
Leveraging Strictly Causal State Information at the

Encoders for Multiple Access Channels

Min Li1, Osvaldo Simeone2 and Aylin Yener1
1Dept. of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802

2Dept. of Electrical and Computer Engineering, New Jersey Institute of Technology, University Heights, NJ 07102

mxl971@psu.edu, osvaldo.simeone@njit.edu, yener@ee.psu.edu

Abstract—The state-dependent multiple access channel (MAC)
is considered where the state sequences are known strictly
causally to the encoders. First, a two-user MAC with two
independent states each known strictly causally to one encoder is
revisited, and a new achievable scheme inspired by the recently
proposed noisy network coding is presented. This scheme is
shown to achieve a rate region that is potentially larger than
that provided by recent work for the same model. Next, capacity
results are presented for a class of channels that include modulo-
additive state-dependent MACs. It is shown that the proposed
scheme can be easily extended to an arbitrary number of users.
Finally, a similar scheme is proposed for a MAC with common
state known strictly causally to all encoders. The corresponding
achievable rate region is shown to reduce to the one given in the
previous work as a special case for two users.

I. INTRODUCTION

State-dependent channels model relevant phenomena in

wireless communication links, such as fading and interference.

It is usually assumed that there exists a state sequence sn,

with each component si denoting the state value affecting the

channel at time instant i. Understanding the merit of state

information (SI), i.e., information about the sequence sn, for

reliable communication is a key problem of both theoretical

and practical interest. State-dependent channels are mainly

classified into three groups with respect to the availability of

SI at the encoders, including non-causal, causal and strictly

causal SI [1]–[5]. Here we shall focus on the most realistic one,

namely, strictly causal SI where at channel use i the encoders

know the states up to the previous time instant. Furthermore,

our focus is on models where the decoders have no SI as done

in [1]–[4].

In a point-to-point discrete memoryless (DM) channel with-

out decoder side SI, strictly causal SI at the encoder cannot

increase the capacity for the channel with an independently

and identically distributed (i.i.d.) state sequence sn [6]. On the

contrary, causal and non-causal SI turns out to be useful for

the same channel and capacity-achieving strategies have been

derived for the former [1] and the latter [2]. State-dependent

multi-user channels have also been widely investigated, see

[5] and references therein. In particular, on state-dependent
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multiple access channels (MAC), reference [7] derived a genie-

aided bound to assess the capacity advantage of non-causal SI

over causal SI for the case with independent state sequences

available at the two encoders. Reference [8] explicitly charac-

terized the capacity region of a cooperative MAC with SI non-

causally available at one encoder, while reference [9] proposed

several achievable rates and upper bounds for a MAC with

non-causal SI at some encoders.

While the work mentioned above mostly focused on non-

causal or causal SI, recently, references [3] and [4] have

demonstrated that, even with strictly causal SI at the encoders

of a state-dependent MAC channel, an improvement in the

capacity region is possible. In [3], a common state sequence is

known either strictly causally or causally at both of encoders in

a two-user MAC, while in [4], two independent state sequences

are present with each strictly causally or causally known to one

encoder. An achievable rate region is derived in both papers

and the capacity region is identified for some special cases

including Gaussian models. The main idea in the achievability

proofs is to use a block Markov coding scheme in which the

two users cooperatively [3] or non-cooperatively [4] transmit

compressed state information to the decoder, which in turn

uses such information to perform coherent decoding. The

results show that an increase in the capacity region can be

obtained by devoting part of the transmission resources to the

transmission of the compressed state.

In this work, we start with the MAC with independent

states each strictly causally known to one transmitter of [4].

Combining the same idea of letting transmitters convey a

compressed version of the state sequence to the destination,

we propose a new achievable scheme with simple encoding

and a decoding strategy similar to noisy network coding [10].

The resulting achievable rate region is shown to be potentially

larger than the original one of [4]. Moreover, the capacity

result for Gaussian channels of [4] for the case of a single

state sequence is generalized to a larger class of channels

that includes modulo-additive state-dependent MACs. The

proposed scheme is then extended to arbitrary number of users.

Finally, an achievable rate region is presented for the MAC of

arbitrary number of users with common state. As a special

case, the region for the two-user MAC with common state

given in [3] is recovered. Due to space limitation, most of the

proofs are omitted and can be found in [11].

