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Abstract—A two transmitter multiple access wiretap channel II
(MAC-WT-II) with a discrete memoryless (DM) main channel is
investigated. Two models for the wiretapper, who chooses a fixed-
length subset of the channel uses and observes erasures outside
this subset, are proposed. In the first model, in each position of the
subset, the wiretapper noiselessly observes either the first or the
second user’s symbol, while in the second model, the wiretapper
observes a noiseless superposition of the two symbols. Achievable
strong secrecy rate regions for the two models are derived. The
achievability is established by solving a dual secret key agreement
problem in the source model. The secrecy of the keys in the dual
source model is established by deriving a lemma which provides
a doubly exponential convergence rate for the probability of
the keys being uniform and independent from the wiretapper’s
observation. The results extend the recently examined WTC-II
with a DM main channel to a multiple access setting.

I. INTRODUCTION

The wiretap channel II (WTC-II), in which the legitimate
terminals communicate over a noiseless channel while the
wiretapper has perfect access to a fixed fraction of her
choosing of the transmitted symbols, was introduced in [1].
This model while being similar to the discrete memoryless
(DM) WTC with a noiseless main channel and binary erasure
wiretapper channel, models a more capable wiretapper since
she can select the positions of erasures. Reference [1] derived
the capacity-equivocation region for the model and devised a
coset coding scheme, i.e., a group code and its cosets were
used as the subcodes for the wiretap code, which motivated
the research on practical coding design for secrecy [2], [3].

Recently, reference [4] introduced a DM main channel to the
WTC-II, and derived inner and outer bounds for its capacity-
equivocation region. More recently, reference [5] characterized
the secrecy capacity of this channel using a stronger version
of Wyner’s soft covering lemma [6].

In this paper, we extend the WTC-II with a DM main
channel to a multiple access setting [7]. Two models for the
wiretapper are proposed. The wiretapper in the first model
observes either user in each tapped position, while in second
model, she observes a noiseless superposition of the two users.
Achievable strong secrecy rate regions for both models are
derived by adopting the output statistics of random binning
framework in [8], where an appropriate dual source coding
problem is solved and the solution is converted to the original
model using probability distribution approximation arguments.

Fig. 1. The multiple access wiretap channel II with a noisy main channel.

Notation: For S ⊆ N, XS = {Xi}i∈S . pUX denotes a
uniform distribution over X . V(pX , qX), D(pX ||qX) denote
the variational distance and K-L divergence between pX and
qX . Conv(R) denotes the convex hull of region R.

II. CHANNEL MODEL

Consider the model in Fig. 1. The main channel consists of
two finite input alphabets X1,X2, a finite output alphabet Y ,
and transition probability pY |X1X2

. Each transmitter wishes to
reliably communicate an independent message to a common
receiver and to keep it secret from the wiretapper. To do so,
transmitter j maps its message Mj , uniformly distributed over
J1, 2nRj K, into the codeword Xn

j = [Xj,1, · · · , Xj,n] ∈ Xnj
using a stochastic encoder, j = 1, 2. The receiver observes
Yn ∈ Yn and outputs the estimates M̂j , j = 1, 2. We consider
the following two models for the wiretapper channel.

Model I: The wiretapper chooses the subset Sp ∈ Sp
and the sequence Su ∈ {1, 2}µ, where Sp = {Sp : Sp ⊆
J1, nK, |Sp| = µ}, µ ≤ n, and α = µ

n ∈ [0, 1]. That is, Sp
represents the subset of positions tapped by the wiretapper
and Su represents her sequence of decisions to observe either
the first or the second user symbols. Let Sp(k), Su(k) denote
the kth elements of Sp and Su, and let S be a set of pairs
which represents the wiretapper strategy, and defined as

S , {(Sp(k), Su(k)) : k = 1, 2, · · · , µ} ∈ S, (1)

where S is the set of all possible strategies for the wiretapper.
The wiretapper observes ZnS = [ZS1 · · · ZSn ] ∈ Zn, where

ZSi =

{
Xj,i, (i, j) ∈ S
?, otherwise.

