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Abstract—In this work, multiple antenna Gaussian wiretap
channels with a multiantenna cooperative jammer are considered.
In particular, the focus is on identifying the spatial resources
needed at the cooperative jammer in order to achieve a secure
degrees of freedom (s.d.o.f.) for the channel in question equal to
the degrees of freedom (d.o.f.). In order to accomplish this goal,
the cooperative jammer sets out to send correlated jamming
signals. Simultaneously, the legitimate transmitter chooses a
precoder that perfectly aligns its information signals over the
jamming ones at the eavesdropper. Both terminals use structured
signaling, i.e., discrete constellations. The proposed approach is
shown to achieve full d.o.f. for the channel at hand as long as the
cooperative jammer has twice the antennas of the eavesdropper.
It is also shown that within 1

2
of the d.o.f. is achievable with one

less antenna at the cooperative jammer.
I. INTRODUCTION

Information theoretic framework for confidentiality of trans-
mitted messages was established in [1]. In this work, Shannon
considered noiseless channels from the transmitter to the
legitimate receiver and the eavesdropper and showed that
achieving perfect secrecy requires encrypting the message with
a key that has a rate equal to the message rate. Wyner in
[2] introduced the wiretap channel and showed that, for noisy
channels, a non-zero secrecy capacity can be achieved as long
as the channel from the transmitter to the eavesdropper is
degraded with respect to the one to the legitimate receiver. This
result was later extended to more general discrete memoryless
channels in [3]. Secrecy capacity of the scalar Gaussian
wiretap channel was obtained in [4].

Multi-terminal models of the wiretap channel were exten-
sively studied, see for example [5]–[13]. As evidenced by these
previous studies, it is challenging to find the exact secrecy
capacity in most scenarios. Instead, for Gaussian channels,
the high signal to noise ratio (SNR) behavior of the secrecy
capacity, i.e., the secure degrees of freedom (s.d.o.f.), has
been investigated by many [14]–[18]. In these studies, not
surprisingly, it is observed that the imposition of the secrecy
constraint decreases the achievable d.o.f.

A model of particular interest is the Gaussian wiretap chan-
nel where it is known that the secrecy capacity does not scale
with the SNR resulting in zero s.d.o.f., even when an external
terminal, i.e., a cooperative jammer [9], sets out to reduce
the reception quality of the eavesdropper [19]. A remedy for
this shortcoming is to employ structured signaling both by
the cooperative jammer and the legitimate transmitter [15],
[20]. The scaling of the secrecy rate with power results due to
unfavorable alignment of structured signals from the legitimate
transmitter and the cooperative jammer at the eavesdropper
while causing little harm at the legitimate receiver [20]. In
recent work, reference [17] has shown that by employing
multiple cooperative jammers and structured signaling, it is
possible to approach s.d.o.f. of 1 for the Gaussian wiretap
channel.

In addition to these developments for single antenna chan-
nels, multiple antennas have also been used extensively for
improving the secrecy rates of various channel models [21]–
[26]. Recent reference [22] uses a multiple antenna cooperative
jammer to maintain the s.d.o.f. at 1

2 when the eavesdropper
has multiple antennas while the legitimate terminals have one
antenna each.

In this paper, we consider multiple antenna Gaussian wire-
tap channels with an external terminal to help with confidential
communication between legitimate terminals in the presence
of an eavesdropper, i.e., a cooperative jammer that also has
multiple antennas. Specifically, we investigate the conditions
under which the cooperative jammer can help the system
achieve its full degrees of freedom (d.o.f.) as if the eavesdrop-
per does not exist. That is, we are interested in identifying the
number of antennas needed at the cooperative jammer in order
to get rid of the secrecy penalty on the degrees of freedom.

Recognizing that in order to purge the cost of secrecy on
the d.o.f. altogether, the cooperative jammer needs to send
jamming signals that cause no interference at the legitimate
receiver and completely cover the secret message at the eaves-
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dropper at the same time, we consider that the cooperative
jammer transmits coordinated signals over the directions that
are invisible to the legitimate receiver, i.e., over the null
space of the channel from the cooperative jammer to the
legitimate receiver. Simultaneously, the transmitter precodes
its transmitted signals so that they align perfectly with the
jamming signals at the eavesdropper. We note that Gaussian or
structured signaling can be used with the achievable scheme,
and choose to use structured signaling for its simplicity of
implementation and analysis.