Notation: Probability distributions are identified by their
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arguments, e.g., PX (x) = Pr [X = x]. xi
k denotes vector

[xk1, ..., xki]. E [X ] denotes the expectation of random variable

X . R
+
i denotes the set of non-negative real vectors in i

dimension. Notation co refers to the convex hull operation

of a set. N
(

0, σ2
)

denotes a zero-mean Gaussian distribution

with variance σ2. C(x) is defined as C (x) = 1
2 log2 (1 + x).

II. CHANNEL MODEL AND PRELIMINARIES

In this section, we describe our channel models, formulate

the problem and revisit related results derived in reference [4].

A. MAC with Independent States

We first investigate an M -user DM MAC with M state

sequences, which is denoted by:
(

X1 × ... ×XM ,S1 × ... × SM ,Y,

P (s1) ...P (sM ) , P (y |x1, ..., xM , s1, ..., sM )
)

(1)

with input alphabets (X1, ...,XM ), output alphabet Y and state

alphabets (S1, ...,SM ). The state sequences are assumed to

be i.i.d. and are mutually independent, i.e., P (sn
1 ...sn

M ) =
∏n

i=1

∏M

k=1 P (ski). The channel is memoryless in the sense

that at any discrete time i = 1, ..., n:

P
(

yi

∣

∣xn
1 , ..., xn

M , sn
1 , ..., sn

M , yi−1
)

= P (yi |x1i, ..., xMi, s1i, ..., sMi ) . (2)

Each state realization is available to its corresponding encoder

in a strictly causal manner. Encoder k’s signal xn
k is subject

to an average input cost constraint:

1

n

n
∑

i=1

E [ck (Xki)] ≤ Γk, k = 1, ..., M, (3)

where ck : Xk → R
+ is a single-letter input cost function for

encoder k and the expectation is taken with respect to all the

messages and states. We now define the following code.

Definition 1: Let Wk, uniformly distributed over the set

Wk = [1 : 2nRk ], be the message sent by transmitter k.

A (2nR1 , ..., 2nRM , n, Γ1, ..., ΓM ) code with strictly causal

and independent SI at the encoders consists of sequences of

encoder mappings:

fk,i : Wk × Si−1
k → Xki, i = 1, ..., n, k = 1, ..., M, (4)

each of which generates a channel input sequence such that (3)

is satisfied, and a decoder mapping g : Yn → W1× ...×WM .

The average probability of error, Pr (E), is defined by:

Pr (E) =
1

M
∏

k=1

2nRk

2nR1

∑

w1=1

...

2nRM
∑

wM=1

(

Pr (g (yn) 6= (w1, ..., wM ) |(w1, ..., wM ) sent )
)

(5)

Given a cost tuple Γ = (Γ1, ..., ΓM ), a rate tuple

(R1, ..., RM ) is said to be Γ-achievable if there exists a se-

quence of codes (2nR1 , ..., 2nRM , n, Γ1, ..., ΓM ) defined above

such that Pr(E) → 0 as n → ∞. The capacity region C (Γ)
is the closure of all the Γ-achievable rate tuples.

B. MAC with Common State

We also investigate a general M -user DM MAC with

common state. It is defined similarly to the first model by

replacing states s1 = ... = sM = s, i.e., a common state. Each

state realization is assumed to be strictly causally known to

all encoders. Each transmitted sequence xn
k is subject to an

average input cost constraint defined as (3). Then the code for

the channel remains the same as the one given in Definition 1

with the exception that each s1 = ... = sM = s. The average

probability of error, the Γ-achievable rates and capacity region

are also defined as was done in Section II-A.

In the following, we first restrict our attention to a two-user

MAC with two independent states, and then generalize to an

arbitrary M -user MAC with independent states, common state

in Section V and Section VI respectively.

C. Preliminaries

We first summarize and slightly extend a key result of [4].

