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Degraded Broadcast Diamond Channels With
Noncausal State Information at the Source
Min Li, Member, IEEE, Osvaldo Simeone, Member, IEEE, and Aylin Yener, Member, IEEE

Abstract—A state-dependent degraded broadcast diamond
channel is studied where the source-to-relays cut is modeled
with two noiseless, finite-capacity digital links with a degraded
broadcasting structure, while the relays-to-destination cut is a
general multiple access channel controlled by a random state.
It is assumed that the source has noncausal channel state in-
formation and the relays have no state information. Under this
model, first, the capacity is characterized for the case where
the destination has state information, i.e., has access to the state
sequence. It is demonstrated that in this case, a joint message and
state transmission scheme via binning is optimal. Next, the case
where the destination does not have state information, i.e., the
case with state information at the source only, is considered. For
this scenario, lower and upper bounds on the capacity are derived
for the general discrete memoryless model. Achievable rates are
then computed for the case in which the relays-to-destination cut
is affected by an additive Gaussian state. Numerical results are
provided that illuminate the performance advantages that can be
accrued by leveraging noncausal state information at the source.

Index Terms—Binning, degraded broadcasting, diamond relay
channels, distributed antenna system, noncausal channel state in-
formation, state-dependent channels.

I. INTRODUCTION

W E consider a communication channel in which the
source wishes to communicate to the destination via

the help of two parallel relays and there is no direct link be-
tween the source and the destination, as shown in Fig. 1. The
first hop, from the source to the relays, consists of two noiseless
digital links of finite capacity: a common link of capacity
(bits per channel use) from the source to both relays and a
private link of capacity (bits per channel use) from the
source to relay 2. The first hop has thus a degraded broadcast
channel (BC) structure. The second hop, from the relays to
the destination, is a general multiple access channel (MAC)
controlled by a random state [1]. It is assumed that (i) the entire
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state sequence that affects the MAC is known to the source
before transmission, (ii) the state is not available at the relays,
and (iii) it may or may not be known at the destination. We term
this channel model as the state-dependent degraded broadcast
diamond channel (SD-DBDC) with noncausal channel state
information (CSI) at the transmitter (i.e., CSIT) and with or
without CSI at the receiver (CSIR).
Themotivation to study this channel stems from the downlink

of a distributed antenna system, in which a central unit controls
two antennas, e.g., two picobase stations, via backhaul links,
with the aim of communicating to an active user over the wire-
less channel, see, e.g., [2]. The backhaul communication takes
place by multicasting to both antennas over a wireless BC of
multicasting capacity , and via a dedicated wired or wire-
less link of capacity to one of the antennas. Assuming that
this system operates via multicarrier transmission, the state se-
quence models the frequency-domain fading channel gains be-
tween the distributed antennas and the user. Note that in this
set-up, noncausal CSI at the central unit does not imply lack of
causality in the time domain, but simply the availability of the
frequency response across the frequency bands at the central
unit. This information can be obtained since the user can typi-
cally measure the fading channels, thus obtaining CSIR, while
the central unit may be informed about the CSI, e.g., via ded-
icated feedback links, thus obtaining the CSIT. The picobase
stations, serving as the relays, are not expected to decode the
feedback signal from the user, due to a design choice or insuffi-
cient SNR, and thus CSI is assumed to be unavailable at the re-
lays. Alternatively, the state sequence may model an interfering
signal that affects the channel between distributed antennas and
user. In this case, the interference signal may be communicated
to the central unit by the interfering transmitters, e.g., neigh-
boring macrobase stations, thus obtaining CSIT, while relays
and the user are not informed, thus having no CSIR.

A. Background and Related Work

The diamond channel, in which a source communicates to
two relays via a general BC and the relays are connected to
the destination via a general state-independent MAC, was intro-
duced by Schein and Gallager in [3] and has been widely studied
ever since. For the discrete memoryless (DM) diamond channel,
several achievability results were established in [3], while for
the Gaussian case, it was shown by [4] that partial-decode-and-
forward relaying achieves a rate within one bit of the cut-set
bound. Despite all the activity, the capacity of this channel in
general is open except for some particular instances [5]–[7].
A relevant special case of the diamond channel is obtained

when the BC in the first hop is modeled as two orthogonal,
noiseless digital links of finite capacity. We refer to this model
as orthogonal broadcast diamond channel (OBDC). The OBDC
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Fig. 1. State-dependent degraded broadcast diamond channel (SD-DBDC) with noncausal channel state information (CSI) at the transmitter (CSIT) and with or
without CSI at the receiver (CSIR). The CSIR switch is closed or open, respectively.

