSj = [Z
Sj
1 , · · · , ZSjn ] ∈ Zn, where

Z
Sj
i = Xi, if i ∈ Sj , and Z

Sj
i =?, otherwise, (5)

Z , X ∪ {?}, and (iii) outputs the estimate M̂j .
An (n, 2nR1 , 2nR2) code Cn consists of two message sets,

one stochastic encoder PX|M1M2Cn , and two decoders. Strong
secrecy rate pair (R1, R2) is achievable if there is a sequence
of codes {Cn} such that (2)-(4) hold.

III. MAIN RESULTS

Theorem 1 For α1, α2 ∈ [0, 1], an achievable strong secrecy
rate region for the new IC-CM in Fig. 1 is given by the convex

hull of all rate pairs (R1, R2) satisfying:

R1 ≤
[
I(U1;Y1) + α1I(U1;X1, X2|Y1)
− I(U1;Y2|U2)− α2I(U1;X1, X2|U2, Y2)

]+
, (6)

R2 ≤
[
I(U2;Y2) + α2I(U2;X1, X2|Y2)
− I(U2;Y1|U1)− α1I(U2;X1, X2|U1, Y1)

]+
, (7)

for some pU1U2X1X2Y1Y2 = pU1pU2pX1|U1
pX2|U2

pY1Y2|X1X2
.

Remark 1 Setting α1 = α2 = 0 in (6), (7) yields the
achievable secrecy rate region for the IC-CM in [7], [8]. By
comparing (6), (7), to the region in [7], [8], we notice that the
term αjI(Uj ;X1, X2|Yj), j = 1, 2, represents the rate gain
for user j due to his noiseless observations, and the term
αiI(Uj ;X1, X2|Ui, Yi), i = 1, 2, i 6= j, represents the secrecy
penalty at user j due to the noiseless observations of user i.

Theorem 2 For α1, α2 ∈ [0, 1], an achievable strong secrecy
rate region for the new BC-CM in Fig. 2 is given by the convex
hull of all rate pairs (R1, R2) satisfying:

R1 ≤
[
I(U1;Y1) + α1I(U1;X|Y1)− I(U1;U2)

− I(U1;Y2|U2)− α2I(U1;X|U2, Y2)
]+
, (8)

R2 ≤
[
I(U2;Y2) + α2I(U2;X|Y2)− I(U1;U2)

− I(U2;Y1|U1)− α1I(U2;X|U1, Y1)
]+
, (9)

for some pU1U2XY1Y2
= pU1U2

pX|U1U2
pY1Y2|X .

Remark 2 By setting α1 = α2 = 0 in (8), (9), we obtain the
achievable secrecy rate region for the BC-CM in [7, Thm. 4].

For the new BC-CM model in Fig. 2, when α1 = 0, α2 = α,
and the channel pY1Y2|X is degraded, i.e., X − Y1− Y2 forms
a Markov chain, we have the following achievable strong
secrecy rate region, which follows from Theorem 2.

Corollary 1 For α ∈ [0, 1], an achievable strong secrecy rate
region for the degraded BC-CM, with the degraded receiver is
provided by αn noiseless transmitted symbols of his choice,
is the convex hull of all rate pairs (R1, R2) satisfying:

R1 ≤
[
I(U1;Y1|Y2)− I(U1;U2|Y2)− αI(U1;X|U2, Y2)

]+
R2 ≤

[
αI(U2;X|Y2)− I(U1;U2|Y1)− I(U2;Y1|Y2)

]+
,

for some pU1U2XY1Y2
= pU1U2

pX|U1U2
pY1|XpY2|Y1

.

Remark 3 Unlike for the BC-CM in [7], where receiver 2 has
zero rate, R2 = 0, when Y2 is degraded from Y1, for the new
BC-CM in Fig. 2 with α1 = 0, α2 = α, and Y2 is degraded
with respect to Y1, Corollary 1 implies that receiver 2 has a
positive rate after a certain threshold on α. For example, by
setting U1 = const., U2 = X , and for H(X|Y2) 6= 0, we have

R2 > 0, if
H(X|Y2)−H(X|Y1)

H(X|Y2)
< α ≤ 1.