Theorem 1: [4] Let Γ = (Γ1, Γ2) be given. For the two-

user MAC with strictly causal SI, a Γ-achievable rate region

R̄in1 (Γ1, Γ2) is given by:
{

(R1, R2) : ((R1, R2) , (Γ1, Γ2)) ∈
co

⋃

β1>0,β2>0

(Rin1 (β1, β2) , (β1, β2))

}

(6)

where Rin1 (β1, β2) is the union of the sets:

⋃























(R1, R2) ∈ R
+
2 :

R1 ≤ I (X1; Y |X2, V1, V2 ) − I (V1; S1 |Y, V2 )
R2 ≤ I (X2; Y |X1, V1, V2 ) − I (V2; S2 |Y, V1 )
R1 + R2 ≤ I (X1, X2; Y |V1, V2 )

−I (V1, V2; S1, S2 |Y )























(7)

with the union taken over the distributions in the set of

Psc =
{

PV1,V2,S1,S2,X1,X2,Y :

PV1|S1
PV2|S2

PS1
PS2

PX1
PX2

PY |S1,S2,X1,X2

}

(8)

satisfying E [ck (Xk)] ≤ βk, k = 1, 2.

Remark 1: The Γ-achievable region given here is a straight-

forward extension from the original one in [4] where time-

sharing among different cost constraints is allowed, see, e.g.,

[12]. The basic idea of the achievable scheme is to let

transmitters convey a compressed version of the state, namely

V1 for S1 and V2 for S2, to the receiver. The decoder can

then use this partial information about the state to improve

decoding. The proof of the theorem, though not available in

detail in [4], is there indicated to be based on a scheme that

exploits distributed Wyner-Ziv compression [13] and block

Markov encoding in [4].

III. A NEW ACHIEVABLE RATE REGION

In this section, for the two-user MAC with two independent

states, we propose a new achievable scheme that is based

on simple encoding, whereby no block-Markov operation is

necessary, and on a decoding strategy that is similar to that

of noisy network coding in [10]. The scheme achieves a
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potentially larger achievable rate region and can be easily gen-

eralized to arbitrarily M -user MACs as discussed in Section V.

Theorem 2: Let Γ = (Γ1, Γ2) be given. For the two-

user MAC with strictly causal SI, a Γ-achievable rate region

R̄in2 (Γ1, Γ2) is given by
{

(R1, R2) : ((R1, R2) , (Γ1, Γ2)) ∈
co

⋃

β1>0,β2>0

(Rin2 (β1, β2) , (β1, β2))

}

(9)

where Rin2 (β1, β2) is the union of the sets:

⋃























(R1, R2) ∈ R
+
2 :

R1 < I (X1, V1; Y |X2, V2 ) − I (V1; S1 |X1 )
R2 < I (X2, V2; Y |X1, V1 ) − I (V2; S2 |X2 )
R1 + R2 < I (X1, X2, V1, V2; Y )

−I (V1; S1 |X1 ) − I (V2; S2 |X2 )























(10)

with the union taken over the distributions in the set of

P∗
sc =

{

PV1,V2,S1,S2,X1,X2,Y :

PV1|S1,X1
PV2|S2,X2

PS1
PS2

PX1
PX2

PY |S1,S2,X1,X2

}

(11)

satisfying E [ck (Xk)] ≤ βk, k = 1, 2.

Sketch of Proof: Similar to [4], at each block, each

transmitter sends out a codeword which carries both message

information and information regarding the state sequence in

the previous block. However, unlike [4], the encoders do

not use block Markov coding but instead encode the entire

message over all the blocks, inspired by noisy network coding.

Specifically, the same message wk, wk ∈
[

1 : 2nbRk

]

, is sent

at each transmitter k = 1, 2, over b blocks of transmission

with each consisting of n channel uses. At the end of each

block, each transmitter k compresses the state sequence sn
k

over the block without distributed Wyner-Ziv coding, that is,

without binning as in [10]. In next block, transmitter k sends

out a codeword about both message wk and the compression

index to the receiver. After b blocks of transmission, the

decoder performs jointly decoding over all receptions, without

explicitly decoding the compressed state information correctly.

Remark 2: The resulting region (10) is potentially larger

than (7) since it allows a more general input distribution. In

fact, it is admissible to generate Vk dependent on both Sk and

Xk. Moreover, the cost in terms of rate to be paid for the

transmission of compressed state information in (10) can be

smaller than that of (7). This is shown in Theorem 3.

Theorem 3: R̄in2 (Γ1, Γ2) ⊇ R̄in1 (Γ1, Γ2) for all cost

constraint pairs (Γ1, Γ2).

