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Abstract—In this paper, a new wiretap channel (WTC) model
with a discrete memoryless (DM) main channel and a wiretapper
who noiselessly observes a fixed portion, of her choice, of the
transmitted symbols, while observing the remaining transmitted
symbols through another DM channel (DMC), is considered.
The strong secrecy capacity of the model is identified. The
achievability is established using the output statistics of random
binning framework which exploits the duality between source
and channel coding problems. The converse is derived by upper
bounding the secrecy capacity of an equivalent model with the
secrecy capacity of a DM-WTC. This result generalizes both the
classical DM-WTC and the WTC-II with a DM main channel.

I. INTRODUCTION

Wyner introduced the wiretap channel (WTC) which models
point-to-point communication in the presence of a passive
wiretapper who only listens to the transmitted signal through
a cascaded discrete memoryless channel (DMC) [1]. Later,
Ozarow and Wyner introduced the WTC-II, which considered
a special instance of a WTC with a noiseless main channel and
a binary erasure channel (EC) to the wiretapper, but assumed
the wiretapper was able to select the positions of erasures [2].
Using random partitioning and combinatorial arguments, the
authors showed that the secrecy capacity did not deteriorate
despite this capability of the wiretapper.

While considerable research on practical coding design for
WTCs followed the coset coding scheme proposed in [2], see
for example [3], the idea of the WTC-II remained linked with
the assumption of a noiseless main channel for thirty years.
Recently, reference [4] introduced a discrete memoryless (DM)
main channel to the WTC-II with the objective of addressing
a more general model of a wiretapper who is smarter than a
passive observer. Reference [4] provided an outer bound and
derived an achievability scheme that is optimal for the special
case of the maximizing input distribution being uniform.
More recently, reference [5] provided a tight converse, and
established a stronger version of Wyner’s soft covering lemma
which enabled the achievability proof for the model, showing
that, once again, its secrecy capacity is equal to the secrecy
capacity when the wiretapper channel is a DM-EC.

This work goes one step further and introduces a new WTC
model with a DM main channel and a wiretapper who observes
a subset of transmitted codeword symbols of her choosing
perfectly, while observing the remaining symbols through a

Fig. 1. A new wiretap channel model.

DMC. This general model includes as special cases both the
classical DM-WTC by setting the subset size to zero and
the WTC-II with a noisy main channel [4] by setting the
wiretapper DMC to an EC with erasure probability one.

The achievability is established by solving a dual secret key
agreement problem in the source model [6], and infering the
optimal encoder and decoder design for the original problem
from the solution of the dual problem [7]. The advantage of the
conversion to a dual source coding problem is that it renders
the analysis of the scenario at hand simpler and tractable.
The converse is derived by using Sanov’s theorem [8] to
upper bound the secrecy capacity of the model by the secrecy
capacity when the subset is randomly chosen by nature.

Notation: For a, b ∈ R, Ja, bK denotes {i ∈ N : a ≤ i ≤ b}.
For S ⊆ N, XS = {Xi}i∈S . pUX denotes a uniform distribution
over X . V(pX , qX), D(pX ||qX) denote the variational distance
and the K-L divergence between the distributions pX , qX .

II. CHANNEL MODEL

We consider the model in Fig. 1. The transmitter (Alice)
aims to reliably transmit a message M , uniformly distributed
over J1, 2nRsK, to the receiver (Bob) and to keep it secret
from the wiretapper (Eve). The message M is mapped to the
transmitted codeword Xn ∈ Xn; the mapping is allowed to
be stochastic. Alice-Bob channel is a DMC with a finite input
alphabet X , finite output alphabet Y , and transition probability
pY |X . Bob observes Yn ∈ Yn and outputs the estimate M̂ of
M . Eve chooses S ⊆ J1, nK with |S| = µ ≤ n, α = µ

n , and
observes ZnS = [ZS1 · · · ZSn ] ∈ Zn, where

ZSi =

{
Xi, i ∈ S
Vi, otherwise,

(1)

Vi ∈ V is the ith output of the DMC pV |X , Zn = {X ∪ V}n.
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An (n, 2nRs) channel code Cn for this model consists of
i) the message set M = J1, 2nRsK, ii) the stochastic encoder
PXn|M,Cn at Alice, and iii) the decoder at Bob. We consider
the strong secrecy constraint at Eve, see (2). The rate Rs is
an achievable strong secrecy rate if there exists a sequence of
(n, 2nRs) channel codes, {Cn}n≥1, such that

lim
n→∞

P(M̂ 6= M |Cn) = 0, and lim
n→∞

max
S∈S

I(M ;ZnS |Cn) = 0,

(2)

S = {S : S ⊆ J1, nK, |S| = µ}. The strong secrecy capacity,
Cs, is the supremum of all achievable strong secrecy rates.