For a Gaussian wiretap channel with N antennas at the
transmitter, legitimate receiver, and the eavesdropper, we first
consider the approach in which the cooperative jammer trans-
mits its jamming signals over the null space of its channel
to the legitimate receiver. Next, we consider a special case
of the null space approach which amounts to the cooperative
jammer transmitting signals designed to cancel each other at
the legitimate receiver. In both approaches, we show that it is
possible to achieve N s.d.o.f. for this channel with the help
of a cooperative jammer that has 2N antennas.

Finally, we investigate the achievable s.d.o.f with removing
one antenna from the cooperative jammer. We show that
s.d.o.f. of N − 1

2 is achievable when the cooperative jammer
has 2N − 1 antennas. In this scheme, we need that at least
one information and one jamming signal to have a discrete
constellation, i.e., structured signaling.

The remainder of the paper is organized as follows. Section
II introduces the model and the definitions. The null space
approach is considered in Section III. In section IV, jamming
cancellation is considered. Section V investigates the achiev-
able s.d.o.f. with one less antenna at the cooperative jammer.
Section VI concludes the paper.

Notation: We denote the set of integers
{−Q,−Q+ 1, · · · , Q− 1, Q} by (−Q,Q)Z. We use
lower case font to denote scalars and upper case font to
denote random variables. We denote random vectors and
matrices with bold upper case letters, where the distinction is
clear from the context. IN is a (N ×N) identity matrix and
0N is a (N ×N) matrix of zeros. The null space of a matrix
A is denoted by N(A).

II. CHANNEL MODEL AND DEFINITIONS

We consider a Gaussian wiretap channel composed of one
transmitter, one receiver, an external eavesdropper, and an ex-
ternal cooperative jammer as shown in Fig. 1. The transmitter,
legitimate receiver, and the eavesdropper are all equipped with
N antennas each. The cooperative jammer is equipped with
M antennas.

The signal vectors received at the legitimate receiver and
the eavesdropper in one channel use can be expressed as

Yr = HtXt +HcXc + Zr (1)
Ye = GtXt +GcXc + Ze, (2)

where Xt = [Xt1Xt2 · · ·XtN ]T , Xc = [Xc1Xc2 · · ·XcM ]T

are the transmitted signal vectors from the transmitter and the
cooperative jammer. Ht,Gt ∈ RN×Nare the channel gain

Fig. 1: Gaussian wiretap channel with N antennas at the
transmitter, receiver, and the eavesdropper, and M antennas
at the cooperative jammer.

matrices from the transmitter to the legitimate receiver and
to the eavesdropper, respectively. Hc,Gc ∈ RN×M are the
channel gain matrices from the cooperative jammer to the
legitimate receiver and to the eavesdropper.

The channel gains are assumed to be constant, indepen-
dently drawn from a real-valued1 continuous distribution, and
known at all terminals. Zr and Ze are the additive Gaussian
noise vectors at the legitimate receiver and the eavesdropper,
respectively. The entries of Zr and Ze are assumed to be
independent and identically distributed (i.i.d.) zero mean unit
variance Gaussian random variables. The power constraints on
the transmitter and the cooperative jammer are E

[
XT

t Xt

]
≤

P and E
[
XT

c Xc

]
≤ P .

The transmitter aims to communicate with the legitimate
receiver while keeping the transmitted message secret from
the external eavesdropper. The transmitter employs a stochas-
tic encoder. Secrecy rate Rs is achievable if there exists a
channel code such that (i) the probability of decoding error
at the legitimate receiver and (ii) the mutual information per
channel use between the secret message and the eavesdropper’s
received signal both vanish2. The achievable secure degrees of
freedom (s.d.o.f.) is defined as Ds = lim

P→∞
Rs

1
2 logP

.
The cooperative jammer transmits in order to assist the

legitimate transmitter-receiver pair in achieving the full d.o.f.
of the channel with secrecy.