(2)

Model II: The wiretapper chooses the subset S ∈ S, with

S ,
{
S : S ⊆ J1, nK, |S| = µ ≤ n, α =

µ

n
∈ [0, 1]

}
, (3)
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and observes ZnS = [ZS1 · · · ZSn ] ∈ Zn, where

ZSi =

{
X1,i +X2,i, i ∈ S
?, otherwise.

(4)

That is, the wiretapper observes a noiseless superposition of
the two symbols in the subset S, and erasures otherwise.

An (n, 2nR1 , 2nR2) channel code Cn consists of two mes-
sage sets M1 = J1, 2nR1K,M2 = J1, 2nR2K, two stochastic
encoders PXn

1 |M1,Cn , PXn
2 |M2,Cn , and a decoder at the receiver.

(R1, R2) is an achievable strong secrecy rate pair if there exists
a sequence of (n, 2nR1 , 2nR2) codes, {Cn}n≥1, such that (s.t.)

lim
n→∞

P
(
(M̂1, M̂2) 6= (M1,M2)|Cn

)
= 0, Reliability, (5)

lim
n→∞

max
S

I(M1,M2;ZnS |Cn) = 0, Strong Secrecy. (6)

III. MAIN RESULTS

Theorem 1 For α ∈ [0, 1], an achievable strong secrecy rate
region for the MAC-WT-II with the wiretapper Model I is

RI
α = Conv

⋃
pU1X1

pU2X2

{
(R1, R2) :

R1 ≤ I(U1;Y |U2)− αI(U1;X1),

R2 ≤ I(U2;Y |U1)− αI(U2;X2),

R1 +R2 ≤ I(U1, U2;Y )− αI(U1, U2;X1, X2)
}
, (7)

where the union is over all distributions pU1X1
pU2X2

which
satisfy the Markov chains U1 −X1 − Y and U2 −X2 − Y .

Theorem 2 For α ∈ [0, 1], an achievable strong secrecy rate
region for the MAC-WT-II with the wiretapper Model II is

RII
α = Conv

⋃
pU1X1

pU2X2

{
(R1, R2) :

R1 ≤ I(U1;Y |U2)− αI(U1;X1 +X2),

R2 ≤ I(U2;Y |U1)− αI(U2;X1 +X2),

R1 +R2 ≤ I(U1, U2;Y )− αI(U1, U2;X1 +X2)
}
, (8)

where the union is over all distributions pU1X1pU2X2 which
satisfy the Markov chains U1 −X1 − Y and U2 −X2 − Y .

The proofs for Theorems 1, 2 are provided in Section IV.
Remark 1 The individual rates in Theorem 1 represent the
worst-case scenarios in which the wiretapper chooses to
observe only one user’s symbols in all the positions she taps.

Remark 2 RI
α ⊂ RII

α , as every (R1, R2) ∈ RI
α also belongs

to RII
α ; Uj −Xj −X1 +X2, j = 1, 2, and U1U2 −X1X2 −

X1 +X2 are Markov chains. This is not surprising since the
wiretapper in Model I is more powerful.

IV. PROOFS FOR THEOREM 1 AND THEOREM 2

We first prove Theorem 1. Let us first consider U1 = X1

and U2 = X2. We fix pX1X2
= pX1

pX2
and describe two

protocols, where each protocol defines a set of random vari-
ables and induces a joint distribution over them. Throughout
the paper, we use the convention A[1,2] = (A1, A2) for random
variables (vectors) and their realizations.

Fig. 2. Protocol A: Secret key agreement in the source model.

Protocol A: This protocol describes a dual secret key agree-
ment problem in the source model, see Fig. 2. Let X1,X2,Y
be i.i.d. according to the distribution pX1