Sketch of Proof: Given any cost constraint pair (β1, β2),
by setting PV1|S1,X1

= PV1|S1
and PV2|S2,X2

= PV2|S2
in

Rin2 (β1, β2) and exploiting facts that (V1, V2) ↔ (S1, S2) ↔
Y forms a Markov chain and (V1, S1) is independent of

(V2, S2), we can show that the sum rate bound in (10) is equal

to the one in (7), while the individual bounds on R1 and R2

of (10) are larger or equal than the ones in (7). Based on this,

and applying time-sharing among different cost constraints, it

is possible to conclude the proof. Details can be found in [11].

IV. CAPACITY RESULT

In this section, we generalize the capacity result for Gaus-

sian channels of [4] for the special case of a single state

sequence to a larger class of channels. We also provide an

example that demonstrates the benefits of strictly causal SI.

Consider a class of two-user DM deterministic MACs

denoted by DMAC , in which the output Y is a deterministic

function of the inputs X1, X2 and the channel state S:

Y = f (X1, X2, S) , (12)

and where the channel state S, strictly causally known to

encoder 1, is another deterministic function of the inputs X1,

X2 and the output Y :

S = g (X1, X2, Y ) , (13)

over all product distributions PX1
PX2

satisfying input cost

constraints (3) for k = 1, 2.

Then the capacity region for DMAC is identified as follows.

Theorem 4: Let Γ = (Γ1, Γ2) be given. For any MAC in

DMAC defined above, the capacity region C (Γ) is given by:

C (Γ)
∆
=
⋃















(R1, R2) ∈ R
+
2 :

R1 ≤ H (Y |X2, Q ) − H (S)
R2 ≤ H (Y |X1, S, Q )
R1 + R2 ≤ H (Y |Q) − H (S)















(14)

where the union is taken over all input distributions in form

of PX1|Q PX2|Q PQ satisfying E [ck (Xk)] ≤ Γk, k = 1, 2, and

Q is an auxiliary random variable with cardinality |Q| ≤ 5.

Proof:

i) Achievability: We provide the proof of achievability for

Q = q constant and drop the conditioning on q for simplicity.

The region (14) then follows by using coded time-sharing [14].

Fix PX1
PX2

PSPY |X1,X2,S and E [ck (Xk)] ≤ Γk, k = 1, 2,

for a given Q = q. By setting V2 = S2 = ∅ and V1 = S1 = S

in the region (10) we derived, and exploiting the deterministic

property of channels, rate pair (R1, R2) is achievable where

R1 < H (Y |X2 ) − H (S) , R2 < H (Y |X1, S ) , (15)

R1 + R2 < H (Y ) − H (S) , (16)

E [ck (Xk])] ≤ Γk, k = 1, 2. (17)

ii) Converse: From Proposition 1 and 2 in [4], we have that

R1 ≤
1

n

n
∑

i=1

I (X1i; Yi |X2i ) + ǫn (18)

R1 + R2 ≤
1

n

n
∑

i=1

I (X1i, X2i; Yi) + ǫn, (19)

where ǫn → 0 as n → ∞. Introducing a random variable Q

uniformly distributed in the set [1 : n], we have

R1 ≤
1

n

n
∑

i=1

I (X1q; Yq |X2q, Q = q = i) + ǫn (20)

= I (X1Q; YQ |X2Q, Q) + ǫn (21)

= I (X1; Y |X2, Q ) + ǫn (22)
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= H (Y |X2, Q ) − H (S) + ǫn. (23)

Along similar lines to (20)−(22), one can show that

R1 + R2 ≤ I (X1, X2; Y |Q ) + ǫn (24)

= H (Y |Q) − H (S) + ǫn. (25)

Moreover, by providing perfect state information to the re-

ceiver, one can easily prove the following bound:

R2 ≤
1

n

n
∑

i=1

I (X2i; Yi |X1i, Si ) + ǫn (26)

= I (X2; Y |X1, S, Q) + ǫn (27)

= H (Y |X1, S, Q ) + ǫn. (28)

It can be seen that the distribution on (Q, S, X1, X2, Y )
from a given code is of the form PQ,S,X1,X2,Y =
PQPX1|Q PX2|Q PSPY |X1,X2,S . Notice that both (23) and (25)

exploit property (13) and the fact that S is independent of Q.

