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Abstract—A new broadcast wiretap channel (B-WTC) with a
wiretapper who noiselessly taps into a fixed-length subset of the
transmitted symbols of her choice, and observes the remainder
through a noisy channel, is studied. An achievable strong secrecy
rate region which extends Marton’s inner bound to the proposed
setting, is derived. Strong secrecy capacity regions for two classes
of the new B-WTC, namely the new B-WTC with deterministic
receivers, and the new B-WTC with degraded receivers and more
noisy wiretapper, are identified. These results extend the recently
proposed new wiretap channel model to the broadcast setting.

I. INTRODUCTION

The wiretap channel II (WTC-II), introduced in [1], models
a WTC with a noiseless main channel and a wiretapper who
noiselessly taps into a fixed-length subset of her choice of
the transmitted bits. Recently, reference [2] introduced a noisy
main channel to the WTC-II model and derived inner and outer
bounds for the secrecy capacity. Subsequently, reference [3]
derived the secrecy capacity for this model. More recently,
reference [4] introduced a new WTC and derived its strong
secrecy capacity. In this model, the wiretapper, besides tapping
into a subset of the transmitted symbols of her choice, observes
the remainder through a noisy channel. The model subsumes
both the classical WTC [5] and the WTC-II model [1] as
special cases. The ability to choose a subset of the codeword
as the wiretapper wishes makes this a more capable wiretapper
as compared to the passive adversary in [5]. The noisy channel
makes this a more realistic model compared to [1]. The new
WTC was extended to the multiple access setting in [6].

In this paper, we extend this WTC model to the broadcast
setting, proposing a new broadcast WTC (B-WTC). We derive
an achievable strong secrecy rate region for the model which
extends Marton’s inner bound for the broadcast channel to
the proposed setting. The derived rate region characterizes the
secrecy penalty due to the additional capabilities at the wire-
tapper. Achievability is established using a similar approach
as in [4], [6], [7] and requires extending the tools used in [6].

We characterize the strong secrecy capacity regions for two
classes of the new B-WTC. We first consider the class with
deterministic channels to the legitimate receivers. Second, we
consider the class with degraded receivers and a certain range
for the noiselessly tapped ratio by the wiretapper which results
in the wiretapper being more noisy than both receivers. These
results establish the optimality of the proposed achievability
scheme for the two aforementioned classes of the new B-WTC.

Fig. 1. The new two-user broadcast wiretap channel model.

Notation: For random variables (vectors) and their realiza-
tions, Ai:j , {Ai, · · · , Aj}, i < j, and AS , {Ai}i∈S ,
S ⊆ N. pUX denotes a uniform distribution over X . 1A is
the indicator function. V(pX , qX) and D(pX ||qX) denote the
total variation distance and K-L divergence between pX , qX .

II. CHANNEL MODEL

Consider the model in Fig. 1. The main channel is a dis-
crete memoryless channel (DMC) {X ,Y1,Y2, pY1Y2|X}. The
transmitter sends a common message M0 to both receivers, a
private message Mj to receiver j, j = 1, 2, while keeping M0:2

secret from the wiretapper. M0, {Mj}j=1,2, are independent
and uniform over [1 : 2nR0 ], [1 : 2nRj ]. The transmitter maps
M0:2 to Xn ∈ Xn using a stochastic encoder. Receiver j
observes Yn

j ∈ Ynj and outputs the estimates M̂0,j , M̂j . The
wiretapper chooses S ∈ S, with S , {S ⊆ [1 : n] : |S| =
µ, α = µ

n}, and observes ZnS = [ZS1 , · · · , ZSn ] ∈ Zn, where

ZSi = Xi, if i ∈ S, and ZSi = Vi, otherwise, (1)

Vn ∈ Vn, Vi ∼ pV |X , Z , X ∪ V . An (n, 2nR0 , 2nR1 , 2nR2)
code Cn consists of three message sets, a stochastic encoder
PXn|M0:2Cn , and two decoders. (R0, R1, R2) is an achievable
strong secrecy rate tuple if there is a sequence of codes s.t.

lim
n→∞

P
( ⋃
j=1,2

(M̂0,j , M̂j) 6= (M0,Mj)|Cn
)

= 0, (2)

lim
n→∞

max
S∈S

I(M0,M1,M2;ZnS |Cn) = 0. (3)

The strong secrecy capacity region is the closure of all
achievable strong secrecy rate tuples (R0, R1, R2).