III. NULL SPACE APPROACH

As long as it has the sufficient number of antennas, we
can have the cooperative jammer transmit the jamming signals
over the null space of its channel gain matrix to the legitimate
receiver, Hc, so that, the jamming signals do not interfere
with the legitimate receiver at all. Consider the system model
depicted in Fig. 1. The received signal vectors at the legitimate

1The assumption of real-valued channel gains can be removed when
Gaussian signaling is considered.

2We consider weak secrecy throughout the paper.

775



receiver and the eavesdropper are expressed as in (1) and (2),
respectively.

In order to achieve full d.o.f. in the presence of the secrecy
constraint, the transmitter needs to transmit N independent
information streams reliably. These N information streams are
precoded into the N transmitted signals at the transmitter in
each channel use. On the other hand, in order to perfectly
cover these N information streams at the eavesdropper, N
independent jamming streams are needed at the cooperative
jammer. These jamming streams at the cooperative jammer
are also precoded into the transmitted jamming signals. The
transmitted jamming signals have to be invisible at the legiti-
mate receiver in order to recover the full d.o.f. N .

Providing non-zero vectors in the null space of Hc requires
the number of antennas at the cooperative jammer to be greater
than N . In addition, each of the N independent jamming
streams has to be transmitted over an independent direction
so that the precoding matrix at the transmitter, that is chosen
to align the N information streams over the jamming ones at
the eavesdropper, is full rank. Therefore, the null space of Hc

has to be of dimension N , and hence, M = 2N antennas at
are sufficient for the cooperative jammer with this approach.

The encoding scheme consists of two parts. The jamming
streams are transmitted over the null space of Hc. The
transmitter chooses a precoder Pt that aligns its N informa-
tion streams over the jamming signals at the eavesdropper.
The transmitted signal vectors from the transmitter and the
cooperative jammer are given by

Xt = PtUt (3)
Xc = JcVc, (4)

where3 Ut = [U1 U2 · · · UN ]
T and Vc = [V1 V2 · · · VN ]

T .
Ui and Vi, i = 1, 2, . . . , N , are the N i.i.d. information streams
and the N i.i.d. jamming streams, respectively. Each of Ui and
Vi, for all i = 1, 2, · · · , N , is uniformly distributed over the set
(−Q,Q)Z, where Q is an integer whose value is in accordance
with the power constraints on the transmitted signals from the
transmitter and the cooperative jammer. Jc ∈ R2N×N is a
matrix whose N columns are chosen to span N(Hc).

Substituting (3) and (4) in (1) and (2), the received signal
vectors at the legitimate receiver and the eavesdropper are

Yr = HtPtUt + Zr (5)
Ye = GtPtUt +GcJcVc + Ze. (6)

The N rows of Gc are almost surely linearly independent
since all of its entries are drawn from a continuous distribution.
Moreover, the N columns of Jc are N linearly independent
vectors chosen from the null space of Hc. The multiplication
of Gc and Jc can be viewed as N linear combinations of the
2N length-N rows of Jc with the independently generated
coefficients that are the entries on the rows of Gc. This results
in GcJc is almost surely a full rank matrix. The proof is given
in the Appendix.

3Throughout this paper, we call Ut the information streams and Vc the
jamming streams.

In order to perfectly align the information streams over the
jamming ones at the eavesdropper, the transmitter chooses the
precoder Pt such that

Pt = G−1
t GcJc. (7)

Note that it is necessary for the precoder Pt to be a full rank
matrix so that the N information streams are decoded at the
legitimate receiver.

Substituting (7) in (6), the received signal vector at the
eavesdropper is given by

Ye = GcJc(Ut +Vc) + Ze. (8)

Since Xt and Xc are independent and the channel is
memoryless, the secrecy rate

Rs = I(Xt;Yr)− I(Xt;Ye) (9)

is achievable [3]. We lower bound this achievable secrecy rate
as follows.