pX2
pY |X1X2

, where
pY |X1X2

is the conditional probability of the main channel
in Fig. 1. The sequence Xj , j = 1, 2, observed at the jth
encoder, is randomly and independently binned into the two
indices Mj = B(j)1 (Xj), Cj = B(j)2 (Xj), where B(j)1 ,B(j)2 are
uniform over J1, 2nRj K, J1, 2nR̃j K; each xj ∈ Xnj is randomly
and independently assigned to mj ∈ J1, 2nRj K, cj ∈ J1, 2nR̃j K.
Cj , j = 1, 2, represent the messages transmitted noiselessly to
the decoder and perfectly accessed by the wiretapper, while
Mj , j = 1, 2, represent the confidential keys generated at
the encoders and reconstructed at the decoder. The decoder,
upon observing C1, C2 and the i.i.d. sequence Y, outputs the
estimates X̂1, X̂2, which are mapped to the estimates M̂1, M̂2.
Let S, ZS ,∀S ∈ S, be defined as in (1), (2). The wiretapper
chooses the strategy S whose realization is unknown to the
other terminals, i.e., the wiretapper is a compound source
ZS , {Z, pZS} whose distribution is only known to belong
to the finite class {pZS}S∈S , where |S| ≤ 2(1+α)n.

Let 1{X,M,C,{1,2}} , 1
{
B(j)1 (Xj) = Mj ,B(j)2 (Xj) =

Cj ,∀j = 1, 2
}

. The induced distribution for protocol A, is

P̃M[1,2]C[1,2]X[1,2]YZSX̂[1,2]

= pX[1,2]YZS1{X,M,C,{1,2}}P̃X̂[1,2]|YC[1,2]
= P̃M[1,2]C[1,2]

P̃X[1,2]|M[1,2]C[1,2]
pYZS |X[1,2]

P̃X̂[1,2]|YC[1,2]
. (9)

Protocol B: This protocol is defined as the main problem in
Fig. 1, with assuming the availability of common randomness
Cj , j = 1, 2, at all nodes, which is uniform over J1, 2nR̃j K
and independent from all other variables. The encoders and
decoder are defined as in (9). The induced joint distribution
for protocol B, PM[1,2]C[1,2]X[1,2]YZSX̂[1,2]

, is equal to

pUM[1,2]
pUC[1,2]

P̃X[1,2]|M[1,2]C[1,2]
pYZS |X[1,2]

P̃X̂[1,2]|YC[1,2]
.

(10)

Notice that P̃X[1,2]|M[1,2]C[1,2]
factors as P̃X1|M1C1

P̃X2|M2C2
,

i.e., the common randomness Ci available at the jth transmit-
ter, i, j = 1, 2, i 6= j, is not used to generate Xj .

The induced distributions in (9), (10) are random due to
the random binning. Also, we have ignored the M̂ variables
at this stage, as we will introduce them later as deterministic
functions of the X̂ vectors after fixing the binning functions.
The remaining steps are: (i) we derive rate conditions for
protocol A such that its induced distribution in (9) is close
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in the variational distance sense to (10), and that protocol
A is reliable and secure, (ii) we utilize the closeness of the
two induced distributions to show that, under the same rate
conditions, protocol B is reliable and secure as well, and finally
(iii) we eliminate the assumed common randomness C1, C2

from protocol B by conditioning on certain instances of them.
We now state the following two lemmas by which we derive

conditions on the rates Rj , R̃j , j = 1, 2, required for the
closeness of the two induced distributions and the security of
protocol A. In particular, Lemma 1 provides an exponential
decay of the average variational distance between the two
induced distributions, which is used to show a convergence
in probability result needed in the proof. Lemma 2 provides a
doubly-exponential decay of the probability of not achieving
secrecy for protocol A, which is needed, with the union bound,
to guarantee secrecy for the exponentially many choices of S.

Lemma 1 Let X1 , {X1, pX1
}, X2 , {X2, pX2

} be two
independent sources. The source Xj , j = 1, 2, is randomly
binned into Mj = B(j)1 (Xj), Cj = B(j)2 (Xj), where B(j)1 ,B(j)2

are independent and uniform over J1, M̃jK, J1, C̃jK. Let B ,
{B(j)1 (xj),B(j)2 (xj)}j=1,2,xj∈Xj , and for γj > 0, j = 1, 2,

define Dγj ,
{
xj ∈ Xj : log 1

pXj (xj)
> γj

}
. Then, we have

EBV
(
PM[1,2]C[1,2]

, pUM[1,2]
pUC[1,2]

)
≤
∑
j=1,2

[
P(Xj /∈ Dγj )

+ 1/2(M̃jC̃j2
−γj )

1
2

]
, P is the induced distribution. (11)

Proof: Using the triangle inequality, we obtain

V(PM[1,2]C[1,2]
, pUM[1,2]

pUC[1,2]
) ≤

∑
j=1,2

V(PMjCj , p
U
Mj
pUCj ).