In general, for the model in Corollary 1, R2 > 0 if there exist
U1, U2 such that U1U2−X −Y1−Y2 is a Markov chain, and

αI(U2;X|Y2) > I(U2;Y1|Y2) + I(U1;U2|Y1). (10)
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Fig. 3. Dual source model for the channel model in Fig. 2.

IV. PROOFS FOR THEOREMS 1 AND 2
We first prove Theorem 2. We adopt the achievability

approach in [5], [6], [9]. In particular, we introduce an appro-
priate dual secret key agreement problem in the source model,
which introduces a set of random variables that is similar to
the variables introduced by the original channel model with
an added common randomness available at all terminals. We
then solve for encoders and decoders in the dual source model,
and convert the solution to the original channel model by
applying the reverse encoders and decoders to the channel
model and using a set of probability distribution approximation
arguments. We finally remove the common randomness from
the original model by conditioning on a certain instance of
that randomness, without disturbing the desired properties.

We use A1:2 = (A1, A2) for random variables (vectors) and
their realizations. Fix the distribution pU1:2X = pU1:2

pX|U1:2
.

Let pY1:2|U1:2
be the distribution resulting from concatenat-

ing the two DMCs pX|U1:2
, pY1:2|X , i.e., p(y1:2|u1:2) =∑

x p(y1:2|x)p(x|u1:2), where pY1:2|X is the transition prob-
ability in Fig. 2. Next, we define the following two protocols
and describe the joint distribution induced by each of them.

Protocol A: This protocol describes the dual secret key
agreement problem in Fig. 3, where Un

1 ,U
n
2 ,Y

n
1 ,Y

n
2 are i.i.d.

sequences according to pU1:2
pY1:2|U1:2

. Note that the noisy
observations at the source encoders, U1,U2, correspond to
the correlated auxiliary variables utilized in Marton’s coding
to separately encode the messages M1,M2 [10, Chap. 8]. The
source Uj is randomly and independently binned into the
indices Mj = B1j(Uj), Cj = B2j(Uj), where B1j ,B2j are
independent and uniform over [1 : 2nRj ], [1 : 2nR̃j ], j = 1, 2.
Decoder j (i) observes C1, C2,Yj , (ii) chooses Sj ∈ Sj and
observes ZSj as in (5), and (iii) outputs the estimates Ûj , M̂j .
The message Cj is public to decoder i, while the key Mj

should be kept secret from decoder i, i, j = 1, 2, i 6= j. The
realization of Sj , j = 1, 2, is unknown to the other decoder.
The induced joint distribution for protocol A is

P̃M1:2C1:2U1:2Y1ZS1Y2ZS2Û1:2
= pU1:2Y1ZS1Y2ZS2

×

P̃Û1|Y1ZS1C1
P̃Û2|Y2ZS2C2

1{B1j(Uj)=Mj ,B2j(Uj)=Cj ,j=1,2,}

= P̃M1:2C1:2
P̃U1:2|M1:2C1:2

pY1ZS1Y2ZS2 |U1:2

× P̃Û1|Y1ZS1C1
P̃Û2|Y2ZSC2

. (11)

Protocol B: This protocol describes the channel model
in Fig. 2 with assumed common randomness Cj , j = 1, 2,
uniformly distributed over [1 : 2nR̃j ], independent from all
other variables, and available to all terminals. We utilize

P̃U1:2|M1:2C1:2
and P̃Û1|Y1ZS1C1

, P̃Û2|Y2ZS2C2
in (11) as the

encoder and decoders for this protocol. The induced joint
distribution for protocol B is given by

PM1:2C1:2U1:2Y1ZS1Y2ZS2Û1:2
= pUM1:2

pUC1:2
P̃U1:2|M1:2C1:2

× pY1ZS1Y2ZS2 |U1:2
P̃Û1|Y1ZS1C1

P̃Û2|Y2ZS2C2
. (12)

In the channel model in protocol B, although the common
randomness Ci is available at receiver j, i, j = 1, 2, i 6= j, it
is not utilized for decoding Mj . The encoders in the source
model are chosen accordingly, c.f. (11). The M̂ variables are
deterministic functions of the Û random variables, and we
will introduce them later to the joint distributions of the two
protocols after fixing the binning functions. Before continuing
with the proof, we state the following two lemmas.