III. ACHIEVABLE STRONG SECRECY RATE REGION

Theorem 1 For α ∈ [0, 1], an achievable strong secrecy rate
region for the new broadcast WTC in Fig. 1 is given by the
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convex hull of the rate tuples (R0, R1, R2) which satisfy:

R0 +Rj ≤
[
I(U0, Uj ;Yj)− I(U0, Uj ;V )

− αI(U0, Uj ;X|V )
]+
, j = 1, 2, (4)

R0 +R1 +R2 ≤
[

min{I(U0;Y1), I(U0;Y2)}
+ I(U1;Y1|U0) + I(U2;Y2|U0)− I(U1;U2|U0)

− I(U0, U1, U2;V )− αI(U0, U1, U2;X|V )
]+
, (5)

2R0 +R1 +R2 ≤
[
I(U0, U1;Y1) + I(U0, U2;Y2)

− I(U1;U2|U0)− I(U0;V )− I(U0, U1, U2;V )

− α[I(U0;X|V ) + I(U0, U1, U2;X|V )]
]+
, (6)

for some pU0U1U2XY1Y2V = pU0U1U2
pX|U0U1U2

pY1Y2V |X .

Remark 1 In Theorem 1, by setting α = 0, we obtain the
achievable rate region for the B-WTC in [7, Thm. 3]. That
is, the terms in (4)-(6) multiplied by α determine the secrecy
cost, with respect to the B-WTC, of the additional capability of
the wiretapper to choose αn noiseless codeword symbols. In
addition, setting α = 0, V = const., in (4)-(6) yields Marton’s
inner bound for the broadcast channel [8, Thm. 8.4].

Proof: (Theorem 1) We first assume the availability of
common randomness at all terminals in the original model.
We then introduce a dual multi-terminal secret key agreement
problem in the source model which introduces a set of random
variables similar to the variables introduced by the original
channel model with the assumed randomness. Next, we derive
rate conditions resulting in the induced distributions from the
two models to be identical and hence, a solution, i.e., the
encoder and decoders, for one model implies a solution for the
other. We search for encoder and decoders that satisfy certain
reliability and secrecy (independence) conditions for the dual
source model and utilize the reverse encoder and decoders
for the original channel model to achieve (2), (3). We finally
remove the common randomness from the original model.

In the original model, along with stochastic encoding for
secrecy, we utilize a combination of superposition and Marton
coding [8, Chapter 8]. We hence define the correlated auxiliary
variables U0, U1, U2 according to pU0:2pX|U0:2

. The message
M0 is represented by the codeword U0, while the message
Mj , j = 1, 2, is superposed over M0 through the codeword
Uj . Decoder j thus decodes M0 from U0 and Mj from U0Uj .
In the dual model, we define the sources noisy observations
according to the combined superposition and Marton coding.

Fix pU0:2X = pU0:2
pX|U0:2

, and let pY1:2|U0:2
be the distribu-

tion resulting from concatenating the DMCs pX|U0:2
, pY1:2|X ,

where pY1:2|X is the transition probability for the main channel
in Fig. 1. We describe the following two protocols:

Protocol A: The protocol is described in Fig. 2. Let Un
0 ,

Un
1 ,Un

2 ,Yn
1 ,Yn

2 be i.i.d. according to pU0:2
pY1:2|U0:2

. Source
U0 is randomly and independently binned into the indices
M0 = B10(U0), C0 = B20(U0), and source U0Uj , j = 1, 2,
is randomly and independently binned into Mj = B1j(U0Uj),
Cj = B2j(U0Uj). B1t,B2t are independent and uniform
over [1 : 2nRt ], [1 : 2nR̃t ], t = 0, 1, 2. Decoder j observes
C0, Cj ,Yj and outputs the estimates Û0,j , Ûj , M̂0,j , M̂j . The

Fig. 2. Multi-terminal secret key agreement problem in the source model.