III. MAIN RESULT

Theorem 1 For α ∈ [0, 1], the strong secrecy capacity of the
new wiretap channel model in Fig. 1 is given by

Cαs = max
U−X−Y V

[I(U ;Y )− I(U ;V )− αI(U ;X|V )]
+
, (3)

where the maximization is over all pUX which satisfy U −
X − Y V , and the cardinality of U is bounded as |U| ≤ |X |.

Proof: The achievability and converse proofs for Theorem 1
are provided in Sections IV and V, respectively. �

Remark 1 The secrecy capacity in (3) can be rewritten as
Cαs = max

U−X−Y V
[I(U ;Y )− αI(U ;X)− (1− α)I(U ;V )]

+.

Remark 2 When |S| = 0, i.e., α = 0, (3) is equal to the
secrecy capacity of the DM-WTC. Also, when V is an erasure
with probability one, (3) is equal to the secrecy capacity of the
WTC-II with a noisy main channel [5]. The secrecy cost of the
additional capability at the wiretapper in the new model with
respect to the DM-WTC (WTC-II with a DM main channel
[4]) is equal to αI(U ;X|V ) ((1− α)I(U ;V )).

IV. ACHIEVABILITY

We first consider U = X . We fix pX and define two
protocols, each of which introduces a set of random variables
and induces a joint distribution over them.

Protocol A (Secret key agreement in a source model): The
protocol is illustrated in Fig. 2. Xn,Yn are independent and
identically distributed (i.i.d.) according to pXY = pXpY |X ,
where pY |X is the transition probability of the main channel
in Fig. 1. The source encoder observes the sequence Xn

and randomly assigns (bins) it into the two bin indices
M = B1(Xn), C = B2(Xn), where B1,B2 are uniformly
distributed over J1, 2nRsK, J1, 2nR̃sK, respectively. That is,
each x ∈ Xn is randomly and independently assigned to
the indices m ∈ J1, 2nRsK and c ∈ J1, 2nR̃sK. The bin index
C represents the public message which is transmitted over a
noiseless channel to the decoder and perfectly accessed by
the wiretapper. The bin index M represents the secret key to
be generated at the source encoder and decoder. The source
decoder observes C and the i.i.d. sequence Yn, and outputs the
estimate X̂n of Xn, which in turn generates the estimate M̂ of
M . For any S ∈ S, where S is defined as in (2), the wiretapper
source node observes C and the sequence ZnS in (1). The

Fig. 2. Protocol A: Secret key agreement in the source model.

subset S is selected by the wiretapper and her selection
is unknown to the legitimate parties. Thus, the wiretapper
can be represented as a compound source ZnS , {Z, pZnS}
whose distribution is only known to belong to the finite class
{pZnS}S∈S with no prior distribution over the class, where
|S| ≤ 2n. For S ∈ S, the induced joint distribution for this
protocol, P̃MCXYZSX̂

, is equal to

pXYZS1{B1(X) = M}1{B2(X) = C}P̃X̂|YC

= P̃MC P̃X|MC pYZS |XP̃X̂|YC . (4)

Protocol B (Main problem assisted with common random-
ness): This protocol is defined as the channel model in Fig.
1, with an addition of a common randomness C that is
uniform over J1, 2nR̃sK, independent from all other variables,
and known at all terminals. The encoder and decoder are
defined as in (4); PX|MC = P̃X|MC , PX̂|YC = P̃X̂|YC . The
induced joint distribution for this protocol is

PMCXYZSX̂
= pUMp

U
C P̃X|MC pYZS |XP̃X̂|YC . (5)