was first studied by Traskov and Kramer in [8], where upper
and lower bounds on the capacity of the DM OBDC were de-
rived. Recently, Kang and Liu [9] proposed a single-letter upper
bound for the OBDC with a Gaussian MAC and established
the capacity for a special subclass of Gaussian OBDCs. The
SD-DBDC studied here is related to the OBDC, with the dif-
ferences that the first hop is modeled as a degraded noiseless
BC and that the MAC in the second hop is state-dependent.
A comprehensive review of previous work on channels with

states can be found in [10], while the discussion here focuses
only on work directly related to the present contribution. Con-
sider first a system as in Fig. 1, but with a single relay and
with the relay having full knowledge of the message intended
for the destination. Note that in this case, the source-to-relay
link, unlike the SD-DBDC, only carries state information and
not the message. This channel, which can be seen as a point-to-
point system with coded CSIT, was studied by Heegard and El
Gamal in [11] under the assumption of CSIR. Therein, a general
lower bound was derived and shown to be tight for some spe-
cial cases. In [12], Cemal and Steinberg studied the extension
of this single-relay setting to the case with two relays, under
the assumption that the relays are informed about the two in-
dependent messages to be delivered to the destination and that
there is full CSIR. This model can be seen as a MACwith coded
CSIT. Assuming that the source-to-relays links are modeled as
in Fig. 1 with degraded noiseless channels, the capacity region
for this model was characterized. Additionally, inner and outer
bounds on the capacity region were derived for the case where
the source-to-relays cut consists of separate noiseless links. A
related work is also that of Permuter et al. [13], which derived
the capacity region for a MAC where the encoders, i.e., the re-
lays of Fig. 1, are connected by finite-capacity links to one an-
other, and the MAC channel depends on two correlated state
sequences, each known to only one encoder, and there is full
CSIR.
We now focus on related studies that assume no CSIR.

For the setup with a single relay and where the relay is in-
formed about the message, i.e., the coded CSIT problem, an
upper bound on the capacity was found in [14] and proved
to be achievable in some special cases. It is noted that, if the
relay was informed about both state and message, the optimal
strategy would be Gel’fand–Pinsker (GP) encoding [1], which
reduces to Dirty Paper Coding (DPC) [15] in the corresponding
Gaussian model with an additive state. The state-dependent
MAC with various form of CSIT and no CSIR has been studied
in [16]–[22]. Assuming noncausal CSIT, the capacity regions
for these MAC models are still unknown except the following

special instances: the Gaussian MAC with a common state
known to both encoders [16], [23, Ch. 7]; the binary MAC
with two additive state sequences, each known to one encoder
[20]; the cooperative MAC with degraded message sets and
one noncausally informed encoder [18]; and the cooperative
MAC with one encoder noncausally informed and the other
strictly causally informed about the CSI [22]. In particular, the
model in Section IV of this work connects with the cooperative
MAC with asymmetric CSI in both [18] and [22], since the
relays can potentially learn information about the state through
the BC hop and then cooperate on transmission of messages in
the MAC hop. However, unlike [18] and [22], communicating
the CSI from the source to relays here consumes transmission
resources that would be otherwise used for transmission of
messages. From this point of view, the model considered in this
paper is more properly defined in the context of state-dependent
relay channels.
Relay channels with state have been investigated with var-

ious type of state information at the nodes, see for example,
[24]–[28]. Among them, this paper is closely related to works
[24]–[26] on the single relay channel with noncausal CSI at the
source. Reference [25] established lower bounds on the capacity
by the partially decode-and-forward and binning scheme, while
[26] instead derived lower bounds using the compress-and-for-
ward and binning scheme. The more recent work [24] proposed
two new achievable schemes that improve upon the previous
bounds of [25] and [26] for the general model and put forth
a nontrivial upper bound for a special class of state-dependent
relay channels with orthogonal components. In the first achiev-
able scheme, the source describes the CSI to the relay and to the
destination using a combination of multiple descriptions, bin-
ning, and decode-and-forward techniques; the relay, upon re-
trieving the estimated CSI and message information, performs
cooperative binning with the source to transmit message infor-
mation. In the second achievable scheme, the source simply de-
scribes appropriate input to the relay as if the relay had perfect
CSI, once estimating the input, the relay sends it in the appro-
priate subsequent block.

B. Contributions

In this paper, we study the SD-DBDC model illustrated in
Fig. 1 with noncausal CSIT and with or without CSIR. Our con-
tributions are summarized as follows:
1) For the DMSD-DBDCwith noncausal CSIT and CSIR, we
find the capacity. The key ingredient of the achievability
is a form of binning inspired by [13], whereby the source
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selects directly the codewords to be transmitted by the re-
lays in such a way as to adapt them to the given realization
of the state sequence. It is demonstrated, similar to [13],
that such a joint message and state transmission scheme
from the source to the relays is optimal and that it gen-
erally outperforms a simple scheme whereby the source
sends separate message and state descriptions to the relays,
see Section III.