wiretapper chooses S ∈ S and observes ZS as in (1). The
distribution of ZS is only known to belong to the finite class
{pZS}S∈S , with |S| < 2αn. The induced joint distribution is

P̃M0:2C0:2U0:2Y1:2ZSÛ0,1Û0,2Û1:2
= pU0:2Y1:2ZS P̃Û0,1Û1|Y1C0:1

× P̃Û0,2Û2|Y2C0C2
1{B1j(U0Uj)=Mj ,B2j(U0Uj)=Cj ,j=1,2}

× 1{B10(U0)=M0,B20(U0)=C0} = P̃M0:2C0:2
P̃U0:2|M0:2C0:2

× pY1:2ZS |U0:2
P̃Û0,1Û1|Y1C0C1

P̃Û0,2Û2|Y2C0C2
. (7)

Protocol B: This protocol is the original model in Fig. 1
with added common randomness {Ct}t=0,1,2 available to all
terminals and uniform over [1 : 2nR̃t ]. We utilize here the
encoder and decoders in (7). The induced distribution is

PM0:2C0:2U0:2Y1:2ZSÛ0,1Û0,2Û1:2
= pUM0:2

pUC0:2
P̃U0:2|M0:2C0:2

× pY1:2ZS |U0:2
P̃Û0,1Û1|Y1C0C1

P̃Û0,2Û2|Y2C0C2
. (8)

Although Ci is available at receiver j, i 6= j, it is not used
to decode M0, Mj . At this stage, we ignore the M̂ variables,
as we introduce them later as deterministic functions of the
Û variables. We next state the following two lemmas which
extend Lemmas 1, 2 in [6] to multiple correlated sources.

Lemma 1 is a one-shot result which provides conditions for
which random binning of multiple correlated sources results in
a distribution for the bins that is close to independent uniform
distributions. The convergence rate provided by Lemma 1,
which is exponential, is used in converting a secrecy (inde-
pendence) condition from the dual to the original model [4].

Lemma 1 Let X1:T be T correlated sources according to
pX1:T

. Each source Xt ∈ Xt, t ∈ [1 : T ], is randomly binned
into the indices Mt = B1t(Xt), Ct = B2t(Xt), where B1t,B2t

are independent and uniformly distributed over [1 : M̃t], [1 :
C̃t]. Let B , {B1t(xt),B2t(xt) : t ∈ [1 : T ], xt ∈ Xt}. Let
J , {J : J ⊆ [1 : T ], J 6= ∅}. For J ∈ J , γ(J) > 0, define1

D , {x1:T ∈ X1:T : xJ ∈ Dγ(J) ,∀J ∈ J }, where,

Dγ(J) , {xJ ∈ XJ : − log pXJ (xJ) > γ(J)}, (9)

M̃J =
∏
t∈J M̃t, and C̃J =

∏
t∈J C̃t. Then, we have

EB
(
V
(
PM1:TC1:T

, pUM1:T
pUC1:T

))
≤ PpX1:T

(X1:T /∈ D) +
1

2

∑
J∈J

√
M̃J C̃J2−γ(J) , (10)

where P is the induced distribution over M1:T and C1:T .

1For J ∈ J , we use XJ to denote the Cartesian product
∏

t∈J Xt.

2017 IEEE International Symposium on Information Theory (ISIT)

2134



Proof: See Appendix A.
Lemma 2 below is again a one-shot result which is used to

establish the secrecy condition for protocol A. In particular,
it provides a doubly-exponential convergence rate for the
probability that M0:2, C0:2, are independent, uniform, and both
are independent from ZS . This doubly-exponential rate is
needed to ensure secrecy for the exponentially many choices
of S. In the secrecy condition for the source model, we require
C0:2 to be independent from {M0:2,ZS} since, in the last step
of the proof, after showing that this secrecy condition holds as
well for protocol B, we need to eliminate C0:2 by conditioning
on a certain instance of it without disturbing the uniformity
of the messages M0:2 and their independence from ZS .
Lemma 2 Let X1:T be T correlated sources, which are corre-
lated with the source {ZS} , {Z, pZS} , S ∈ S, according to
pX1:TZS . All the alphabets of {Xt}Tt=1,Z,S, are finite. Each
source Xt is randomly binned into the indices Mt, Ct as in
Lemma 1. Let P be the set of all possible permutations of
[1 : T ]. For all p ∈ P , t ∈ [1 : T ], let γpt > 0, and define