The induced joint distributions in (4) and (5) are random due
to the random binning of Xn. Note that we have ignored the M̂
from the induced distributions at this stage. We will introduce
them later to the distributions as deterministic functions of
the random variables X̂n, after fixing the binning functions.
The remaining steps are: (i) we derive a condition on Rs, R̃s
so that the two induced distributions, in (4), (5), are close in
the variational distance sense, when averaged over the random
binning, (ii) we derive other conditions on Rs, R̃s such that
protocol A is reliable and secure, (iii) we use the closeness
of the two distributions to show that protocol B is reliable
and secure as well, and finally (iv) we eliminate the common
randomness C from protocol B by showing that the reliability
and secrecy constraints still hold when we condition on a
certain instance of C, i.e., C = c∗.

Before continuing with the proof, we state the following
two lemmas. Using these, we derive the conditions on Rs, R̃s
required for the closeness of the two induced distributions, and
security of protocol A. A result similar to Lemma 1 below
was derived in [7, Appendix A]. However, the convergence
rate Lemma 1 provides is needed in our proof.

Lemma 1 Let the source X , {X , pX} be randomly binned
into M = B1(X), C = B2(X), where B1,B2 are uniform over
J1, M̃K, J1, C̃K. Let B , {B1(x),B2(x)}x∈X , and for γ > 0,
define Dγ ,

{
x ∈ X : log 1

pX(x) > γ
}

. Then, we have

EB
(
V(PMC , p

U
Mp

U
C)
)
≤ P(X /∈ Dγ) +

1

2

√
M̃C̃2−γ , (6)

where P is the induced distribution over M,C.
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Proof: See Appendix A. �
Lemma 2 below provides a doubly-exponential decay rate

for the probability of failure of achieving secrecy for protocol
A, which is needed, along with the union bound, to guarantee
secrecy for the exponentially many choices of the subset S.
Lemma 2 Let X , {X , pX} and {ZS} , {Z, pZS} be two
correlated sources, where {ZS}S∈S is a compound source and
|X |, |Z|, |S| < ∞. Let X be randomly binned into the bin
indices M,C, as in Lemma 1. For γ > 0 and any S ∈ S, define
DSγ ,

{
(x, z) ∈ X × Z : log 1

pX|ZS (x|z)
> γ

}
. If there exists

δ ∈]0, 12 [ such that for all S, PpXZS
(
(X,ZS) ∈ DSγ

)
≥ 1−δ2,

then, we have, for every ε1 ∈ [0, 1], that

PB
(

max
S∈S

D(PMCZS ||pUMpUCpZS ) ≥ ε̃
)
≤ |S||Z|e

(
−ε21(1−δ)2γ

3M̃C̃

)
,

(7)

where ε̃ = ε1 + (δ+ δ2) log(M̃C̃) +Hb(δ
2), Hb is the binary

entropy function, and P is the induced distribution.
Proof: The proof is given in Appendix B, the analysis therein
is adapted from [9, Appendix]. �

Apply Lemma 1 to protocol A, with X = X, M̃ = 2nRs ,
C̃ = 2nR̃s , γ = n(1 − ε2)H(X). Without loss of generality,
let p(x) > 0, ∀x ∈ X . Let pmin = minx p(x). The random
variables log 1

p(Xi)
, i ∈ J1, nK, are i.i.d. and each is bounded

by the interval [0, log 1
pmin

]. Using Hoeffding inequality [10],

P(X /∈ Dγ) = P
( n∑
i=1

log
1

p(Xi)
≤ (1− ε2)nH(X)

)
≤ e−β1n,

where β1 > 0. Using (6), there exists β > 0 such that

EB
(
V(P̃MC , p

U
Mp

U
C)
)
≤ 2 exp(−βn), (8)

as long as Rs + R̃s < (1− ε2)H(X). From (4), (5), (8),

EB
(
V(P̃MCXYZSX̂

, PMCXYZSX̂
)
)
≤ 2 exp(−βn). (9)

For protocol A, we use Slepian-Wolf decoder. By [11,
Theorem 10.1] we have limn→∞ EB

(
PP̃ (X̂ 6= X)

)
= 0 as

long as R̃s ≥ H(X|Y ). Thus, we have [7, Lemma 1],

EB
(
V(P̃MCXYZSX̂

, P̃MCXYZS1{X̂ = X})
)
−→
n→∞

0. (10)