Lemma 1 provides the tool we utilize to establish closeness
of joint distributions from the two protocols, in total variation
distance sense, in order to convert the desired properties from
the dual source model in protocol A to the original channel
model in protocol B. The exponential convergence rate pro-
vided by the lemma is utilized, along with the Borel-Cantelli
lemma and the union bound, to convert secrecy (independence)
conditions, measured in K-L divergence, from the source to
the channel model. Lemma 1 generalizes [6, Lemma 1] to the
case of two correlated sources. The proof for the general case
of multiple (more than two) correlated sources is given in [11].

Lemma 1 Let Xj ∈ Xj , j = 1, 2, be two correlated sources
according to pX1:2

. Source Xj is randomly and independently
binned into the indices Mj = B1j(Xj), Cj = B2j(Xj), where
B1j ,B2j are independent and uniform over [1 : M̃j ], [1 : C̃j ].
Let B , {B1j(xj),B2j(xj)}xj∈Xj ,j=1,2. For γ1, γ2, γ1,2 > 0,
let D , {x1:2 ∈ X1 ×X2 : xj ∈ Dγj , x1:2 ∈ Dγ1,2 , j = 1, 2},

Dγj , {xj ∈ Xj : − log pXj (xj) > γj}, j = 1, 2,

Dγ1,2 , {x1:2 ∈ X1 ×X2 : − log pX1:2
(x1:2) > γ1,2}.

Let P be the induced distribution over M1:2, C1:2. We have,

EB(V(PM1:2C1:2
, pUM1:2

pUC1:2
)) ≤ PpX1:2

(X1:2 /∈ D)+
1

2

∑
j=1,2

(
M̃jC̃j2

−γj
)1/2

+
1

2

(
M̃1M̃2C̃1C̃22

−γ1,2
)1/2

. (13)

Next, we state the following lemma by which we establish
secrecy conditions for the source model. The convergence rate
provided by the lemma is doubly-exponential which is utilized,
along with the union bound, to ensure secrecy against the
exponentially many choices of the subset Sj at decoder j.

Lemma 2 [6, Lemma 2]: Let Xj ∈ Xj , j = 1, 2, be two
correlated sources, both correlated with the source {ZS} ,
{Z, pZS} , S ∈ S, according to pX1:2ZS . |X1|, |X2|, |Z|, |S| <
∞. Xj is randomly binned into Mj , Cj as in Lemma 1. For
γj , γi,j > 0, j, i = 1, 2, i 6= j, and any S ∈ S, define

DSj ,
{
(x1:2, z) ∈ X1 ×X2 ×Z : (xj , z) ∈ DSγj , (x1:2, z)

∈ DSγi,j
}
, where DSγj ,

{
(xj , z) : − log pXj |ZS (xj |z) > γj

}
,

and DSγi,j ,
{
(x1:2, z) : − log pXi|XjZS (xi|xj , z) > γi,j

}
.
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If there exists δ ∈ (0, 12 ) such that for j = 1, 2, and all S ∈ S,
PpX1:2ZS

(
(X1:2, ZS) ∈ DSj

)
≥ 1− δ2, then, ∀ε ∈ [0, 1],

PB
(
max
S∈S

D(PM1:2C1:2ZS ||pUM1:2
pUC1:2

pZS ) ≥ 2ε̃
)
≤

|S||Z| min
j,i=1,2,i6=j

{
e

(
−ε2(1−δ)2γj

3M̃jC̃j

)
+ e

(
−ε2(1−δ)2γi,j

3M̃iC̃i

)}
, (14)

where ε̃ , maxj=1,2{ε+(δ+δ2) log(M̃jC̃j)+Hb(δ
2)}, Hb is

the binary entropy function, and P is the induced distribution.