First, in order to compute I(Xt;Yr), it is sufficient to
note that the signal observed by the legitimate receiver Yr

in (5) is a noisy version of the transmitted signal Xt, i.e., the
channel between the transmitter and the legitimate receiver
is equivalent to a point-to-point N -antenna additive white
Gaussian noise (AWGN) channel. Thus, the term I(Xt;Yr)
can be expressed as

I(Xt;Yr) =
N

2
logP + o(logP ), (10)

where o(.) is

lim
P→∞

o(logP )

logP
= 0. (11)

Next, using (3) and (8), the term I(Xt;Ye) can be upper
bounded as follows:

I(Xt;Ye) ≤ I(Xt;YeZe) (12)
= I(Xt;Ye|Ze) (13)
= I(Xt;Ye − Ze) (14)
= H(Ye − Ze)−H(Ye − Ze|Xt) (15)
= H(U1 + V1, U2 + V2, · · · , UN + VN )

−H(V1, V2, · · · , VN )
(16)

≤ log(4Q+ 1)N − log(2Q+ 1)N (17)

= N log
(4Q+ 1)

(2Q+ 1)
(18)

≤ N. (19)

where (13) follows since Xt and Ze are independent, and
the inequality in (17) follows since the entropy of a uniform
random variable over the set (−2Q, 2Q)Z is an upper bound
for the entropy of Ui + Vi, for all i = 1, 2, · · · , N .

Thus, using (10) and (19), the achievable secrecy rate for
the channel in interest can be expressed as

Rs = I(Xt;Yr)− I(Xt;Ye) (20)

≥ N

2
logP + o(P )−N. (21)
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Hence, the achievable secure degrees of freedom is

Ds = lim
P→∞

Rs
1
2 logP

(22)

≥ lim
P→∞

N
2 logP + o(P )−N

1
2 logP

(23)

= N. (24)

Since, with no secrecy constraint, the d.o.f. of the N -
antenna Gaussian channel is N , the upper bound on the s.d.o.f.
of a Gaussian wiretap channel with N antennas at each of the
transmitter, legitimate receiver and the eavesdropper, naturally
follows as N . Thus, with the use of 2N -antenna cooperative
jammer, the s.d.o.f. of this Gaussian wiretap channel is N .

IV. JAMMING CANCELLATION

In this section, we consider jamming cancellation at the
legitimate receiver which is a special case of the null space
approach in the previous section. In this case, the cooperative
jammer transmits coordinated jamming signals which are
designed to cancel each other at the legitimate receiver. For
clarity of exposition, we first consider the case N = 1 and
M = 2, i.e., the transmitter, legitimate receiver and the
eavesdropper are equipped with one antenna each and the
cooperative jammer has two antennas. Next, we extend the
approach to N > 1 in Section IV-B.

A. Single Antenna Gaussian Wiretap Channel

The signals observed at the legitimate receiver and the
eavesdropper in (1) and (2) reduce to

Yr = htXt + hc1Xc1 + hc2Xc2 + Zr (25)
Ye = gtXt + gc1Xc1 + gc2Xc2 + Ze, (26)

where hci and gci are the channel gains from the ith antenna
of the cooperative jammer to the legitimate receiver and the
eavesdropper, respectively, and i = 1, 2. Xci is the transmitted
signal from the ith antenna of the cooperative jammer.

The transmitted signals from the legitimate transmitter and
the cooperative jammer are expressed as

Xt = αU (27)

Xc =
[

1
hc1

−1
hc2

]T
V. (28)

where U and V are i.i.d. uniform over the set (−Q,Q)Z. The
jamming stream V is transmitted from the cooperative jammer.
The precoder α is used to align U over V at the eavesdropper.

From (28), it is easy to see that the two transmitted jamming
signals are scaled so that they arrive at the legitimate receiver
out of phase, and cancel each other completely. Since the
channel gains are randomly drawn from a continuous distribu-
tion, the probability that the two jamming signals cancel each
other at the eavesdropper is zero. The value of the precoder
α is chosen such that the information stream U arrives at the
eavesdropper with the same scaling as that for the jamming
stream V .