Using [9, Appendix. A], we have, for j = 1, 2,

EB
(
V(PMjCj , p

U
Mj
pUCj )

)
≤ P(Xj /∈ Dγj ) +

1

2

√
M̃jC̃j2−γj .

�

Lemma 2 Let X1 , {X1, pX1
}, X2 , {X2, pX2

} be two in-
dependent sources, both correlated with the compound source
{ZS} , {Z, pZS} , S ∈ S , where |X1|, |X2|, |Z|, |S| < ∞.
The source Xj is randomly binned into Mj , Cj as in Lemma
1. For γj , γij > 0, i, j = 1, 2, i 6= j, and any S ∈ S, define

DSj ,
{

(x[1,2], z) ∈ X1 ×X2 ×Z : (xj , z) ∈ DSγj , (x[1,2], z)
∈ DSγij

}
, where DSγj ,

{
(xj , z) : − log pXj |ZS (xj |z) > γj

}
,

and DSγij ,
{

(x[1,2], z) : − log pXi|XjZS (xi|xj , z) > γij
}
.

If ∃δ ∈]0, 12 [ s.t. ∀S, minj=1,2 PpX[1,2]ZS

(
(X[1,2], ZS) ∈

DSj
)
≥ 1− δ2, then, we have, for every ε ∈ [0, 1], that

PB
(

max
S∈S

D(PM[1,2]C[1,2]ZS ||p
U
M[1,2]

pUC[1,2]
pZS ) ≥ 2ε̃

)
≤

|S||Z| min
i,j=1,2,i6=j

{
e

(
−ε2(1−δ)2γj

3M̃jC̃j

)
+ e

(
−ε2(1−δ)2γij

3M̃iC̃i

)}
, (12)

where ε̃ = maxj=1,2{ε+(δ+δ2) log(M̃jC̃j)+Hb(δ
2)}, Hb is

the binary entropy function, and P is the induced distribution.

Proof: See the Appendix. �

We now use Lemma 1 to establish the closeness of the
induced distributions. In Lemma 1, set Xj = Xj , M̃j = 2nRj ,
C̃j = 2nR̃j , γj = n(1− ε′)H(Xj), j = 1, 2 (Xj is defined as
in protocol A). Note that for γj <∞, any xj with p(xj) = 0
belongs to Dγj , j = 1, 2, by definition. Thus, in order to cal-
culate P(Dcγj ), we only consider xjs with p(xj) > 0. Without
loss of generality, let p(xj) > 0, ∀xj ∈ Xj . Let pj,min =
minxj p(xj). The random variables log 1

p(Xj,i)
, i ∈ J1, nK, are

i.i.d. and each is bounded by the interval [0, log 1
pj,min

]. Using
Hoeffding inequality [10], for any ε′ > 0, ∃βj > 0 s.t.

P(Dcγj ) = P
( n∑
k=1

log
1

p(Xj,k)
≤ (1− ε′)nH(Xj)

)
≤ e−βjn.

Using (11), if Rj + R̃j < (1− ε′)H(Xj),∀j, then ∃β > 0 s.t.

EBV(P̃M[1,2]C[1,2]X[1,2]YZSX̂[1,2]
, PM[1,2]C[1,2]X[1,2]YZSX̂[1,2]

)

= EBV(P̃M[1,2]C[1,2]
, pUM[1,2]

pUC[1,2]
) ≤ 4 exp(−βn). (13)

For reliability for protocol A, we use Slepian-Wolf decoder,
which implies that limn→∞ EBPP̃ (X̂[1,2] 6= X[1,2]) = 0 if
R̃1 ≥ H(X1|X2, Y ), R̃2 > H(X2|X1, Y ) and R̃1 + R̃2 >
H(X[1,2]|Y ) [11, Theorem 10.3]. Thus, ∀S [8, Lemma 1]

lim
n→∞

EBV
(
P̃M[1,2]C[1,2]X[1,2]YZSX̂[1,2]