2) For the DM SD-DBDCwith noncausal CSIT and no CSIR,
we first derive an upper bound on the capacity and then
propose two transmission strategies. The first proposed
strategy operates by sending separate message and state
descriptions over the digital links to the relays so as to
allow each relay to perform GP coding against the quan-
tized state sequence it reconstructs. We refer the scheme
to as GP coding with quantized states (GP-QS) at the re-
lays. The second scheme, inspired by [24], [29], instead
works by having the source first encode the message via
GP coding as if the relays had perfect message and state
information. Then, it sends one common description of the
resulting GP sequence to both relays and one refinement
description to relay 2. We refer this scheme to as quan-
tized GP coding (QGP). The corresponding lower bounds
are derived and presented in Sections IV-B and IV-C.

3) For the case with noncausal CSIT and no CSIR, we also
study the Gaussian SD-DBDC with an additive Gaussian
state. Achievable rates based on the proposed GP-QS
and QGP schemes are evaluated. Numerical results illu-
minate the merits of noncausal CSIT at the source node
and demonstrate the relative performance between the
GP-QS and QGP schemes for the Gaussian SD-DBDC,
see Section IV-D.

Notation: We denote the probability distribution of a random
variable as , or as when the
meaning is clear from the context. Notation represents vector

. For an integer , the notation denotes
the set of integers ; for a positive real number ,
the notation denotes the set of integers ,
where is the ceiling function. denotes a zero-mean
Gaussian distribution with variance . Finally, is defined
as .

II. SYSTEM MODEL AND MAIN DEFINITIONS

In this section, we introduce the model studied in this paper.
Specifically, the SD-DBDC model, depicted in Fig. 1, is de-
noted by the tuple ,
where and are the capacities in bits per channel use of
the common link from the source to both the relays, and the pri-
vate link from the source to relay 2, respectively, and are
the two input alphabets, is the state alphabet, is the output
alphabet, and represents the channel probability
mass functions (PMFs) describing the MAC between the relays
and the destination. The state sequence is generated in an
i.i.d. fashion according to a fixed PMF , i.e.,

(1)

The channel is memoryless in the usual sense and the entire state
sequence is assumed to be noncausally known to the source
node, i.e., we assume noncausal CSIT. However, sequence
may or may not be available at the decoder, i.e., we may or may
not have CSIR.
Let be the message that the source wishes to send to the

destination, which is uniformly distributed over the set
. We define the code as follows.

Definition 1: A code for the SD-DBDC consists of
following.
1) An encoding function at the source node

(2)

which maps the message and the state sequence into two
indices and transmitted over the source-to-relays
links.

2) Two encoding functions at the relays

(3)

(4)

that map the information received by each relay, namely
by relay 1 and by relay 2, into the corre-

sponding sequences transmitted by the two relays.
3) A decoding function at the destination. For the case of no
CSIR, we have

(5)

which maps the received sequence into a message estimate
, while with CSIR, we have

(6)

which maps the received sequence and the state sequence
into a message estimate .

The average probability of error is defined as
. A rate is achievable if there exists a sequence

of codes as defined above such that the probability of
error as . The capacity of this channel is
the supremum of the set of all achievable rates [30].

III. NONCAUSAL CSIT AND CSIR

In this section, the capacity is established for the DM
SD-DBDC with noncausal CSIT and CSIR. The ca-
pacity-achieving transmission scheme is presented in
Section III-A. For comparison, a straightforward transmis-
sion strategy is also considered and its suboptimality is then
shown in Section III-B.

A. Capacity Result

The achievability is based on a scheme in which the source
encoder directly selects the codewords to be transmitted by the
relays so as to adapt them to the given realization of the state
sequence. This is accomplished via a strategy, inspired by [13],
in which the codebooks for the transmitted signals and
are binned so that the bin index is identified by the message to
be delivered to the destination, and the codewords within the
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bin are chosen to match the state sequence. Moreover, given
the degraded BC between source and relays, the codebooks for

and are superimposed, so that the codeword for
is known at both relays, while the codeword for is only
transmitted, superimposed on , by relay 2. The following
theorem presents the result.
Theorem 1: For the DM SD-DBDC model with noncausal

CSIT and CSIR, the capacity is given by

(7)

with the maximum taken over the distributions in the set

(8)

subject to

(9)

(10)

Proof: We provide here a sketch of the proof of achiev-
ability. Details are provided in Appendix A, along with the
proof of converse. Let , and define functions
and such that as and as

. The source splits message into two
independent parts and .
Message is associated with a bin , that con-
tains i.i.d. generated codewords indexed
by , with , while
message is associated with a bin for
all pairs , that contains i.i.d.
generated codewords indexed by , where