Now, apply Lemma 2 to protocol A, with X = X, M̃ =
2nRs , C̃ = 2nR̃s , ZS = ZS ,∀S ∈ S , and γ = n(1− ε̃2)(1−
α)H(X|V ). Let Vn be the n-letter output of the DMC pV |X .
Since X is i.i.d., we have, for pX|ZS (x|z) > 0, that

pX|ZS = pXSXSc |XSVSc
= pXSc |VSc

=
∏
i∈Sc

p(xi|vi). (11)

Once again, using Hoeffding inequality, we have, for any S,

P
(
(X,ZS) /∈ DSγ

)
= P

( ∑
i∈Sc

log
1

p(Xi|Vi)
≤

(1− ε̃2)(n− µ)H(X|V )
)
≤ e−β2(1−α)n = δ2, (12)

where β2 > 0. Thus, δ2 → 0 as n → ∞, and for sufficiently
large n, δ2 ∈]0, 14 [. Since |S||Zn| ≤ en[ln 2+ln(|X |+|V|)], and

limn→∞ ε̃ = ε1, then, using (7), we have ∀ε1, ε′1 > 0, ε̃ =
ε1 + ε′1, there exist n∗ ∈ N, φ(ε1), κ > 0 so that, for n ≥ n∗,

PB
(

max
S∈S

D(P̃MCZS ||pUMpUCpZS ) ≥ ε̃
)
≤ e−φ(ε1)e

κn

, (13)

as long as Rs + R̃s < (1− ε̃2)(1− α)H(X|V ).
Take r > 0 and let Dn = maxS D(P̃MCZS ||pUMpUCpZS ) and
Kn , {Dn ≥ r}. Using (13),

∑∞
n=1 P(Kn) <∞. Thus, using

the first Borel-Cantelli lemma, P(Kn infinitely often (i.o.)) =
0, which implies that, ∀r > 0, P

(
{Dn < r} i.o.

)
= 1, i.e.,

Dn → 0 almost surely. Thus, for Rs + R̃s as above, we have

lim
n→∞

PB
(
max
S∈S

D(P̃MCZS ||pUMpUCpZS ) > 0
)

= 0. (14)

Next, we deduce that protocol B is also reliable and secure
when the aforementioned rate conditions are satisfied. Using
(9), (10), and the triangle inequality, we have

EB(V(PMCXYZSX̂
, PMCXYZS1{X̂ = X})) −→

n→∞
0. (15)

We also have, using the union bound and (14), that

PB
(

max
S∈S

D(PMCZS ||pUMpUCpZS ) > 0
)
≤ P

(
V(P̃MC , p

U
Mp

U
C)

> 0
)

+ P
(

max
S∈S

D(P̃MCZS ||pUMpUCpZS ) > 0
)
−→
n→∞

0, (16)

where, using the exponential decay in (8), Markov inequal-
ity, and the first Borel-Cantelli lemma, we can show that
lim
n→∞

P(V(P̃MC , p
U
Mp

U
C) > 0) = 0.

By applying the selection lemma [12, Lemma 2.2] to (15)
and (16), there exists at least one binning realization b∗ (with
a corresponding joint distribution p∗ for protocol B) such that

lim
n→∞

V(p∗
MCXYZSX̂

, p∗MCXYZS1{X̂ = X}) = 0 (17)

lim
n→∞

1
{

max
S∈S

D(p∗MCZS ||p
U
Mp

U
CpZS ) > 0

}
= 0, (18)

where M = b∗1(X), and C = b∗2(X). By introducing p∗
M̂ |X̂ =

1{M̂ = b∗1(X̂)} to (17), we have

EC(P(M̂ 6= M |C)) = V
(
p∗
MM̂C

, pUMp
U
C1{M̂ = M}

)
=

V
(
p∗
MCXYZSX̂M̂

, p∗MCXYZS1{M̂ = M}
)
−→
n→∞

0. (19)