,

P̃M[1,2]C[1,2]X[1,2]YZS1{X̂[1,2] = X[1,2]}
)

= 0. (14)

Next, we use Lemma 2 to establish secrecy for protocol A.
In Lemma 2, for j = 1, 2, set Xj = Xj (Xj is defined as
in protocol A), M̃j = 2nRj , C̃j = 2nR̃j , ZS = ZS ,∀S ∈ S;
S,ZS are defined as in (1), (2). For ε̄ > 0, i = 1, 2, i 6= j, set

γj = (1− ε̄) min
S∈S

H(Xj |ZS) = (1− ε̄)(n− µ)H(Xj),

γij = (1− ε̄) min
S∈S

H(Xi|Xj ,ZS) = (1− ε̄)(n− µ)H(Xi).

Define Sj , {k : (k, j) ∈ S}, i.e., Sj is the set of positions
in which the wiretapper observes the jth transmitter’s signal.
Let |Sj | = µj , where µ1 + µ2 = µ. For the tuples (x[1,2], z)
with pXj |ZS (xj |z) and pXi|XjZS (xi|xj , z) > 0, where i, j =
1, 2, i 6= j, we have, for all S ∈ S, that

pXj |ZS = pXj,Sj
Xj,Scj

|Xj,Sj
Xi,Si

= pXj,Scj
=
∏
k∈Scj

p(xj,k),

pXi|XjZS = pXi,Si
Xi,Sci

|XjXi,Si
= pXi,Sci

=
∏
k∈Sci

p(xi,k).

Using Hoeffding inequality and the definition of DSγj , we have

P
(
(Xj ,ZS) /∈ DSγj

)
= P

( ∑
k∈Scj

log
1

p(Xj,k)
≤ γj

)
≤

P
( ∑
k∈Scj

log
1

p(Xj,k)
≤ (1− ε̄)(n− µj)H(Xj)

)
≤ e−β̃jn,

where β̃j > 0, j = 1, 2. Similarly, for i, j = 1, 2, i 6= j, there
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exists β̃ij > 0 s.t. P
(
(X[1,2],ZS) /∈ DSγij

)
≤ exp(−β̃ijn).

Taking δ2 = 2 exp(−β̃n), where β̃ = min{β̃1, β̃2, β̃12, β̃21},
gives P((X[1,2],ZS) 6∈ DSj ) ≤ δ2, for all S ∈ S and j = 1, 2.
Note that lim

n→∞
δ2 = 0, and hence, for n sufficiently large,

δ2 ∈]0, 14 [. Using (12), we have, for every ε, ε1 > 0, ε̃ = ε+ε1,
there exists n∗ ∈ N and κε, κ̃ > 0 s.t. for all n ≥ n∗,

P(max
S∈S

D(P̃M[1,2]C[1,2]ZS ||p
U
M[1,2]

pUC[1,2]
pZS ) ≥ 2ε̃) ≤ e−κεe

κ̃n

when Rj + R̃j < (1− ε̄)(1− α)H(Xj), ∀j = 1, 2, (15)

since |S||Zn| ≤ exp(n[(1 + α) ln 2 + ln(|X1|+ |X2|+ 1)]).
Let Dn , maxS D

(
P̃M[1,2]C[1,2]ZS ||pUM[1,2]

pUC[1,2]
pZS

)
,

Kn , {Dn ≥ r}, r > 0. By (15),
∑∞
n=1 P(Kn) < ∞. Thus,

P(Kn infinitely often (i.o.)) = 0 by the Borel-Cantelli lemma.
This implies that ∀r > 0, P

(
{Dn < r} i.o.