The received signals at the legitimate receiver and the
eavesdropper can be expressed as

Yr = αhtU + Zr (29)
Ye = αgtU + βV + Ze, (30)

where,

β =

(
gc1
hc1

− gc2
hc2

)
. (31)

Let us choose the value of α such that α = 1
gt
β. We have

Yr = β
ht

gt
U + Zr (32)

Ye = β(U + V ) + Ze. (33)

Using a similar analysis as in the previous section, it can be
shown that the achievable s.d.o.f. of this channel is 1.

It is worth noting that if two separate single antenna cooper-
ative jammers are used instead of the two-antenna cooperative
jammer, the s.d.o.f. is 2

3 [17]. The enabler of achieving 1
s.d.o.f. is the coordination between the two jamming signals
at the two antennas of the cooperative jammer.

B. Multiple-antenna Gaussian Wiretap Channel

In this subsection, we extend the jamming cancellation
technique to the case of an arbitrary N , i.e., the number of
antennas at each of the transmitter, the legitimate receiver, and
the eavesdropper. The observed signal vectors at the legitimate
receiver and the eavesdropper are expressed as in (1) and (2),
respectively, with M = 2N .

Similar to the previous section, the encoding scheme con-
sists of two separate parts. First, the cooperative jammer
precodes its N independent jamming streams into 2N jam-
ming signals that cancel each other at the legitimate receiver.
Next, the transmitter chooses a precodig matrix that aligns
the information streams over the jamming ones at the external
eavesdropper.

The singular value decomposition of Hc is

Hc = QcΛcS
T
c , (34)

where Qc ∈ RN×N and Sc ∈ R2N×2N are unitary matrices.
The matrix Λc ∈ RN×2N is given by

Λc = [Ωc 0N ] , (35)

where Ωc is a diagonal matrix composed of singular values
of Hc, i.e., Ωc = diag

(
σ
(1)
c , σ

(2)
c , · · · , σ(N)

c

)
.

Let us write ST
c as

ST
c = FSc, (36)

where F ∈ R2N×2N is a full rank matrix which is given by

F =

[
IN IN
0N IN

]
. (37)
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Notice that Sc is also a full rank matrix which is given by
Sc = F−1ST

c . We can rewrite (34) as

Hc = Qc [Ωc 0N ]

[
IN IN
0N IN

]
Sc (38)

= Qc [Ωc Ωc]Sc. (39)

The N independent jamming streams are precoded into the
transmitted jamming signals according to the singular value
decomposition of Hc. More specifically, let us choose Xc as

Xc = S
−1

c

[
Vc

−Vc

]
, (40)

where Vc is defined as in the previous section. Note that
Xc ̸= 0 since S

−1

c has 2N linearly independent (hence
distinct) columns.

Substituting (39) and (40) in (1), the received signal vector
at the legitimate receiver can be rewritten as

Yr = HtXt +Qc [Ωc Ωc]

[
Vc

−Vc

]
+ Zr (41)

= HtXt + Zr. (42)

The transmitted signal vector at the transmitter is given by
(3). Using (2), (3), and (40), the received signal vector at the
external eavesdropper is given by

Ye = GtPtUt +GcS
−1

c IVc + Ze, (43)

where I =
[
IN −IN

]T .
Note that S

−1

c is a full rank matrix, hence, its 2N columns
are linearly independent. The ith column of S

−1

c I results from
subtracting the (i+N)th column of S

−1

c from its ith column,
for all i = 1, 2, · · · , N . Thus, the N columns of S

−1

c I are
linearly independent. Since all of the entries of Gc are drawn
from a continuous distribution, GcS

−1

c I is almost surely a full
rank matrix, see the Appendix.

From (43), choosing the precoder Pt such that

Pt = G−1
t GcS

−1

c I (44)

perfectly aligns the information streams over the jamming ones
at the eavesdropper. As previously mentioned, decoding the
information streams at the legitimate receiver requires that Pt

is a full rank matrix. Since both G−1
t and GcS

−1

c I are full
rank, so is Pt.