Using (18) and the union bound, we have that

PC(max
S

D(p∗MZS |C ||p
U
Mp
∗
ZS |C) > 0) ≤ P

(
max
S

D
(
p∗MZS |C

||pUMp∗ZS |C
)
> 0, and ∀S, p∗MCZS = pUMp

U
CpZS

)
+ 1

{
max
S

D(p∗MCZnS
||pUMpUCpZS ) > 0

}
−→
n→∞

0, (20)

where the first term in the RHS of (20) is equal to zero.
Finally, in order to eliminate C from the channel model in

protocol B, we apply the selection lemma to (19), (20), which
implies that there is at least one c∗ such that both P(M̂ 6=
M |C = c∗) and maxS I(M ;ZS |C = c∗) converge to zero
as n → ∞. Let p̃∗ be the induced distribution for protocol
A corresponding to b∗. We use p̃∗X|M,C=c∗ as the encoder
and (p̃∗

X̂|Y,C=c∗
, b∗1(X̂)) as the decoder for the original model.

By combining the rate conditions Rs + R̃s < (1 − ε̃2)(1 −
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α)H(X|V ), R̃s ≥ H(X|Y ), and taking ε̃2 → 0, the rate
Rs = maxpX [I(X;Y )− I(X;V )−αH(X|V )] is achievable.

So far, we have considered U = X . By prefixing a channel
pX|U to the original model, we obtain the achievability of (3).
The cardinality bound on U follows by [11, Appendix C].

V. CONVERSE

Consider the model in Fig. 3(a), where Eve observes the
outputs of two independent channels, with Xn being the input
to both the channels; one channel is the DMC pV |X and the
other channel is the wiretapper channel in the WTC-II model.
We first show that, for α ∈ [0, 1], the strong secrecy capacity
of this model, C̃αs , is equal to Cαs in (3). To do so, since the
main channels are the same, it suffices to show that ∀S ∈ S ,
I(M ;ZnS) = I(M ; Z̃nSV

n), which follows because

H(M |Z̃nSVn) = H(MXn|Z̃nSVn)−H(Xn|M Z̃nSV
n)

= H(Xn|Z̃nSVn)−H(Xn|M Z̃nSV
n)

= H(XSc |XSVSVSc)−H(XSc |MXSVSVSc)

= H(XSc |XSVSc)−H(XSc |MXSVSc) (21)
= H(Xn|ZnS)−H(Xn|MZnS) = H(M |ZnS), (22)

for all S ∈ S , where ZnS is defined in (1) and (21) follows
since pV |X is a DMC.

(a) Equivalent model. (b) DM-WTC model.

Fig. 3. Channel models used for the converse proof.

Next, consider the model in Fig. 3(b), where the second
channel to Eve is replaced with a DM-EC with erasure
probability 1−α. The strong secrecy capacity of the model is

Cαs,DM = max
U−X−Y V Z

[I(U ;Y )− I(U ;V Z)]+. (23)

In order to compute (23), define Φ ∼ Bern(α) whose i.i.d.
samples represent the erasure process in the DM-EC, where
Φ = 0 when Z = X and Φ = 1 when Z =?. Φ is determined
by Z and is independent of X . Thus, we have the Markov
chain U − X − Y V ZΦ. Since the two channels to Eve are
independent, we also have the Markov chain V − X − ZΦ.
We conclude that Φ and U are independent given V . Thus,

I(U ;Z|V ) = I(U ;ZΦ|V ) = I(U ;Z|ΦV ) = αI(U ;X|V ).

Thus, (23) can be rewritten as

Cαs,DM = max
U−X−Y V

[I(U ;Y )− I(U ;V )− αI(U ;X|V )]+.

The converse is established by showing that, for α ∈ [0, 1]
and sufficiently large n, C̃αs ≤ Cαs,DM. This is shown using
similar arguments to [5, Section V-C]. The idea is that1 when

1We provide a sketch of the proof due to space limitations.

the number of erasures of the DM-EC is more than (1−α)n,
Eve’s channel in Fig. 3(a) is better than its channel in Fig. 3(b),
and C̃αs ≤ Cαs,DM. The result is established by using Sanov’s
theorem in method of types [8], to show that the probability
that the DM-EC causes erasures less than (1− α)n goes to 0
as n→∞. This completes the proof for Theorem 1.