. Given a message pair
and a state realization , the source encoder

first looks for an index such that
codeword is jointly typical with ; it
then looks for an index such that
codeword is jointly typical
with . Thus, index is conveyed
to both relays and index is only conveyed to relay
2 over the digital links. Upon receiving the index and retrieving
its corresponding components, relay 1 forwards
and relay 2 forwards to the destination.
Observing the output sequence and the state sequence ,
the decoder chooses a unique tuple of such that

are jointly typical. In
this way, the final message estimate is uniquely determined
by and .
Remark 1: It is noted that, when the state is taken as a con-

stant, the result in Theorem 1 obtains the capacity for a modifi-
cation of the model in [8] in which the first hop is degraded in
the sense defined in this paper.

B. Suboptimality of Separate Message-State Transmission

In the capacity-achieving scheme discussed above, the source
encoder selects the codewords for the relay directly based on
both message and state sequence in a joint fashion. One can con-
sider, for comparison purposes, a scheme in which the source

encoder sends message and state information to the relays sep-
arately. The suboptimality of such an approach for a related
model was discussed in [13]. We emphasize, however, that,
while related, the model considered here is not subsumed by,
nor does it subsume, the model in [13].
To elaborate, assume that the source splits the message as

, as done above, and describes the state sequence
using a successive refinement code [31], where rep-
resents the base state description and represents the refined
description. Message and state description are sent to
both relays, while message and state description are sent
only to relay 2. A coding scheme, similar to that of Theorem
1 of [12], can now be devised in which message is trans-
mitted by using a codebook, conditioned on the description ,
while message is encoded by relay 2, superimposed on the
codeword encoding and is conditioned on state descriptions

. The corresponding achievable rate is characterized as

(11)

with the maximum taken over the distributions in the set

(12)

subject to

(13)

(14)

where the alphabet size of is bounded as and
the alphabet size of is bounded as ,
by standard cardinality bounding techniques [23, Appendix C].
Note that the constraints (13) and (14) represent the well-known
conditions that allow the construction of a successive refinement
code with test channel [31].
We now show that we have in general and that

this inequality can be strict. In particular, for a fixed and
channel PMF , considering any PMF in the set
of (12), we have the following Markov chains: ,

, and . Based
on these chains, we have the following inequalities:

(15)

(16)

(17)

(18)

which imply that .We now showwith an example
that this inequality can be strict.
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Fig. 2. Performance comparison between , , and for , and or 0.3 in the binary example of Section III-B.

For the example, we consider the special case of our model
obtained with and taken as a constant, so that the
model reduces to the two-hop line network, consisting of the
source, relay 2, and the destination (studied also in [13], see
Fig. 2 of [13] if and ).
Inspired by the binary example considered in [13] in a slightly
different context, we then concentrate on the binary model de-
scribed by

(19)

where the state , the noise
with , indepen-

dent of , and denotes the modulo-sum operation. We further
impose a cost constraint on the binary input at relay 2 as

with , where denotes
the expectation operation. The capacity of this binary example
can be derived from Theorem 1 along with the additional input
constraint and is given by

(20)

subject to constraints
and , where
, ,

, and “ ” denotes the
convolution operation, e.g., .
Similarly, rate can be obtained from (11). We also
consider a special case of the “separate” scheme, in which only
message information is sent to the relays, so that we set ,
to a constant in (11) (rate in the figure).
Numerical results are provided in Fig. 2, where , ,

and are plotted versus for ,

or 0.3, and the cardinality of is assumed to be in
(increasing to 3, 4, or 5 did not boost the numerical

rates of ). It is clearly seen that strictly improves
upon and the latter strictly outperforms
for a wide range of values in this example.

IV. NONCAUSAL CSIT AND NO CSIR

In this section, we turn to the SD-DBDCwith noncausal CSIT
and without CSIR. In the absence of CSIR, the capacity is dif-
ficult to establish. In the following, we thus first present an
upper bound on the capacity and then illustrate two achiev-
able schemes for the DM model in Sections IV-A–IV-C. Re-
sults are then extended to a Gaussian SD-DBDC with an addi-
tive Gaussian state in Section IV-D.

A. Upper Bound

Proposition 1: For the DM SD-DBDCmodel with noncausal
CSIT and no CSIR, the capacity is upper bounded by

(21)
with the maximization taken over the distributions in the set

(22)

Proof: Since the capacity with CSIR cannot be smaller
than without CSIR, the first two bounds follows from the
converse proof of Theorem 1. The third bound in (21) is
instead obtained by providing message and state information
to the relays. The system studied can be now seen as being
a point-to-point channel with inputs , output , and
with noncausal CSIT [1]. Then, the bound can be derived as
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in [1] with the identification of auxiliary random variable as
.