For the cost constraints, starting from (3), we have

Γk ≥
1

n

n
∑

i=1

∑

xki

Pr (xki)ck (xki) (29)

=

n
∑

q=1

1

n

∑

xk

Pr (xk |q )ck (xk) = E [ck (Xk)] . (30)

Finally, the cardinality bound |Q| ≤ 5 follows from the

Lemma in [14, Appendix C].

Remark 3: In the achievability proof, we set V1 = S1 =
S, which implies that V1 is independent of X1. Hence the

achievable scheme proposed in [4] is also optimal for the class

of channels considered here.

Example 1 ( [4]): The class DMAC includes the Gaussian

model considered in [4], which is defined as Yi = X1i +

X2i + Si with input power constraints 1
n

n
∑

i=1

E
[

X2
ki

]

≤ Pk

and Si ∼ N
(

0, σ2
s

)

strictly causally known to encoder 1. The

capacity region C can be identified from Theorem 4 by simple

extension to continuous alphabets [6], and is given by:
{

(R1, R2) ∈ R
+
2 :

R1 ≤ C
(

P1

σ2
s

)

, R1 + R2 ≤ C
(

P1+P2

σ2
s

)

}

. (31)

Example 2: The class DMAC contains more channels be-

side the Gaussian model discussed in Example 1. In particular,

consider a class of binary modulo-additive state-dependent

MAC channels, e.g., Y = X1 ⊕ X2 ⊕ S, where S ∼

Bernoulli (ps), with input cost constraints 1
n

n
∑

i=1

E[X1i] ≤ p1

and 1
n

n
∑

i=1

E[X2i] ≤ p2, 0 < p1, p2, ps ≤ 1
2 . The capacity

region Cs
bin for this class of channels is given by:







(R1, R2) ∈ R
+
2 :

R1 ≤ Hb (p1 ∗ ps) − Hb (ps) , R2 ≤ Hb (p2)
R1 + R2 ≤ Hb (p1 ∗ p2 ∗ ps) − Hb (ps)







, (32)

where p1 ∗ p2 = p1 (1 − p2) + p2 (1 − p1), and Hb (p) =
−p log2 p − (1 − p) log2 (1 − p).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
1

R
2

 

 

MAC without state information

MAC with state information at encoder 1

Fig. 1. Capacity region for an example of modulo-additive state-dependent
MAC with input constraints (p1 = p2 =

1

3
, ps =

1

4
)

The capacity region (32) can be identified from Theo-

rem 4 as follows. Given a fixed Q = q and input con-

straints E [ck (Xk) |Q = q] ≤ pkq , for some pkq such that
∑

Q

pkq Pr (Q = q) ≤ pk, each bound in (14) is maximized

by the same input distributions Bernoulli (pkq), k = 1, 2.

For example, on bound R1

H (Y |X2, Q = q ) − H (S) (33)

= H (X1 ⊕ S |Q = q ) − Hb (ps) (34)

≤ Hb (p1q ∗ ps) − Hb (ps) , (35)

where (35) follows from the fact that entropy

H (X1 ⊕ S |Q = q ) monotonically increases with the

probability of X1 = 1. Hence,

H (Y |X2, Q ) − H (S) (36)

=
∑

q∈Q

H (Y |X2, Q = q ) Pr (Q = q) − H (S) (37)

≤
∑

q∈Q

Hb (p1q ∗ ps) Pr (Q = q) − Hb (ps) (38)

≤ Hb (p1 ∗ ps) − Hb (ps) , (39)

where (39) follows by the concavity of entropy. Thus there

is no need for time-sharing among different cost constraints.

By similar arguments on the other two bounds, we claim the

capacity region in (32).

Remark 4: It is known from [6] that, without SI, the capac-

ity region Cns
bin for this MAC channel is given by:















(R1, R2) ∈ R
+
2 :

R1 ≤ Hb (p1 ∗ ps) − Hb (ps) ,

R2 ≤ Hb (p2 ∗ ps) − Hb (ps) ,

R1 + R2 ≤ Hb (p1 ∗ p2 ∗ ps) − Hb (ps)















. (40)

Hence Cns
bin ⊆ Cs

bin. For a numerical example, we set p1 =
p2 = 1

3 and ps = 1
4 . The corresponding regions (32) and

(40) are depicted and compared in Fig. 1. It is evident that

the presence of strictly causal SI at encoder 1 improves the

maximum rate of user 2.