)
= 1, i.e., Dn

converges to 0 almost surely. Thus, as n→∞, we have

P
(
max
S∈S

D(P̃M[1,2]C[1,2]ZS ||p
U
M[1,2]

pUC[1,2]
pZS ) > 0

)
→ 0. (16)

Now, we show that protocol B is also reliable and secure
with the rate conditions above. (13) and (14) imply that

lim
n→∞

EBV(PM[1,2]C[1,2]X[1,2]YZSX̂[1,2]
,

PM[1,2]C[1,2]X[1,2]YZS1{X̂[1,2] = X[1,2]}) = 0. (17)

Similar to the derivation of (16), Markov inequality and (13)
imply that lim

n→∞
P(V(P̃M[1,2]C[1,2]

, pUM[1,2]
pUC[1,2]

) > 0) = 0.
Thus, by the union bound and (16), we have

lim
n→∞

PB
(

max
S∈S

D(PM[1,2]C[1,2]ZS ||p
U
M[1,2]

pUC[1,2]
pZS ) > 0

)
≤ lim
n→∞

P
(

max
S∈S

D(P̃M[1,2]C[1,2]ZS ||p
U
M[1,2]

pUC[1,2]
pZS ) > 0

)
+ lim
n→∞

P
(
V(P̃M[1,2]C[1,2]

, pUM[1,2]
pUC[1,2]

) > 0
)

= 0. (18)

The selection lemma [12, Lemma 2.2] when applied to (17),
(18), implies that there is at least one binning realization b∗,
with a corresponding joint distribution p∗ for protocol B, s.t.,

lim
n→∞

1
{

max
S∈S

D(p∗M[1,2]C[1,2]ZS
||pUM[1,2]

pUC[1,2]
pZS ) > 0

}
= 0,

and lim
n→∞

V(p∗
M[1,2]C[1,2]X[1,2]YZSX̂[1,2]

,

p∗M[1,2]C[1,2]X[1,2]YZS1{X̂[1,2] = X[1,2]}) = 0, (19)

with Mj = b
∗(j)
1 (Xj), Cj = b

∗(j)
2 (Xj), j = 1, 2. We introduce

p∗
M̂[1,2]|X̂[1,2]

= 1{M̂j = b
∗(j)
1 (X̂j),∀j = 1, 2} to (19). Then,

EC[1,2]

(
P(M̂[1,2] 6= M[1,2]|C[1,2])

)
= V

(
p∗
M[1,2]M̂[1,2]C[1,2]

,

pUM[1,2]
pUC[1,2]

1{M̂[1,2] = M[1,2]}
)
−→
n→∞

0, (20)

follows from (19). Using the union bound, we also have

PC[1,2]

(
max
S

D(p∗M[1,2]ZS |C[1,2]
||pUM[1,2]

p∗ZS |C[1,2]
) > 0

)
≤ 1

{
max
S

D(p∗M[1,2]C[1,2]ZS
||pUM[1,2]

pUC[1,2]
pZS ) > 0

}
+ P

(
max
S

D(p∗M[1,2]ZS |C[1,2]
||pUM[1,2]

p∗ZS |C[1,2]
) > 0, and

∀S, p∗M[1,2]C[1,2]ZS
= pUM[1,2]

pUC[1,2]
pZS

)
−→
n→∞

0, (21)

as the second term in the RHS of (21) is equal to zero.
Applying the selection lemma to (20), (21), implies that

there is at least one c∗[1,2] s.t. both P(M̂[1,2] 6= M[1,2]|C[1,2] =
c∗[1,2]) and maxS I(M[1,2];ZS |C[1,2] = c∗[1,2]) converge to zero
as n → ∞. Let p̃∗ be the induced distribution for protocol
A corresponding to b∗. We use p̃∗(x[1,2]|m[1,2], c

∗
[1,2]) as the

encoder and (p̃∗(x̂[1,2]|y, c∗[1,2]), b
∗(j)
1 (x̂j), j = 1, 2) as the

decoder for the original model.
Combining the conditions Rj + R̃j < (1 − ε̄)(1 −

α)H(Xj), j = 1, 2, R̃1 ≥ H(X1|X2Y ), R̃2 ≥ H(X2|X1Y ),
R̃1 + R̃2 ≥ H(X[1,2]|Y ), and taking ε̄ → 0, establish the
achievability of the union over all pX1

pX2
of the region of all

pairs (R1, R2) satisfying R1 ≤ I(X1;Y |X2)−αH(X1), R2 ≤
I(X2;Y |X1) − αH(X2), and R1 + R2 ≤ I(X[1,2];Y ) −
αH(X[1,2]). By prefixing two independent channels, pX1|U1

,
pX2|U2

, at the transmitters of the original model, we obtain
the achievability of the union of the region in (7). The convex
hull of the union follows by time sharing independent codes
and the fact that maximizing the secrecy constraint over S in
the whole block-length is upper bounded by its maximization
over the individual segments of the time sharing.