We observe that this approach simply amounts to choosing
Jc = S

−1

c I in Section III. Hence, the analysis therein carries
through resulting in the s.d.o.f. of N .

V. REMOVING ONE ANTENNA FROM THE COOPERATIVE
JAMMER

In the previous sections, we have been interested in identify-
ing the number of antennas needed at the cooperative jammer
to achieve the full d.o.f. of the channel in the presence of an
eavesdropper. Here, we back away from the full d.o.f. and see
that we can achieve close to full d.o.f. with fewer antennas at
the cooperative jammer. Specifically, we provide an example

scenario where we reduce the antennas at the cooperative
jammer by one, i.e., M = 2N − 1, and show that N − 1

2
d.o.f. is achievable.

The transmitted signal vector from the legitimate transmitter
is given by (3), i.e., N independent information streams are
sent from the transmitter. However, the null space of the
channel matrix Hc has only N −1 dimensions. As mentioned
previously, the jamming streams have to be transmitted over
independent directions to guarantee a full rank precoding
matrix at the transmitter. The cooperative jammer sets out to
send N − 1 jamming streams over the N − 1 directions of the
null space of Hc and send the remaining jamming stream over
a direction that spatially aligns with one of the directions over
which the information streams are received at the legitimate
receiver. In addition, the direction over which this remaining
jamming stream is sent has to be chosen such that the jamming
and information streams occupy two rationally independent
dimensions at the spatial direction over which they are aligned.

The signal transmitted by the cooperative jammer is given
by

Xc = JcV
(N−1)
c + cNVN , (45)

where Jc ∈ R(2N−1)×(N−1) is a matrix whose columns
span N(Hc). V

(N−1)
c = [V1 V2 · · · VN−1]

T , where
V1, V2, · · · , VN are N i.i.d. jamming streams, each is uni-
formly distributed over the set (−Q,Q)Z. cN ∈ R2N−1 is
a vector which does not belong N(Hc) and will be chosen
later in this section.

The received signal vector at the eavesdropper is

Ye = GtPtUt +Gc

[
Jc cN

] [V(N−1)
c

VN

]
+ Ze. (46)

Thus, the precoding matrix

Pt = G−1
t Gc

[
Jc cN

]
(47)

aligns the information streams over the jamming signals at
the eavesdropper. With similar arguments as in the previous
sections, it can be shown that Pt is full rank.

The received signal at the legitimate receiver is given by

Yr = HtG
−1
t Gc

[
Jc cN

] [U(N−1)
t

UN

]
+HccNVN + Zr,

(48)

where U
(N−1)
t = [U1 U2 · · · UN−1]

T . The vector cN is
chosen from N(HtG

−1
t Gc − γHc) such that

HtG
−1
t GccN = γHccN , (49)

where γ is an arbitrary number that is rationally independent
from 1. Thus, cN does not belong to N(Hc) almost surely.

The received signal signal vector at the legitimate receiver
can be rewritten as

Yr =
[
HtG

−1
t GcJc HccN

] [ U
(N−1)
t

γUN + VN

]
+ Zr. (50)
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It can be shown that the mutual information between the
transmitter and the legitimate receiver is given by

I(Xt;Yr) ≥ I(Ut;Yr) (51)

= I(U
(N−1)
t ;Y(N−1)

r ) + I(UN ;YrN ) + o(log(P )), (52)

where Y
(N−1)
r = [Yr1 Yr2 · · · YrN−1

]T , Yri is the re-
ceived signal at the ith antenna of the legitimate receiver,
i = 1, 2, · · · , N . The first term on the right hand side of
the above equation is equivalent to a point-to-point (N − 1)-
antenna AWGN channel, i.e., it provides (N − 1) d.o.f.
The second term is equivalent to a single antenna AWGN
channel with the information signal received over a rationally
independent dimension from that of the interfering signal, and
hence, provides 1

2 d.o.f. [27]. From (46) and (47), the mutual
information I(Xt,Yr) is upper bounded by N as in Section
III. Thus, N − 1

2 s.d.o.f. is achievable.