DSp ,
{

(x1:T , z) ∈ X1:T ×Z : (xp1:t
, z) ∈ DSγp

t
,∀t ∈ [1 : T ]

}
where p , [p1 · · · pT ], xp1:t

, {xp1
, · · · , xpt}, xp1:0

= ∅, and

DSγp
t
,
{

(xp1:t , z) : log 1/pXpt |Xp1:t−1
ZS

(xpt |xp1:t−1
,z) > γpt

}
.

If there exists δ ∈ (0, 1
2 ) s.t. for all S ∈ S and p ∈ P ,

PpX1:T ZS

(
(X1:T , ZS) ∈ DSp

)
≥ 1− δ2, then, ∀ε ∈ [0, 1],

PB
(
max
S∈S

D(PM1:TC1:TZS ||pUM1:T
pUC1:T

pZS ) ≥ T ε̃
)

≤ |S||Z| min
p∈P

T∑
t=1

exp
(−ε2(1− δ)2γ

p
t

3M̃ptC̃pt

)
, (11)

where ε̃ = maxt{ε+(δ+δ2) log(M̃tC̃t)+Hb(δ
2)}, Hb is the

binary entropy function, and P is the induced distribution.
Proof: See Appendix B.

We now apply Lemma 1 to the source model in Fig.2. Set
X1 = U0, X2 = U0U1, X3 = U0U2, M̃t = 2nRt , C̃t =
2nR̃t , t = 0, 1, 2, where U0:2,M0:2, C0:2 are as in protocol A.
For ε′ > 0, J ⊆ [1 : 3], J 6= ∅, let γ(J) = (1− ε′)H(XJ). For
J = {1}, using Hoeffding inequality [4, Lemma 5], we have

P(X1 /∈ Dγ({1})) = PpU0

(
− log p(U0) ≤ γ({1})) =

P
( n∑
k=1

(− log p(U0,k)) ≤ n(1− ε′)H(U0)
)
≤ e−β

({1})n,

where β({1}) > 0. Similarly, for J ⊆ [1 : 3], J 6= ∅, ∃β(J) > 0
s.t. P(XJ /∈ Dγ(J)) ≤ exp(−β(J)n). Using (9), ∃β̄ > 0 s.t.

P(X1:3 /∈ D) ≤
∑

J⊆[1:3],J 6=∅

P(XJ /∈ Dγ(J)) ≤ e−β̄n. (12)

Substituting the choices for M̃t, C̃t, γ
(J) and (12), in (10), if

R0 + R̃0 < (1− ε′)H(U0)

R0 + R̃0 +Rj + R̃j < (1− ε′)H(U0Uj), j = 1, 2,

R0 + R̃0 +R1 + R̃1 +R2 + R̃2 < (1− ε′)H(U0:2), (13)

then, there exists β > 0 such that, for any S ∈ S,

EBV
(
P̃M0:2C0:2

, pUM0:2
pUC0:2

)
≤ exp(−βn). (14)

Now, for reliability of protocol A, we use Slepian-Wolf
decoders at both users. Using [7, Lemma 1], for any S ∈ S,

lim
n→∞

EBV
(
P̃M0:2C0:2U0:2Y1:2ZS1{Û0,1=Û0,2=U0,Ûj=Uj ,j=1,2}

, P̃M0:2C0:2U0:2Y1:2ZSÛ0,1Û0,2Û1:2

)
= 0, if for j = 1, 2,

R̃0 + R̃j > H(U0Uj |Yj) and R̃j > H(Uj |U0Yj). (15)

Next, in Lemma 2, set X1 = U0, X2 = U0U1, X3 =
U0U2, M̃t = 2nRt , C̃t = 2nR̃t , t = 0, 1, 2, ZS = ZS ,∀S ∈
S; U0:2,ZS ,S as in protocol A. Let us first consider p = p̄ =
[1 : 3]. Since pV |U0:2

is a DMC, that results from concatenating
the DMCs pV |X , pX|U0:2

, and U0:2 are i.i.d., then ∀S ∈ S,

H(X1|ZS) = H(U0|XSVSc) = H(U0,S |XS)

+H(U0,Sc |VSc) = µH(U0|X) + (n− µ)H(U0|V )

H(X2|X1ZS) = H(U0U1|U0XSVSc)

= µH(U1|U0X) + (n− µ)H(U1|U0V )

H(X3|X1:2ZS) = µH(U2|U0:1X) + (n− µ)H(U2|U0:1V ).