We divide the remainder of the proof into the following steps:

A. Closeness of joint induced distributions

In Lemma 1, set X1 = U1, X2 = U2, M̃1 = 2nR1 , C̃1 =
2nR̃1 , M̃2 = 1, C̃2 = 2nR̃2 , where U1:2 are defined as in
protocol A. For ε′ > 0, by setting γj = n(1− ε′)H(Uj), j =
1, 2, γ1,2 = n(1−ε′)H(U1:2), and using Hoeffding’s inequality
[5, Lemma 5], we have PpU1:2

(U1:2 /∈ D) ≤ exp(−β′1n),
where β′1 > 0. By substituting the choices for M̃j , C̃j , γj , j =
1, 2, and γ1,2 in (13), there exists β1 > 0 such that

EB(V(P̃M1C1:2
, pUM1

pUC1:2
)) ≤ exp(−β1n), (15)

as long as, R1 + R̃1 ≤ (1− ε′)H(U1), R̃2 ≤ (1− ε′)H(U2)

R1 + R̃1 + R̃2 ≤ (1− ε′)H(U1U2). (16)

Similarly, by setting X1 = U1, X2 = U2, M̃1 = 1, C̃1 =
2nR̃1 , M̃2 = 2nR2 , C̃2 = 2nR̃2 in Lemma 1, ∃β2 > 0 s.t.

EB(V(P̃M2C1:2 , p
U
M2
pUC1:2

)) ≤ exp(−β2n), (17)

as long as, R̃1 ≤ (1− ε′)H(U1), R2 + R̃2 ≤ (1− ε′)H(U2)

R̃1 +R2 + R̃2 ≤ (1− ε′)H(U1U2). (18)

Using (11), (12), (15) and (17), we have, for j = 1, 2, Sj ∈ Sj ,

EBV(P̃MjC1:2UjYjZSj Ûj
, PMjC1:2UjYjZSj Ûj

) ≤ e−βjn.

Also, by the Borel-Cantelli lemma and Markov inequality, it
follows from (15) and (17) that, for j = 1, 2,

lim
n→∞

PB
(
V(P̃MjC1:2 , p

U
Mj
pUC1:2

) > 0) = 0. (19)

B. Reliable decoding at source decoder j

In protocol A, for reliable communication of the source Uj ,
decoder j employs Slepian-Wolf source decoder. Since Uj is
i.i.d. and pYj |U1:2

is a DMC, then, for any Sj ∈ Sj , j = 1, 2,

H(Uj |YjZSj ) = H(Uj,Sj ,Uj,Scj
|Yj,Sj ,Yj,Scj

,XSj )

= H(Uj,Sj |XSj ,Yj,Sj ) +H(Uj,Scj
|Yj,Scj

)

= µjH(Uj |X) + (n− µj)H(Uj |Yj), (20)

where (20) follows since Uj −X −Yj forms a Markov chain.
Using [9, Lemma 1], which is a variation on the Slepian-Wolf
source coding theorem [10], for j = 1, 2, and any Sj ∈ Sj ,

lim
n→∞

EB
(
V(P̃MjC1:2UjYjZSj Ûj

,

P̃MjC1:2UjYjZSj
1{Ûj=Uj})

)
= 0, (21)

as long as R̃j ≥ αjH(Uj |X) + (1− αj)H(Uj |Yj). (22)

C. Secrecy against source decoder j
Set X1 = U1, X2 = U2, M̃1 = 2nR1 , C̃1 = 2nR̃1 , M̃2 = 1,

C̃2 = 2nR̃2 , S = S2, ZS = Y2ZS2
in Lemma 2; U1:2, Y2,

S2, ZS2
are as in protocol A. For ε′′ > 0, j = 1, 2, by choosing

γ1,2 = (1− ε′′)[µ2H(U1|U2X) + (n− µ2)H(U1|U2Y2)]

γ2,1 = (1− ε′′)[µ2H(U2|U1X) + (n− µ2)H(U2|U1Y2)],

γj = (1− ε′′)[µ2H(Uj |X) + (n− µ2)H(Uj |Y2)], (23)

using Hoeffding’s inequality, ∃β̃ > 0 s.t. ∀S2 ∈ S2, j = 1, 2,

PpU1:2Y2ZS2

(
(U1:2,Y2ZS2

) /∈ DS2
j

)
≤ exp(−β̃n) = δ2.