Remark 2: The cut-set upper bound obtained by as-
suming that the state is available at all nodes is given by

(23)

with the maximization taken over the distribution in the set

(24)
Compared with the upper bound in (21), it can be
easily shown that the inequality holds. More-
over, the derived bound can be strictly tighter than the
cut-set bound . As a simple example, consider a binary
memoryless MAC with inputs and with
output , where we have the independent
variables and with

. Cost constraints are imposed on the relay inputs
as , for , 2. Fix digital
link capacities and with . Evaluating the
two bounds leads to and

with

(25)

where and function is defined as

(26)

Note that in calculating we have used the result in [32] and
[33] on the capacity of binary GP channels. It can be readily seen
that we have for the indicated range of values of
and . For instance, for and , we have

and .

B. Achievable Scheme 1: GP Coding With Quantized States
at the Relays

In the absence of CSIR, the source can provide information
about the state to the relays so as to allow the latter to perform
GP coding. Following this idea and an appropriate combination
of message splitting, superposition coding and successive re-
finement coding [31], similar to the discussion in the previous
section, we can devise a scheme detailed below, which is re-
ferred to as GP coding with quantized states (GP-QS) at the re-
lays. The GP-QS leads to an achievable rate given as follows.
Proposition 2: For the DM SD-DBDCmodel with noncausal

CSIT and no CSIR, a lower bound on the capacity is given by

(27)

with the maximum taken over the distributions in the set

(28)

subject to
(29)

(30)

Sketch of Proof: The proof follows from rather standard
arguments, and thus it is only sketched here. Let , and
define functions and such that as
and as . As done in the “separate” strategy dis-
cussed in the previous section, the source encoder splits message

into a common message , to be
delivered to both relays, and a private message ,
to be delivered to relay 2 (so that ). Moreover,
a successive refinement code is used to describe the
state sequence, where the description , of rate , is deliv-
ered to both relays, and the description , of rate , which
refines the first, is communicated only to relay 2. As discussed
around conditions (13) and (14), the following conditions guar-
antee the existence of a successive refinement code with test
channel

(31)

(32)

Moreover, in order to guarantee the successful delivery of the
messages and state descriptions, the following conditions are
sufficient:

(33)

(34)

Given the messages and quantized state sequences, GP
coding is performed by the relays. Specifically, an auxiliary
codebook of i.i.d. codewords is gen-
erated, and then partitioned into bins indexed by ,
where . Using superposition coding, for each
codeword , where is the
index of the codeword in the bin , a second auxil-
iary codebook of i.i.d. codewords

is generated, and then partitioned into
bins indexed by , where and

is the index of the codeword
in the bin . With these codebooks, GP coding

of a message takes place as follows. Relay 1 and
relay 2 encode via the selection of a codeword
that is jointly typical with the common quantized state sequence
. Then, relay 2 encodes message by choosing a codeword

jointly typical with .
Appropriate channel inputs and are then formed by relay
1 and relay 2, respectively, based on the binning codeword(s)
selected and the available quantized state(s).
At the destination, upon observing the channel

output , the decoder looks for a unique pair of
, that is jointly typical with ,

and assigns the message estimate as . If none or
more than one such pair is found, an error is declared. By the
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Fig. 3. Gaussian SD-DBDC with an additive Gaussian state.

packing lemma [23, Ch. 3], it is shown that the probability of
decoding error vanishes if

(35)

(36)

Finally, combining the constraints above and using the
Fourier–Motzkin procedure [23, Appendix D] to elimi-
nate and then completes the proof of
achievability.

C. Achievable Scheme 2: Quantized GP Coding

In the GP-QS scheme, a separate description of state and
message is conveyed to the relays. Based on the results with
CSIR, one might envision that a scheme in which selection of
the relays’ codewords is done directly at the source based on
both message and state information could be instead advanta-
geous. One such scheme is described here. As further discussed
below, however, without CSIR, this scheme is generally not op-
timal and might even be outperformed by the “separate” GP-QS
strategy.
In the second scheme proposed here, inspired by [24], [29],

GP coding is done by the source encoder, as if the source en-
coder had direct access to the relays. Given the finite-capacity
link between source and relays, the source encoder then quan-
tizes the resulting GP sequence using a successive refinement
code, and conveys a common description to both relays and a
private description to relay 2. Upon receiving the descriptions
and hence having the reconstructed sequences, the relays simply
forward them to the destination. Observing the channel output,
the decoder looks for a GP codeword that is jointly typical with
the received sequence, and obtains the message estimate as the
index of the bin to which such codeword belongs. This scheme
is referred to as the quantized GP coding (QGP). It leads to the
following achievable rate.
Proposition 3: For the DM SD-DBDCmodel with noncausal