By Hoeffding inequality and the definition of DSp̄ , with ε̄ > 0,

γp̄1 = (1− ε̄)[µH(U0|X) + (n− µ)H(U0|V )]

γp̄2 = (1− ε̄)[µH(U1|U0X) + (n− µ)H(U1|U0V )]

γp̄3 = (1− ε̄)[µH(U2|U0U1X) + (n− µ)H(U2|U0U1V )],

∃βp̄ > 0 s.t. P((X1:3, ZS) /∈ DSp̄) ≤ exp (−βp̄n).
Similarly, for any p which is a permutation of [1 : 3], letting

γpt = (1 − ε̄) minS∈S H(Xpt |Xp1:t−1
ZS), with Xp1:0

= ∅,
∃βp > 0 s.t. P((X1:3, ZS) /∈ DSp) ≤ exp(−βpn). Taking δ2 =

e−β̃n, β̃ = minp βp, we have P
(
(X1:3, ZS) /∈ DSp

)
≤ δ2 for

all p. Note that lim
n→∞

δ2 = 0, and hence, for n large enough,

δ2 ∈ (0, 1
4 ). Thus, the conditions of Lemma 2 are satisfied.

Substituting the choices for M̃t, C̃t, γ
p
t , for t = 1, 2, 3, and

all p, and |S||Zn| ≤ en
[

ln 2+ln(|X |+|V|)
]

in (11), we have,
∀ε, ε1 > 0, ε̃ = ε+ ε1, ∃n∗ ∈ N, κε, κ̃ > 0 s.t. ∀n ≥ n∗,

P(max
S∈S

D(P̃M0:2C0:2ZS ||pUM0:2
pUC0:2

pZS ) ≥ 3ε̃) ≤ e−κεe
κ̃n

,

if R0 + R̃0 < (1− ε̄) [αH(U0|X) + (1− α)H(U0|V )]

R0 + R̃0 +Rj + R̃j < (1− ε̄)
[
αH(U0Uj |X)

+ (1− α)H(U0Uj |V )
]
, j = 1, 2,

R0 + R̃0 +R1 + R̃1 +R2 + R̃2 < (1− ε̄)×
[αH(U0U1U2|X) + (1− α)H(U0U1U2|V )] . (16)

Note that for each p ∈ P, Lemma 2 results in the maximum
binning rate Rp1

+ R̃p1
for the source Xp1

, and then the
maximum conditional binning rate for the source Xp2 given
Rp1

+R̃p1
, and so on and so forth, so that the probability in the

left hand side of (11) is vanishing. That is, for each p, Lemma
2 results in one corner point in the binning rate region for the
sources X1:T such that M1:T , C1:T are independent, uniform,
and all are independent from the wiretapper’s observation.
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By the Borel-Cantelli lemma, it follows from (14), (16) that

lim
n→∞

P(V(P̃M0:2C0:2
, pUM0:2

pUC0:2
) > 0) = 0, (17)

lim
n→∞

P(max
S∈S

D(P̃M0:2C0:2ZS ||pUM0:2
pUC0:2

pZS ) > 0) = 0. (18)

Using similar steps as in [4], we first use (14), (17) to show
that (15), (18) hold as well for protocol B. That is,

lim
n→∞

PB(max
S∈S

D(PM0:2C0:2ZS ||pUM0:2
pUC0:2

pZS ) > 0) = 0,

lim
n→∞

EBV
(
PM0:2C0:2U0:2Y1:2ZS1{Û0,1=Û0,2=U0,Ûj=Uj ,j=1,2}
, PM0:2C0:2U0:2Y1:2ZSÛ0,1Û0,2Û1:2

)
= 0. (19)