V. M -USER MAC WITH INDEPENDENT STATES

In this section, we generalize the proposed scheme to an

arbitrary number of users with independent states. Due to
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limited space, from now on, we only present the achievable

rate region given a cost tuple (β1, ..., βM ), from which a

Γ-achievable rate region can be obtained by convex hull

operation and time-sharing among different cost constraints

as similarly characterized in (9) for the two-user case.

Let S denote any subset of [1 : M ], i.e., S ⊆ [1 : M ] and Sc

be the complement of S. Any random vector X (S) is defined

by X (S)
∆
= (X1, X2, ..., Xl) , l = |S|, the cardinality of S.

Theorem 5: Given a cost tuple (β1, ..., βM ), for the M -user

MAC with strictly causal and independent SI, an achievable

rate region RM
in (β1, ..., βM ) is given by the union of the sets:

⋃



































(R1, ..., RM ) ∈ R
+
M :

∑

k∈T

Rk <

min
S⊆[1:M ]
T ⊆S

(

I (X (S) ,V (S) ; Y |X (Sc) ,V (Sc))
−
∑

l∈S

I (Vl; Sl |Xl )

)

,

∀ T ⊆ [1 : M ]



































with the union taken over the distributions in the set of

PM
sc =

{

PV1,...,VM ,S1,...,SM ,X1,...,XM ,Y :
M
∏

k=1

(

PVk|Sk,Xk
PSk

PXk

)

PY |S1,...,SM ,X1,...,XM

}

(41)

satisfying E [ck (Xk)] ≤ βk, k = 1, ..., M .

Proof: The coding scheme follows from that of Theorem

2 for the two-user DM MAC. Details can be found in [11].

VI. M -USER MAC WITH COMMON STATE

In this section, we present an achievable rate region for the

M -user MAC with common SI by applying a similar scheme

to that for the case with independent SI.

Theorem 6: Given a cost tuple (β1, ..., βM ), for the M -

user MAC with strictly causal common SI, an achievable rate

region RM,c
in (β1, ..., βM ) is given by the union of the sets:

⋃























(R1, ..., RM ) ∈ R
+
M :

∑

k∈[1:M ]

Rk < I (X ([1 : M ]) , V ; Y ) − I (V ; S) ,

∑

k∈S

Rk < I (X (S) ; Y |U, V,X (Sc) ) ,

∀ S ⊆ [1 : M ]























with the union taken over the distributions in the set of

PM,c
sc =

{

PV,S,U,X1,...,XM ,Y :

PSPV |S PU

(

M
∏

k=1

PXk|U

)

PY |S,X1,...,XM

}

(42)

satisfying E [ck (Xk)] ≤ βk, k = 1, ..., M .

Proof: The proof follows a similar idea of forwarding

compressed state based on noisy network coding while cou-

pled with a cooperative transmission strategy for the DM MAC

with common message [15]. We refer for details to [11].

Remark 5: Given any cost pair (β1, β2), setting M = 2 in

RM,c
in derived above, we recover the achievable region for the

two-user DM MAC with common state in [3]. Moreover, as

shown in [3], this region is the capacity region for the two-

user Gaussian MAC, Y = X1+X2+S, where S ∼ N
(

0, σ2
s

)

and is known strictly causally at both encoders.

VII. CONCLUDING REMARKS

In this work, we have investigated whether it is beneficial

to have strictly causal state information at encoders only in a

MAC. To answer this question, we first revisited a two-user

MAC in [4] and derived a new achievable rate region based

on simple encoding at the transmitter and a decoding strategy

inspired by noisy network coding. The new region turns out

to be potentially larger than that in [4]. The capacity result

for the Gaussian model of [4] for the special case of a single

state sequence is generalized to a larger class of channels that

includes modulo-additive state-dependent MACs. Moreover,

we generalized the proposed scheme to arbitrarily M -user

MACs and established the achievable rate regions for the case

with independent states and common state respectively. In

general, our results point to the advantages of state information

at encoders in the MACs considered, despite it being known

only strictly causally.
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