Note that lim
n→∞

δ2 = 0, and hence, for n sufficiently large,

δ2 ∈ (0, 14 ). Thus, the conditions of Lemma 2 are satisfied.
Substituting the choices for M̃1, M̃2, C̃1, C̃2, γ2, γ1,2, and
|S2||Zn| ≤ (2(|X |+1)|Y2|)n in (14), we have, for all ε, ε1 >
0, ε̃ = ε+ ε1, there exists n∗ ∈ N and κε, κ̃ > 0 s.t. ∀n ≥ n∗,

PB
(
max
S2∈S2

D(P̃M1C1:2Y2ZS2
||pUM1

pUC1:2
pY2ZS2

) ≥ 2ε̃
)

≤ exp
(
− κεeκ̃n

)
, as long as (24)

R1 + R̃1 ≤ (1− ε′′)[α2H(U1|U2X) + (1− α2)H(U1|U2Y2)]

R̃2 ≤ (1− ε′′)[α2H(U2|X) + (1− α2)H(U2|Y2)]. (25)

By the Borel-Cantelli lemma, it follows from (24) that

lim
n→∞

PB
(
max
S2∈S2

D(P̃M1C1:2Y2ZS2
||pUM1

pUC1:2
pY2ZS2

) > 0
)
= 0

(26)

Similarly, setting X1 = U1, X2 = U2, M̃1 = 1, C̃1 = 2nR̃1 ,
M̃2 = 2nR2 , C̃2 = 2nR̃2 , S = S1, ZS = Y1ZS1 in Lemma
2 and using the choices for γ1, γ2, γ1,2, γ2,1 in (23), but with
replacing µ2 and Y2 by µ1 and Y1, gives

lim
n→∞

PB
(
max
S1∈S1

D(P̃M2C1:2Y1ZS1
||pUM2

pUC1:2
pY1ZS1

) > 0
)
= 0

(27)

if R2 + R̃2 ≤ α1H(U2|U1X) + (1− α1)H(U2|U1Y1)

R̃1 ≤ α1H(U1|X) + (1− α1)H(U1|Y1). (28)

Note that we have considered two problems, where in
each problem, one source encoder is communicating his key
reliably to the corresponding decoder and securely from the
other user’s decoder, c.f. (21), (26), (27). In each of these
two problems, the public messages C1:2 are required to be
independent from Mj and Yj ,ZSj , c.f. (26), (27). The reason
is that, after converting these conditions to the channel model
in protocol B, we need to eliminate the common randomness
C1:2 from the model by conditioning on a certain instance of it
while preserving the uniformity of the message Mj , j = 1, 2,
and its independence from the other receiver’s observations.
D. Converting reliability and secrecy properties to protocol B

First, for the reliability conditions, using the triangle in-
equality, it follows from (15), (17), and (21), that, for j = 1, 2,

lim
n→∞

EB
(
V(PMjC1:2UjYjZSj Ûj

,

PMjC1:2UjYjZSj
1{Ûj=Uj})

)
= 0. (29)
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For the secrecy conditions, by the union bound, (19), (26),

lim
n→∞

PB
(
max
S2∈S2

D(PM1C1:2Y2ZS2
||pUM1

pUC1:2
pY2ZS2

) > 0
)

≤ lim
n→∞

PB
(
max
S2∈S2

D(P̃M1C1:2Y2ZS2
||pUM1

pUC1:2
pY2ZS2

) > 0
)

+ lim
n→∞

PB
(
V(P̃M1C1:2

, pUM1
pUC1:2

) > 0
)
= 0. (30)

Similarly, using the union bound, (19) and (27), we have,

lim
n→∞

PB
(
max
S1∈S1

D(PM2C1:2Y1ZS1
||pUM2

pUC1:2
pY1ZS1

) > 0
)
= 0.