Next, we apply the selection lemma [4, Lemma 3] to (19)
to show the existence of a binning realization b∗, with a
corresponding joint distribution p∗ for protocol B, such that

lim
n→∞

V(p∗M0:2C0:2U0:2Y1:2ZS1{Û0,1=Û0,2=U0,Ûj=Uj ,j=1,2},

p∗
M0:2C0:2U0:2Y1:2ZSÛ0,1Û0,2Û1:2

) = 0, and (20)

lim
n→∞

1{max
S∈S

D(p∗M0:2C0:2ZS
||pUM0:2

pUC0:2
pZS )>0} = 0, (21)

M0 = b∗10(U0), C0 = b∗20(U0), Mj = b∗1j(U0Uj), and Cj =

b∗2j(U0Uj), j = 1, 2. We finally introduce the M̂ variables
to (20), and use the union bound with (21), to show that

lim
n→∞

EC0:2

(
Pp∗
( ⋃
j=1,2

(M̂0,j , M̂j) 6= (M0,Mj)|C0:2

))
= 0

lim
n→∞

PC0:2

(
max
S∈S

D(p∗M0:2ZS |C0:2
||pUM0:2

p∗ZS |C0:2
) > 0

)
= 0,

which are used to show the existence of c∗0:2 such that both
the reliability and secrecy constraints in (2), (3) hold.

Let p̃∗ be the distribution in protocol A that corresponds
to the binning realization b∗. We identify p̃∗(u0:2|m0:2, c

∗
0:2)

and (p̃∗(û0,j , ûj |yj , c∗0, c∗j ), b∗10(û0,j), b
∗
1j(û0,j , ûj), j = 1, 2)

as the encoder and decoders for the original model. Finally,
applying Fourier-Motzkin elimination to the rate conditions in
(13), (15), (16) results in the rate region in (4)-(6). The convex
hull follows by time sharing independent codes.

IV. SECRECY CAPACITY REGIONS

We characterize the strong secrecy capacity regions for
two classes of the new B-WTC. We consider the case of no
common message (M0 = 0). To establish the capacity results,
we (i) use similar steps as in [4, Sec. V] to show that the
secrecy capacity of the new B-WTC is upper bounded by the
secrecy capacity when the wiretapper observes the outputs of
two DMCs, where the first DMC is an erasure channel with
erasure probability (1−α) and the second is pV |X , (ii) use the
upper bound for the discrete memoryless (DM) B-WTC in [9],
and finally (iii) evaluate the achievable rate region in (4)-(6).
We omit the details of the proofs due to space limitations.

A. New B-WTC with Deterministic Receivers
We consider the class of the new B-WTC in Fig. 1 with

both Y1 and Y2 are deterministic functions of the input X .

Theorem 2 For α ∈ [0, 1], the strong secrecy capacity of the
new B-WTC with deterministic receivers is the set of all rate

pairs (R1, R2) satisfying

Rj ≤ (1− α)H(Yj |V ), j = 1, 2,

R1 +R2 ≤ (1− α)H(Y1, Y2|V ). (22)

For achievability, we set U0 = const., Uj = Yj , in (4)-(6).

B. New B-WTC with Degraded Receivers
We next consider the class of the new B-WTC with Y2 is

a degraded version of Y1, i.e., X − Y1 − Y2 forms a Markov
chain, and the wiretapper in the DM B-WTC whose secrecy
capacity upper bounds that of the new B-WTC, is more noisy
than both receivers; ∀U s.t. U −X −Y2V is a Markov chain,

αI(U ;X|V ) ≤ I(U ;Y2)− I(U ;V ). (23)

Theorem 3 For α ∈ [0, 1] such that (23) holds, the strong
secrecy capacity of the new B-WTC with degraded receivers
is the set of all rate pairs (R1, R2) satisfying

R1 ≤ I(X;Y1|U,Q)− I(X;V |U,Q)− αH(X|V,U,Q),

R2 ≤ I(U ;Y2|Q)− I(U ;V |Q)− αI(U ;X|V,Q), (24)

so that Q− U −X − Y1Y2V forms a Markov chain.