The proof for Theorem 2 is similar to the proof of (7). The
difference is that S, ZS ,∀S ∈ S, in protocol A are as in
(3), (4). Applying Lemma 2 to protocol A, after prefixing the
channels pX1|U1

, pX2|U2
, gives, ∀S ∈ S and i, j = 1, 2, i 6= j

H(Uj |ZS) = n[(1− α)H(Uj) + αH(Uj |X1 +X2)]

H(Ui|UjZS) = n[(1− α)H(Ui) + αH(U[1,2]|X1 +X2)

− αH(Uj |X1 +X2)],

which we use, along with Hoeffding inequality, to satisfy the
conditions of the lemma and derive the rate conditions,

Rj + R̃j < (1− α)H(Uj) + αH(Uj |X1 +X2), j = 1, 2,∑
j=1,2

Rj + R̃j < (1− α)H(U[1,2]) + αH(U[1,2]|X1 +X2),

needed for secrecy. These conditions, combined with R̃1 ≥
H(U1|U2Y ), R̃2 ≥ H(U2|U1Y ), R̃1 + R̃2 ≥ H(U[1,2]|Y ) for
the Slepian-Wolf decoder, and using time sharing establish (8).

Remark 3 By setting j = 1, i = 2, instead of the minimum,
in the RHS of (12), Lemma 2 results in the maximum rate
R1 + R̃1, and the corresponding rate R2 + R̃2 (according to
the maximum sum rate) such that the probability in the LHS
of (12) is vanishing. By switching i and j, the Lemma gives
the maximum rate R2 + R̃2, and the corresponding rate R1 +
R̃1 according to the maximum sum rate. Using this, one can
deduce the maximum rate region, i.e., the maximum individual
and sum rates, required for a vanishing probability.

V. CONCLUSION

In this paper, we have extended the WTC-II with a DM main
channel [4] to a multiple access setting. We have proposed
two models for the wiretapper and derived a strong secrecy
achievable rate region for each. The achievable rate region
for the model, where the wiretapper observes a noiseless
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superposition of the two signals in the positions of the subset
she selects, is larger than the achievable region for the more
powerful wiretapper who decides to perfectly access either
the first or the second signal at each position. The tools we
have used for achievability extend a set of tools, utilized for
a single-user scenario in a recent work [9], to a multi-user
setting. Future work includes upper bounds for these models
and other multi-terminal setups with more capable wiretappers.

APPENDIX

For all S, D(PM[1,2]C[1,2]ZS ||pUM[1,2]
pUC[1,2]

pZS ) is equal to

EpZS

(
D(PM[1,2]C[1,2]|ZS ||PM1C1|ZSp

U
M2
pUC2

)
)

+ D(pM1C1ZS ||pUM1
pUC1

pZS ). (22)

Thus, the probability in the LHS of (12) is upper bounded by

PB
(

max
S∈S

EpZSD(PM[1,2]C[1,2]|ZS ||PM1C1|ZSp
U
M2
pUC2

) > ε̃
)

+ PB
(

max
S∈S

D(PM1C1ZS ||pUM1
pUC1

pZS ) > ε̃
)
. (23)

We upper bound each term in (23). For all S ∈ S, define

AS ,
{
z ∈ Z : PpX[1,2]|ZS

(
(X[1,2], z) ∈ DS1

)
≥ 1− δ

}
.