(31)

Note that the reliability and secrecy conditions for the original
channel model in protocol B, (29)-(31), are averaged over
the random binning of the dual source model in protocol A,
where this binning determines the encoders and decoders for
the dual source model and hence the encoders and decoders
for the original channel model as well, c.f., (12). By applying
the selection lemma [12, Lemma 2.2] to (29)-(31), there is a
binning realization b∗, with a corresponding joint distribution
p∗ for the original channel model in protocol B such that

lim
n→∞

V
(
p∗
MjC1:2UjYjZSj Ûj

,

p∗MjC1:2UjYjZSj
1{Ûj=Uj}

)
= 0, j = 1, 2, (32)

and lim
n→∞

1{
max
S2∈S2

D(p∗M1C1:2Y2ZS2
||pUM1

pUC1:2
pY2ZS2

)>0
} = 0,

lim
n→∞

1{
max
S1∈S1

D(p∗M2C1:2Y1ZS1
||pUM2

pUC1:2
pY1ZS1

)>0
} = 0, (33)

where Mj = b∗1j(Uj) and Cj = b∗2j(Uj), j = 1, 2.

E. Eliminating the common randomness
By introducing the M̂ variables to the distributions in (32)

as deterministic functions of the Û variables, we have [5],

lim
n→∞

EC1:2

(
Pp∗(M̂j 6=Mj |C1:2)

)
= 0, j = 1, 2. (34)

We also have, using the union bound and (33), that

lim
n→∞

PC1:2

(
max
S2∈S2

D(p∗M1Y2ZS2 |C1:2
||pUM1

p∗Y2ZS2 |C1:2
) > 0

)
≤ lim
n→∞

1{
max
S2∈S2

D(p∗M1C1:2Y2ZS2
||pUM1

pUC1:2
pY2ZS2

)>0
}

+ lim
n→∞

P
(
max
S2∈S2

D(p∗M1Y2ZS2 |C1:2
||pUM1

p∗Y2ZS2 |C1:2
) > 0,

and ∀S2, p
∗
M1C1:2Y2ZS2

= pUM1
pUC1:2

pY2ZS2

)
= 0, (35)

as the second probability in (35) is equal to zero. Similarly,

lim
n→∞

PC1:2

(
max
S1∈S1

D(p∗M2Y1ZS1 |C1:2
||pUM2

p∗Y1ZS1 |C1:2
) > 0

)
= 0. (36)

Applying the selection lemma to (34)-(36) results in the ex-
istence of c∗1:2 such that the reliability and secrecy constraints
in (2)-(4) are satisfied. We hence identify the encoder and de-
coders for the original model as p(x|u1:2)p̃

∗(u1:2|m1:2, c
∗
1:2)

and (p̃∗(ûj |yj , z, c∗j ), b∗1j(ûj), j = 1, 2); p̃∗ is the induced
distribution in protocol A that corresponds to the binning b∗.

Finally, combining the rate conditions in (16), (18), (22),
(25) and (28), while taking ε′, ε′′ → ∞, results in the rate

region in (8)-(9). The convex hull follows by time sharing
independent codes. This completes the proof for Theorem 2.

The proof for Theorem 1 follows similar steps as in the
proof for Theorem 2. The difference is that the auxiliary
variables U1, U2 are independent, where at the beginning in
the proof, we fix the distribution pU1:2X1:2

which factorizes
as pU1pU2pX1|U1

pX2|U2
. Note that Lemmas 1, 2, hold for the

case of independent sources as well.

V. CONCLUSION

In this paper, we have studied a new model for the two-
user interference channel with confidential messages (IC-CM),
where the receivers, besides their noisy observations, are
provided with fixed-length subsets of their choice of noiseless
observations for transmitted codeword symbols of the both
users. We have also proposed a new broadcast channel with
confidential messages (BC-CM) model, with each receiver is
provided with a subset of his choice of noiseless observations
for the transmitted codeword. We have derived achievable
strong secrecy rate regions for the two models. For both
models, the size of the subset at each receiver gives rise
to a trade-off between the rates of the two receivers, which
is demonstrated in the derived rate regions. We have also
highlighted the special case of the new BC-CM, with one
receiver’s noisy observations are degraded with respect to the
other receiver, and only this degraded receiver is provided with
a subset of noiseless observations. The achievable rate region
for this case shows that the receiver, with the degraded noisy
observations, achieves a positive secrecy rate after a certain
threshold on the ratio of his noiseless observations.
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