Note that Q represents a time sharing random variable. For
achievability, we set U0 = U2 = U and U1 = X in (4)-(6).

V. CONCLUSION

In this paper, we have extended the recently proposed new
WTC model in [4] to the broadcast setting. In particular, we
have considered a broadcast WTC with a wiretapper who
noiselessly taps into a subset of her choice of the transmitted
symbols and observes the remaining symbols through a noisy
channel. We have derived an achievable strong secrecy rate
region for the model, which extends Marton’s inner bound
and characterizes the secrecy penalty due to the noiseless
observations at the wiretapper. We also have characterized the
secrecy capacity for two classes of the new broadcast WTC.

APPENDIX A
PROOF OF LEMMA 1

Recall that J = {J : J ⊆ [1 : T ], J 6= ∅}. For all J ∈ J ,
let 1{x,m,c,J} = 1{B1t(xt)=mt,B2t(xt)=ct,∀t∈J}. We have,

P (m1:T , c1:T ) =
∑

x1:T∈X1:T

p(x1:T )1{x,m,c,[1:T ]}. (25)

Also, for J ∈ J , EB1{x,m,c,J} =
∏
t∈J

1
M̃tC̃t

= (M̃J C̃J)−1.

Let P (m1:T , c1:T ) = P1(m1:T , c1:T ) +P2(m1:T , c1:T ), where

P1(m1:T , c1:T ) =
∑
x1:T

p(x1:T )1{x,m,c,[1:T ]}1{x1:T /∈D} (26)

P2(m1:T , c1:T ) =
∑
x1:T

p(x1:T )1{x,m,c,[1:T ]}1{x1:T∈D}. (27)

Using similar steps as in [4, (120)-(125)], we have

2EBV
(
PM1:TC1:T

, pUM1:T
pUC1:T

)
≤ 2P(X1:T /∈ D)+∑

m1:T ,c1:T

EB |P2(m1:T , c1:T )− EBP2(m1:T , c1:T )| . (28)

2017 IEEE International Symposium on Information Theory (ISIT)

2136



We partition X1:T as follows. At the first iteration, s = 1, ∀J ∈
J , pick the largest possible set NJ,1 of sequences x1:T that
have different coordinates in each position of J , and at least
one other position, i.e., NJ,1 is on the form {x1:T : x̄1:T ∈
NJ,1 ⇒ xJc 6= x̄Jc , ∀t ∈ J, xt 6= x̄t}. Note that, for J ∈ J ,
the largest setNJ,1 is not unique. Choose {NJ,1}J∈J such that
they do not overlap. We repeat the process, such that NJ,s ∩
NJ′,s′ = ∅ for s 6= s′ or J 6= J ′, and for x1:T ∈ NJ,s, x′1:T ∈
NJ,s′ , xJc 6= x′Jc , until we run out of sequences in X1:T . Let
N be the number of iterations. Thus X1:T = ∪Ns=1∪J∈J NJ,s.
Thus, P2(m1:T , c1:T ) =

∑N
s=1

∑
J∈J P̄

J,s
2,m1:T ,c1:T

, where

P̄ J,s2,m1:T ,c1:T
=

∑
x1:T∈NJ,s

p(x1:T )1{x,m,c,[1:T ]}1{x1:T∈D}.

Thus, using the triangle inequality, we have∑
m1:T ,c1:T

EB |P2(m1:T , c1:T )− EBP2(m1:T , c1:T )| ≤∑
s,J

∑
m1:T ,c1:T

EB
∣∣P̄ J,s2,m1:T ,c1:T

− EBP̄ J,s2,m1:T ,c1:T

∣∣. (29)

Note that
∑
mJc ,cJc

1{x,m,c,[1:T ]} = 1{x,m,c,J}. Define

P J,s2,mJ ,cJ
,

∑
x1:T∈NJ,s

p(x1:T )1{x,m,c,J}1{x1:T∈D}, (30)

and hence,
∑
mJc ,cJc

P̄ J,s2,m1:T ,c1:T
= P J,s2,mJ ,cJ

. We also have

EBP̄ J,s2,m1:T ,c1:T
= (M̃JcC̃Jc)

−1 EBJP
J,s
2,mJ ,cJ

, (31)