VI. CONCLUSION

In this paper, we have considered a Gaussian wiretap chan-
nel with N antennas at each of the transmitter, receiver and the
external eavesdropper, and a cooperative jammer that has M
antennas. We have considered achieving N secure degrees of
freedom (s.d.o.f.) for this channel and identifying the number
of antennas needed at the cooperative jammer, i.e., M , to
achieve it. We have proposed the approach of sending the
jamming signals over the null space of the channel matrix from
the cooperative jammer to the legitimate receiver. We have
shown that the secrecy penalty in the degrees of freedom of the
channel can be completely compensated, i.e., an s.d.o.f. of N
is achievable if M = 2N . The enablers for this achievability
result have been choosing precoders for the transmitted and
jamming signals carefully and the use of coordinated jamming
signals in order to completely cover the transmitted signals
at the eavesdropper while not interfering with the legitimate
receiver. We have also shown that N − 1

2 s.d.o.f. is achievable
when the number of antennas at the cooperative jammer is
reduced to 2N−1, achievable with discrete constellations and
the use of real interference alignment in addition to spatial
alignment. This last example demonstrates that a joint design
of spatial and signal constellation alignment can be beneficial
for secrecy for multiantenna Gaussian channels which is of
current interest.

APPENDIX

Consider two matrices A ∈ RN×2N and B ∈ R2N×N

such that A is full row-rank and B has all of its entries
independently drawn from a continuous distribution. We will
show that AB is almost surely full rank. We have

A = [a1 a2 · · · a2N ] (53)
B = [b1 b2 · · · bN ], (54)

where a1,a2, · · · ,a2N are the 2N length-N columns of A
while b1,b2, · · · ,bN are the N length-2N columns of B.

Let bj,i denote the entry in the jth row and ith column of
B. Let AB = [c1 c2 · · · cN ], where ci is a length-N column

vector, for i = 1, 2, · · · , N . In order to show that the matrix
AB is almost surely full rank, we need to show that the N
columns {ci, i = 1, · · · , N} are linearly independent, i.e.,

N∑
i=1

αici = 0 (55)

if and only if αi = 0 for all i = 1, 2, · · · , N .
Each ci, for i = 1, 2, · · · , N , can be viewed as a linear

combination of the 2N columns of A with coefficients that
are the entries of the column bi of B, i.e.,

ci =
2N∑
j=1

bj,iaj . (56)

Using (56), we can rewrite (55) as

2N∑
j=1

mjaj = 0 (57)

where, for all j = 1, 2, · · · , 2N ,

mj =
N∑
i=1

αibj,i. (58)

The 2N columns of A are linearly dependent since each of
them of length N . Therefore, the equation (57) has infinitely
many solutions for {mj}2Nj=1.

Each of these solutions for mj’s constitutes a system of 2N
linear equations {mj =

∑N
i=1 αibj,i, j = 1, 2, · · · , 2N}. The

number of unknowns in this system, i.e. α’s, is N . Since the
number of equations of this system is greater than the number
of unknowns, this system has a solution for {αi}Ni=1 if and
only if the elements bj,i, j = 1, 2, · · · , 2N, i = 1, 2, · · · , N
have some structure, i.e., are dependent. Since the entries
of B are all independently drawn from some continuous
distribution, the probability that these entries being dependent
is zero.

Moreover, consider the set with infinite cardinality, where
each element in this set is a structured set B that causes the
system of equations in (58) to have a solution for {αi}, for
one of the infinitely many solutions of {mj} to (57). This set
with infinite cardinality has a Lebesgue measure zero in the
space R2N×N since this set is a subspace of R2N×N with a
dimension strictly less than 2N × N . We conclude that (55)
almost surely has no non-zero solution for {αi}. Thus, AB
is almost surely a full rank matrix.

If AB is almost surely full rank, then (AB)T = BTAT

is also almost surely full rank. Hence, if two matrices C ∈
RN×2Nand D ∈ R2N×N are such that C has all of its entries
independently drawn from a continuous distribution and D is
full column-rank, then CD is almost surely full rank.
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