CSIT and no CSIR, a lower bound on the capacity is given by

(37)

with the maximum taken over the distributions in the set

(38)
subject to

(39)

(40)

Remark 3: The proof of the proposition follows from the dis-
cussion above and standard arguments [1], [31] and hence de-
tails are omitted for brevity. In the achievable rate derived, we
remark that as in [1], denotes the auxiliary binning code-
words, while denotes the (auxiliary) analog input sequence,
produced by GP encoding at the source encoder. A common de-
scription of is carried via both and , a private one is
carried via only. Inequalities (39)–(40) impose the rates at
which the descriptions can be generated. The rate (37) is the rate
achievable by GP coding on the virtual channel that connects the
source to the destination.
Remark 4: While a general performance comparison between

the GP-QS and QGP schemes does not seem to be easy to estab-
lish, it can be seen that when the link capacities are arbitrarily
large, either the state sequence or the GP analog sequence can
be perfectly conveyed to the relays, and thus both the GP-QS
and QGP schemes achieve the upper bound (21), and specifi-
cally the third bound in (21), thus giving the capacity.

D. Gaussian SD-DBDC

We now study a Gaussian SD-DBDC as depicted in Fig. 3.
In particular, we assume that the destination output at time
instant is related to the channel inputs , at the relays
and the channel state as

(41)

where and are i.i.d. mutually
independent sequences. The channel inputs at the relays satisfy
the following average power constraints:

(42)

The encoding and decoding functions are defined as in Defini-
tion 1 except that the codewords are required to guarantee the
input power constraints (42).
1) Reference Results: For reference, we first consider the

performance of a simple scheme that does not leverage the non-
causal CSIT. In particular, the source splits again the message
into two independent parts and sends at rate
to both the relays and at rate to the relay 2 via the

digital links. In this way, the model at hand is converted into a
Gaussian MAC channel with degraded message sets [34], [35].
The decoder simply treats the state as noise. Themaximummes-
sage rates supported by the first hop are given by: and
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, while the capacity region for the MAC
cut is obtained from [35] as

(43)

(44)

for , where we recall that is defined as
. Therefore, the overall achievable rate without

using CSIT is given by

(45)

which serves as a natural lower bound for the capacity of our
example considered.
A simple upper bound can be instead obtained by pro-

viding the decoder with the interference sequence so that it can
be cancelled. The capacity region of the corresponding state-in-
dependent system can be found from [35] and is given by (45)
with in lieu of .
2) Achievable Rates: We now apply the GP-QS and QGP

schemes discussed above to the given Gaussian model.
Proposition 4: For the Gaussian SD-DBDC model, the fol-

lowing rate is achievable by the GP-QS scheme:

(46)

where and the set of is defined as

(47)

Proof: Note that the result of Proposition 2 can be ex-
tended to the continuous channel by standard techniques [23,
Ch. 3]. Thus, one can obtain the achievable rate in this propo-
sition through evaluation of the general result therein by iden-
tifying appropriate inputs. Details of the proof are provided in
Appendix B. We remark that in (47) represent the dis-
tortions at which the state is described to the two relays via
the successive refinement code used in GP-QS.

Next, we derive the achievable rate based on the QGP
scheme.
Proposition 5: For the Gaussian SD-DBDC model, achiev-

able rate by the QGP scheme is given by (48), at the
bottom of the page.

Proof: The proof is obtained from Proposition 3, similar to
the proof of Proposition 4 (see Appendix C).
Remark 5: As the digital link capacity becomes arbi-

trarily large, it is easy to see that both schemes GP-QS and
QGP attain the upper bound , leading to the capacity

. Note that the capacity is the same as if the
interference at the destination was not present and if full co-
operation was possible at the relays. The benefit of utilizing the
noncausal CSIT is therefore evident from this example. We also
emphasize that letting capacity alone grow to infinity is not
enough to obtain the upper bound above, as in this case only
relay 2 can be fully informed by the central unit.
Remark 6: The achievable rate of scheme GP-QS

is generally dependent on the interference power , while the
achievable rate of scheme QGP is not. This is because in
the GP-QS scheme, the state sequence needs to be described to
the relays on the finite-capacity links, and thus the stronger is
the power of the interfered state, the larger are the feasible
distortions in (47) for reproducing the state sequence
at the relays. As a result, in the extreme case in which the state
power becomes arbitrarily large, the rate reduces
to rate (45) obtained when the decoder simply treats the
state as noise. On the other hand, in the QGP scheme, the source
compresses directly the appropriate GP sequence, whose power
does not depend on . Given the fact that the performance of
QGP is not dependent on , it is expected that the QGP scheme
outperforms the GP-QS scheme in case is sufficiently large.