PB
(
P̄ J,s2,m1:T ,c1:T

> (M̃JcC̃Jc)
−1 P J,s2,mJ ,cJ

)
≤ PB

( ∑
mJc ,cJc

P̄ J,s2,m1:T ,c1:T
> P J,s2,mJ ,cJ

)
= 0, (32)

where BJ , {B1t(xt),B2t(xt),∀xt ∈ Xt, t ∈ J}. From (32),
PB
(
P̄ J,s2,m1:T ,c1:T

≤ (M̃JcC̃Jc)
−1P J,s2,mJ ,cJ

)
= 1. Using the law

of total expectation and (31), (29) is further upper bounded by∑
s,J

∑
mJ ,cJ

EBJ
((
P J,s2,mJ ,cJ

− EBJP
J,s
2,mJ ,cJ

)2)1/2

≤
∑
s,J

∑
mJ ,cJ

(
VarBJP

J,s
2,mJ ,cJ

)1/2
, (33)

where (33) follows from Jensen’s inequality and the concavity
of square root. For any s, J , VarBJ (P J,s2,mJ ,cJ

) is given by

VarBJ
∑

x1:T∈NJ,s

p(x1:T )1{x,m,c,J}1{x1:T∈D}

=
∑

x1:T∈NJ,s

VarBJ
(
p(x1:T )1{x,m,c,J}1{x1:T∈D}

)
(34)

≤
∑

x1:T∈NJ,s

p2(x1:T )1{x1:T∈D}EBJ1{x,m,c,J}

≤ 1

M̃J C̃J

∑
xJ∈NJ,s

p2(xJ)1{xJ∈Dγ(J)}
∑

xJc∈NJ,s

p2(xJc |xJ)

≤ 2−γ
(J)

(M̃J C̃J)−1
∑

xJc∈NJ,s

p2(xJc |xJ), (35)

where (34) follows since {1{x,m,c,J}} are independent due to
the structure of the set NJ,s and the random binning, and (35)
follows as for all xJ ∈ Dγ(J) , pXJ (xJ) ≤ 2−γ

(J)

. Lemma 1
follows by substituting (35) in (33), and noticing that∑

s

( ∑
xJc∈NJ,s

p2(xJc |xJ)
)1/2

≤
∑
s

∑
xJc∈NJ,s

p(xJc |xJ) ≤
∑

xJc∈XJc
p(xJc |xJ) = 1.

APPENDIX B
PROOF OF LEMMA 2

We first consider p̄ that is the natural ordering of [1 : T ].
We prove the inequality in (11) for p = p̄. Lemma 2 follows
from a similar proof for all p ∈ P . For p = p̄, we prove (11)
by induction. For the base of induction, T = 1, (11) reduces
to the assertion in [4, Lemma 2]. Assume that (11) holds for
T = k − 1. The relative entropy in (11) at T = k is given by

D(PM1:kC1:kZS ||pUM1:k
pUC1:k

pZS )

= D(PM1:kC1:kZS ||PM1:k−1C1:k−1ZSp
U
Mk
pUCk)

+ D(PM1:k−1C1:k−1ZS ||pUM1:k−1
pUC1:k−1

pZS ). (36)

Thus, the probability in (11), at T = k, is upper bounded by

PB(max
S∈S

D(PM1:k−1C1:k−1ZS ||pUM1:k−1
pUC1:k−1

pZS ) > (k − 1)ε̃)

+ PB(max
S∈S

D(PM1:kC1:kZS ||PM1:k−1C1:k−1ZSp
U
Mk
pUCk) > ε̃).

By the induction hypothesis, the first probability is upper

bounded by |S||Z|
∑k−1
t=1 exp

(
−ε2(1−δ)2γ

p̄
t

3M̃tC̃t

)
. Using similar

analysis as in [6, Appendix B], we can show that the second

probability is be upper bounded by |S||Z| exp
(
−ε2(1−δ)2γ

p̄
k

3M̃kC̃k

)
.

We conclude that (11) holds for p = p̄. By rewriting (36) with
the different permutations of [1 : k] and repeating the proof,
the minimum over p ∈ P in (11) follows, hence Lemma 2.
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