Using Markov inequality, we have, for all S ∈ S

PpZS (AcS) ≤ 1

δ
PpX[1,2]ZS

(
(X[1,2], ZS) /∈ DS1

)
≤ δ. (24)

Let 1{x,m,c,J} , 1{B(j)1 (xj) = mj ,B(j)2 (xj) = cj ,∀j ∈ J },
where J ⊆ {1, 2}, and let 1DS1 = 1{(x[1,2], z) ∈ DS1 } and
1(DS1 )c = 1{(x[1,2], z) /∈ DS1 }. For any m[1,2], c[1,2], z ∈ Z ,
and S ∈ S, define

PS1 (m[1,2], c[1,2]|z) =
∑
x[1,2]

p(x[1,2]|z)1{x,m,c,{1,2}}1DS1

PS2 (m[1,2], c[1,2]|z) =
∑
x[1,2]

p(x[1,2]|z)1{x,m,c,{1,2}}1(DS1 )c ,

hence PM[1,2]C[1,2]|ZS = PS1 + PS2 . For every x2 ∈ X2, define

Ux2
=
∑
x1∈X1

p(x[1,2]|z)1{x,m,c,{2}}1DS1 .

{Ux2
}x2∈X2

are independent. For (x[1,2], z) ∈ DS1 , we have
(x[1,2], z) ∈ DSγ21 and p(x2|x1, z) ≤ 2−γ21 . Thus,

Ux2
≤
∑
x1

p(x1|z)p(x2|x1, z)1{(x[1,2], z) ∈ DSγ21} ≤ 2−γ21 .

Since EB1{x,m,c,{2}} = 1
M̃2C̃2

,∀x2 ∈ X2, we have

m̄ =
∑
x2

EB(Ux2
) =

1

M̃2C̃2

PpX[1,2]|ZS
((X[1,2], z) ∈ DS1 ).

Also, notice that
∑
m1c1

PS1 (m[1,2], c[1,2]|z) =
∑
x2
Ux2

since∑
m1c1

1{x,m,c,{1,2}} = 1{x,m,c,{2}}. Using a variation of
Chernoff bound [9, Lemma 3], we have, ∀ε ∈ [0, 1], z ∈ AS ,

PB
(
PS1 (m[1,2], c[1,2]|z) ≥

1 + ε

M̃2C̃2

PM1C1|ZS (m1, c1|z)
)

≤ P
(∑

x2

Ux2
≥ 1 + ε

M̃2C̃2

∑
m1c1

PM1C1|ZS (m1, c1|z)
)

≤ P
(∑

x2

Ux2
≥ (1 + ε)m̄

)
≤ exp

(
−ε2(1− δ)2γ21

3M̃2C̃2

)
,

(25)

where m̄ ≥ 1−δ
M̃2C̃2

,∀z ∈ AS . Let b = {b(j)1 , b
(j)
2 , j = 1, 2} be

a realization of B. Note that PS1 is identically distributed for
all m[1,2], c[1,2] due to the symmetry in the random binning.

We then define the class G of binning functions as

G ,
{
b : PS1 (m[1,2], c[1,2]|z) <

1 + ε

M̃2C̃2

PM1C1|ZS (m1, c1|z),

∀S ∈ S, and ∀z ∈ AS
}
. (26)

Using the union bound and (25), we have

PB(Gc) ≤ |S||Z| exp

(
−ε2(1− δ)2γ21

3M̃2C̃2

)
. (27)

Let Mj = b
(j)
1 (Xj) and Cj = b

(j)
2 (Xj), j = 1, 2. Using the

same analysis as in [9, Appendix. B], we show that, for all
b ∈ G, and S ∈ S, we have

EpZS
(
D(PM[1,2]C[1,2]|ZS ||PM1C1|ZSp

U
M2
pUC2

)
)

≤ ε+ (δ + δ2) log(M̃2C̃2) +Hb(δ
2) ≤ ε̃.

Thus, the first probability in (23) is upper bounded by PB(Gc)
in (27). Using similar arguments, we show that the second

term in (23) is upper bounded by |S||Z|e(
−ε2(1−δ)2γ1

3M̃1C̃1
). Finally,

by rewriting (22) with switching the roles of (M1, C1) and
(M2, C2) and repeating the proof, we obtain the second term
in the minimum in (12), which completes the proof.
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