VI. CONCLUSION

In this work, we have introduced a new wiretap channel
(WTC) model and derived its strong secrecy capacity. This
model generalizes the classical WTC [1] to one with a wire-
tapper who chooses a subset of the transmitted codeword to
perfectly access, and generalizes the WTC-II with a DM main
channel in [4] to one with a wiretapper who observes an output
of a noisy channel instead of the erasures. The wiretapper in
this model does not inject signals to the channel, yet she is
more capable than a classical wiretapper since she can tap a
subset of the symbols of her choosing noiselessly, while still
receiving the remaining symbols through a channel. This result
quantifies the secrecy cost of this additional capability of Eve.

APPENDIX A
PROOF OF LEMMA 1

Define Vx(m, c) , pX(x)1{(B1(x),B2(x)) = (m, c)},
for all m, c. Thus, PMC(m, c) =

∑
x∈X Vx(m, c). Since

EB(1{(B1(x),B2(x)) = (m, c)}) = 1
M̃C̃

, ∀x ∈ X , we have
EB(PMC) = 1

M̃C̃
. Define the random variables P1(m, c) =∑

x/∈Dγ Vx(m, c) and P2(m, c) =
∑
x∈Dγ Vx(m, c) such that

PMC(m, c) = P1(m, c) + P2(m, c). Thus,

2EB
(
V(PMC , p

U
Mp

U
C)
)

= EB
(∑
m,c

|P (m, c)− EBP (m, c)|
)

≤
∑
i=1,2

∑
m,c

EB|Pi(m, c)− EBPi(m, c)| ≤ 2
∑
m,c

EBP1(m, c)

+
∑
m,c

EB
√

(P2(m, c)− EBP2(m, c))2

≤ 2P(X /∈ Dγ) +
∑
m,c

√
VarB(P2(m, c)), (24)

where (24) follows from Jensen’s inequality. For all m, c,

VarP2(m, c) =
∑
x∈Dγ

Var
(
p(x)1{(B1(x),B2(x)) = (m, c)}

)
≤
∑
x∈Dγ

p2(x)E(1{(B1(x),B2(x)) = (m, c)}) ≤ 2−γ

M̃C̃
(25)

as p(x) ≤ 2−γ ,∀x ∈ Dγ . Lemma 1 follows from (24), (25).

APPENDIX B
PROOF OF LEMMA 2

Lemma 3 (Variation of Chernoff bound:) Let {Ui}ni=1 be
independent random variables with E(Ui) = m̄i. If Ui ∈ [0, b],
for all i ∈ J1, nK, and

∑n
i=1 m̄i ≤ m̄, then, for every ε ∈ [0, 1],

P
( n∑
i=1

Ui ≥ (1 + ε)m̄
)
≤ exp

(
− ε2 m̄

3b

)
. (26)
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Proof: The proof can be adapted from [5, Lemma 4]. �
For all S ∈ S, define AS ,

{
z ∈ Z : PpX|ZS

(
(X, z) ∈

DSγ
)
≥ 1− δ

}
. Using Markov inequality, we have

PpZS (AcS) ≤ 1

δ
PpXZS

(
(X,ZS) /∈ DSγ

)
≤ δ2

δ
= δ. (27)

Let 1{x,m,c} , 1{(B1(x),B2(x)) = (m, c)}. For all m, c ∈
J1, M̃K× J1, C̃K, z ∈ Z , S ∈ S, define

PS1 (m, c|z) =
∑
x∈X

pX|ZS (x|z)1{x,m,c}1{(x, z) ∈ DSγ }

PS2 (m, c|z) =
∑
x∈X

pX|ZS (x|z)1{x,m,c}1{(x, z) /∈ DSγ }.

Thus, PMC|ZS = PS1 +PS2 . Let QSz = PpX|ZS
(
(X, z) ∈ DSγ

)
.

Fix S and z, and let PS1 (m, c|z) =
∑
x∈X Ux, where

Ux = pX|ZS (x|z)1{x,m,c}1{(x, z) ∈ DSγ }.