3) Numerical Results: We now further investigate the perfor-
mance of the proposed schemes via numerical results. We first
fix the digital link capacities as and . We also
set , and vary so that the SNR, defined as

, lies between . Figs. 4
and 5 illustrate the corresponding achievable rates versus ,
given or 0.4, and or 1.2, respectively. It
can be seen that with a small state power , e.g.,
as in Fig. 4, rate of scheme GP-QS improves upon
rate of the simple scheme without using CSIT, while rate

of scheme QGP is smaller than both. This is due to the
fact that, when is relatively small, it is more effective to de-
scribe the state sequence to the relays, as done with GP-QS. In
the case of moderate , e.g., as in Fig. 4, we observe

(48)
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Fig. 4. Achievable rates versus for , , , or 0.4.

Fig. 5. Achievable rates versus for , , , or 1.2.

that both the GP-QS and QGP schemes outperform the simple
scheme. In the case of moderate-to-strong , e.g.,
or 1.2 as in Fig. 5, as explained in Remark 6, scheme QGP is
generally advantageous over scheme GP-QS.
We now plot in Fig. 6 the achievable rates versus , for

, , , and . It can be
seen that, when is large enough, both the GP-QS and QGP
schemes attain the upper bound , hence giving the capacity,
as discussed in Remark 5. Next, the achievable rates are plotted
versus in Fig. 7, for fixed link capacities , ,
and , . This figure further confirms the
discussion in Remark 6, by showing that both rates
and decrease as increases.
As indicated by the numerical results, we emphasize that nei-

ther the QGP nor the GP-QS scheme proposed here dominates
the other, and the best available scheme generally depends on
the channel conditions, e.g., the digital link capacities and the
power of the state. This conclusion is aligned with the find-

ings of the related work [24] on the state-dependent single relay
channel with noncausal CSIT. It was shown therein that none of
the scheme based on state-description and the scheme based on
GP-codeword description outperforms the other in general.

V. CONCLUSION

In this paper, we have studied a state-dependent diamond
channel, in which the broadcast channel between source and re-
lays is defined by a noiseless degraded broadcast channel, and
the multiple access channel between relays and destination is
state-dependent. For the case with noncausal channel state in-
formation at the transmitter (CSIT) and at the receiver (CSIR),
we have established the capacity and shown that a joint message
and state transmission scheme via binning is optimal and supe-
rior to the scheme that performs separate message and state de-
scription transmission. For the case without CSIR, we have pro-
posed an upper bound and two transmission schemes, and ap-
plied the results to a Gaussian model with an additive Gaussian
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Fig. 6. Achievable rates versus for , , , .

state. For the Gaussianmodel, numerical results demonstrate the
merit of the noncausal CSIT, and indicate that the best available
transmission scheme generally depends on the channel condi-
tions, e.g., on the digital link capacities and the power of the
state. The capacity for the case without CSIR remains open in
general and serves as an interesting problem for future work.

APPENDIX A
PROOF OF THEOREM 1

Throughout the achievability proofs in the paper, we use the
definition of a strong typical set [23]. In particular, the set of
strongly jointly -typical sequences [23] according to a joint
probability distribution is denoted by . When
the distribution, with respect to which typical sequences are de-
fined, is clear from the context, we will use for short.

Achievability:
Codebook Generation: Fix a joint distribution

where and
are defined by the channel. Let , ,
and . Randomly and independently generate
i.i.d. sequences, each according to and then
partition them into bins , with .
Hence, there are codewords in each bin,
which are indexed by with .
Moreover, for any given , generate i.i.d.

sequences, each according to
and then partition them into bins , with

. Hence, there are codewords in
each bin, which are further indexed by with

. Reveal the whole codebook generated
to all parties involved.

Encoding: Let , and define functions
such that as for , 2, 3. The source en-

coder splits message into two independent parts
and . Message is asso-

ciated with each bin , while message is associated
with each bin for any fixed . Given the
message pair and noncausal state information , the
source encoder first looks for a codeword
such that ; if there are more than
one, choose the first one according to the lexicographic order; if
there is none, set . Given the found, the source
encoder further looks for
such that ;
if there are more than one, choose the first one according to
the lexicographic order; if there is none, set . Then, the
source conveys index and index
to the relays via the digital links. In particular, index is in-
tended for both relays and only for relay 2. Upon receiving
the index and retrieving its corresponding components from the
source, relay 1 transmits , while relay 2 transmits

to the destination.
Decoding: Given , the decoder looks

for a unique tuple of such that

; if
there is none or more than one such tuples, an error is reported.
Then, the final message estimate is assigned as .

Analysis of Probability of Error: Without loss of gener-
ality, assume that is sent by the source
and the indices conveyed to the relays are and

. The analysis of probability of error mainly fol-
lows from the covering lemma and the packing lemma [23, Ch.
3]. Specifically, by the covering lemma, given any typical se-
quence , the source encoding error vanishes as if

(49)

(50)
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Fig. 7. Achievable rates versus for , , , .

Moreover, the indices and can be perfectly conveyed to
both relays and relay 2, respectively, as long as the digital link
capacities satisfy

(51)

(52)

By the packing lemma, the probability of decoding error event
vanishes as if

(53)

Similarly, the probability of decoding error event
vanishes as if

(54)

Finally, combining the above conditions (49)–(54) and using
the Fourier–Motzkin procedure to eliminate and then

completes the proof of achievability.
Converse: Let be the common index conveyed to both

relays and be the private index conveyed to relay 2 only.
First, considering the digital link capacity constraint, we have
that

(55)

(56)

(57)

(58)

(59)

where (58) holds because of the facts that is independent of
and is a deterministic function of . By the same

reasoning, we can show that

(60)

(61)

(62)

We can also write

(63)

(64)

(65)

(66)

(67)

(68)

with as , where (64) is due to Fano’s inequality,
i.e., ; (66) holds because is a
deterministic function of , is a deterministic func-
tion of , and is a deterministic function of ;
(67) follows from the memoryless property of the channel; and
(68) follows from the fact that conditioning reduces entropy.
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Next, we can prove a second bound on the rate as

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

with as , where (70) is due to the independence
between and ; (71) holds because is a deter-
ministic function of ; (73) follows from the facts that
is independent of , is a deterministic function of ,
and is a deterministic function of ; (74) follows
because of the capacity constraints on the links between source
and relays, and because of the chain rule and the nonnegativity
of mutual information; (75) holds due to the Markov chain

so that ; and
(76) follows from Fano’s inequality.
Moreover, we have the third bound

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

with as , where lines (78)–(80) are obtained
by similar reasonings for lines (70)–(74) in the previous bound;
(81) is due to Fano’s inequality, i.e.,

; (82) holds by the chain rule and also because is a de-
terministic function of , is a deterministic function
of and is a deterministic function of ; (83)
follows from the memoryless property of the channel; and (84)
holds due to the fact that conditioning reduces entropy.
Finally, let be a random variable uniformly distributed over

the set . Define random variables , ,
, and . Then, bounds (59), (62), (68), (76),

and (84) can be written as

(85)

(86)

and

(87)

(88)

(89)

where the distribution on from a given code
is of the form

(90)
To eliminate the variable from bounds (85)–(89), we note that

(91)

(92)

(93)

where (92) follows from the fact that the symbols with
are i.i.d. and hence is independent of . Simi-

larly, we can prove that

(94)

Moreover, the inequalities

(95)

(96)

hold because of the Markov chain . Given
the facts above, the bounds corresponding to (7)–(10) are recov-
ered by noticing that the distribution of the random variables

obtained by marginalizing (90) over is of the
exact form given in of (8). This concludes the converse proof
and also the proof of Theorem 1.
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APPENDIX B
PROOF OF PROPOSITION 4

Based on the GP-QS scheme described in Section IV-B and
whose achievable rate is given by (27)–(30), for state encoding,
we consider the following cascade of backward channels:

, where ,
, and are independent,

and . This construction implies the Markov
chain: . Hence, we have that

(97)

(98)

And the constraints of (29) and (30) become

(99)

For message encoding, we let , independent

of ; , where , and
is also independent of . The auxil-

iary random variables and are defined as

(100)

(101)

for some to be specified later. Note that, with these
choices, the channel output becomes

(102)

(103)

(104)

Therefore, with the choice of given above, we have that

(105)

where the equality is achieved by setting

(106)

in (100), which is such that is the minimum mean-
square-error (MSE) estimate of given , similar to
Costa’s DPC [15]. Next, to decode the private message carried

over , the decoder subtracts from ob-
taining the received signal

(107)

Now, with the choice of in (101), we have that

(108)

(109)

(110)

where the equality is achieved by setting

(111)

This concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 5

Based on the QGP scheme described in Section IV-C and
whose achievable rate is given by (37)–(40), we let the aux-
iliary random variable for some ,
independent of . Consider the following cascade of for-
warding channels: , and ,
where and ; ,

, which are independent of each other and
also of ; parameters , , and are to be specified.
Following this construction, note that forms
a Markov chain. Therefore, the constraint of (40) becomes

.

Thus, one can choose . Then,
due to the power constraint

on . Moreover, noting that and

due to constraint (39), we thus choose

and . The

auxiliary random variable is defined as ,
where is chosen to be the weight of the minimum
MSE estimate of given , sim-
ilar to Costa’s DPC [15]. In this way, the message rate

which
equals (48). This completes the proof.
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