Thus, {Ux}x∈X are independent random variables, and

0 ≤ Ux ≤ pX|ZS (x|z)1{(x, z) ∈ DSγ } < 2−γ ,

where pX|ZS (x|z) < 2−γ , for all (x, z) ∈ DSγ . Also, we have∑
x EB(Ux) = QSz /(M̃C̃). Using Lemma 3, we have, for

every ε1 ∈ [0, 1] and z ∈ AS , that

PB
(
PS1 (m, c|z) ≥ 1 + ε1

M̃C̃

)
≤ P

(∑
x

Ux ≥
1 + ε1

M̃C̃
QSz

)
≤ exp

(−ε21QSz 2γ

3M̃C̃

)
≤ exp

(−ε21(1− δ)2γ

3M̃C̃

)
, (28)

where QSz ≥ (1− δ), for all z ∈ AS . We also have

EpZS
(∑
m,c

PS2 (m, c|ZS)
)

=
∑

(x,z)/∈DSγ

pXZS (x, z) ×

∑
m,c

1{x,m,c} = PpXZS
(

(X,ZS) /∈ DSγ
)
≤ δ2, (29)

since every x ∈ X is assigned to only one pair (m, c).
Note that for fixed (z, S), the random variable PS1 is iden-

tically distributed for every (m, c), because of the symmetry
in the random binning. We then define the event G as

G ,
{
PS1 (m, c|z) < 1 + ε1

M̃C̃
,∀S ∈ S, and ∀z ∈ AS

}
. (30)

Thus, using the union bound and (28), we have

PB(Gc) = PB
( ⋃
S,z∈AS

PS1 (m, c|z) ≥ 1 + ε1

M̃C̃

)
≤
∑
S

|AS |

PB
(
PS1 (m, c|z) ≥ 1 + ε1

M̃C̃

)
≤ |S||Z|e

(
−ε21(1−δ)2γ

3M̃C̃

)
. (31)

Let b , (b1, b2) be a realization of B such that b ∈ G, and
set M = b1(X) and C = b2(X). For every S ∈ S, we have

D(PMCZS ||pUMpUCpZS ) = EpZS
(
D(PMC|ZS ||p

U
Mp

U
C)
)

=

EpZS
∑
m,c

2∑
i=1

PSi (m, c|ZS) log

∑2
i=1 P

S
i (m, c|ZS)∑2

i=1

∑
m,c

PSi (m,c|ZS)/M̃C̃

≤ EpZS
2∑
i=1

∑
m,c

PSi (m, c|ZS) log
M̃C̃PSi (m, c|ZS)∑
m,c P

S
i (m, c|ZS)

, (32)

where (32) follows by the log-sum inequality. Using (29),

EpZS
(∑
m,c

PS2 (m, c|ZS) log
(
M̃C̃PS2 (m, c|ZS)

))
≤ log(M̃C̃) EpZS

(∑
m,c

PS2 (m, c|ZS)
)
≤ δ2 log(M̃C̃). (33)

Since
∑
i

∑
m,c P

S
i (m, c|ZS) = 1, and

∑
m,c P

S
1 (m, c|ZS) =

PpX|ZS ((X,ZS) ∈ DSγ ), using Jensen’s inequality gives

EpZS
( 2∑
i=1

∑
m,c

PSi (m, c|ZS) log
1∑

m,c P
S
i (m, c|ZS)

)
≤

Hb(PpXZS ((X,ZS) ∈ DSγ )) ≤ Hb(1− δ2) = Hb(δ
2), (34)

where the second inequality follows since Hb(x) is monoton-
ically decreasing in x ∈] 12 , 1[. Finally, for b ∈ G, we have

EpZS
(∑
m,c

PS1 (m, c|ZS) log
(
M̃C̃PS1 (m, c|ZS)

))
=

EpZS

( ∑
m,c,ZS∈AS

PS1 (m, c|ZS) log
(
M̃C̃PS1 (m, c|ZS)

))
+

EpZS

( ∑
m,c,ZS /∈AS

PS1 (m, c|ZS) log
(
M̃C̃PS1 (m, c|ZS)

))
≤

log(1 + ε1) + P(ZS /∈ AS) log M̃C̃ ≤ ε1 + δ log M̃C̃. (35)

Using (32)-(35), we have, for b ∈ G and ∀S ∈ S, that

D(PMCZS ||pUMpUCpZS ) ≤ ε1 + (δ + δ2) log(M̃C̃) +Hb(δ
2).

Thus, the probability in (7) is upper bounded by PB(Gc).
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