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Multiple Access Channels With States Causally
Known at Transmitters
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Abstract—It has been recently shown by Lapidoth and Stein-
berg that strictly causal state information can be beneficial in mul-
tiple access channels (MACs). Specifically, it was proved that the
capacity region of a two-user MAC with independent states, each
known strictly causally to one encoder, can be enlarged by letting
the encoders send compressed past state information to the de-
coder. In this study, a generalization of the said strategy is proposed
whereby the encoders compress also the past transmitted code-
words along with the past state sequences. The proposed scheme
uses a combination of long-message encoding, compression of the
past state sequences and codewords without binning, and joint de-
coding over all transmission blocks. The proposed strategy has
been recently shown by Lapidoth and Steinberg to strictly improve
upon the original one. Capacity results are then derived for a class
of channels that include two-user modulo-additive state-dependent
MACs. Moreover, the proposed scheme is extended to state-de-
pendent MACs with an arbitrary number of users. Finally, output
feedback is introduced and an example is provided to illustrate the
interplay between feedback and availability of strictly causal state
information in enlarging the capacity region.

Index Terms—Long-message encoding, multiple access channels
(MACs), output feedback, quantize-forward, state-dependent
channels, strictly causal state information.

I. INTRODUCTION

S TATE-DEPENDENT channels model relevant phenomena
in wireless communication links, such as fading and inter-

ference. The standard model prescribes the existence of a state
sequence , with denoting the state value
affecting the channel at time instant , with .
Understanding the merit of state information, i.e., information
about the sequence , for reliable communication is a key
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problem of both theoretical and practical interest. In the existing
literature, state-dependent channels are mainly classified into
the following two groups with respect to the availability of state
information at the encoders: 1) noncausal state information,
where the encoders know the entire state sequence before
encoding for the current block; 2) causal state information,
where at channel use , the encoders know all states up to and
including at .
While referring to [2] for a thorough review on state-de-

pendent channels, here we summarize existing results on
state-dependent multiple access channels (MACs), which are
the focus of our work. Sigurjonsson and Kim [3] derived
single-letter inner and outer bounds on the capacity region for
two-user MACs with causal common state information at the
encoders. Jafar [4] derived a genie-aided bound to assess the
capacity advantage of noncausal state over causal state infor-
mation for MACs with independent state sequences available
at the two encoders. Somekh-Baruch et al. [5] characterized the
capacity region of a cooperative MAC with state noncausally
available at one encoder, while Kotagiri and Laneman [6]
proposed several inner and outer bounds for a MAC with states
noncausally known to some encoders. A lattice coding strategy
was proposed for a MAC with noncausal state information in
[7] and [8].
The works summarized above demonstrate the advantages

of causal and noncausal state information at the encoders for
MACs. Instead, in [9] and [10], Lapidoth and Steinberg dis-
covered that, even with strictly causal state information at the
encoders, an improvement in the capacity region is possible.
By strictly causal state information, it is meant that at channel
use , the encoders know a state sequence up to, but excluding
channel use . This result stands in contrast to the well-known
fact that strictly causal state information cannot improve the ca-
pacity of point-to-point channels with an independent and iden-
tically distributed (i.i.d.) state sequence. More specifically, in
[9], a common state sequence is assumed to be known either
strictly causally or causally at both encoders of a two-userMAC,
while in [10] two independent state sequences are assumed to
be available strictly causally or causally, each to a single en-
coder. An achievable rate region is derived in both papers and
the capacity region is identified for some special cases including
Gaussian models.
The main idea in the achievability proofs in [9] and [10] is

to use a block Markov coding scheme in which the two users
cooperatively [9] or noncooperatively [10] transmit compressed
past state information to the decoder, which in turn uses such
information to perform coherent decoding. The results show that
an increase in the capacity region can be obtained, even though
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Fig. 1. -user state-dependent MAC with mutually independent states, each of which is available to its corresponding encoder in a strictly causal manner.

transmission of the state information requires diverting part of
the transmission resources from the transmission of message
information.

A. Contributions

In this paper, we propose a generalization of the strategy in
[10] whereby the encoders compress also the past transmitted
codewords along with the past state sequences. We first focus on
the two-userMACwith independent states each strictly causally
known to one encoder. The proposed scheme is based on long-
message encoding [11], compression of the past state sequences,
and past codewords without binning, and joint decoding over
all transmission blocks [12]. We also report on an example, put
forth by Lapidoth and Steinberg in [13], in which the proposed
scheme is shown to strictly improve upon the original strategy
of [10].
We then generalize the capacity result for Gaussian channels

of [10] for the case of a single state sequence to a larger class
of channels that includes two-user modulo-additive state-de-
pendent MACs. The proposed scheme is then extended to the
state-dependent MAC with an arbitrary number of users. Fi-
nally, we introduce output feedback and show via a specific ex-
ample that feedback allows user cooperation for the transmis-
sion of state information to the receiver, besides standard co-
operation on the transmission of messages [14], and that this
increases the capacity region.
The remainder of this paper is organized as follows: In

Section II, we describe the general model considered in this
work and summarize some of the existing results in [10].
Sections III and IV focus on the two-user state-dependent
MAC. Section V provides a generalization to arbitrary number
of users with independent states. Section VI discusses the
model with output feedback. Section VII concludes the paper.
Notation: Throughout the paper, probability distributions are

denoted by with the subscript indicating the random vari-
ables involved, e.g., is the probability of , and

is the conditional probability of given
. When the meaning is clear from the context, for con-

venience, we will use or to represent . Also
denotes vector . denotes the expectation of

random variable . denotes the set of nonnegative real vec-
tors in dimensions. For an integer , the notation de-
notes the set of integers ; for a positive real number
, the notation denotes the set of integers ,
where is the ceiling function. In addition, denotes
a zero-mean Gaussian distribution with variance . Function

is defined as .

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we describe our channel model, formulate the
problem, and revisit some related results derived in previous
work [10].

A. System Model

We investigate an -user discrete memorylessMAC channel
with mutually independent states, which is depicted in Fig. 1
and denoted by the tuple

(1)

with input alphabets , output alphabet , and state
alphabets . The state sequences are assumed to
be i.i.d. and are mutually independent, i.e.,

. The state-dependent channel is memory-
less in the sense that at any discrete time , we can
write

(2)

Each state realization is available to its corresponding encoder
in a strictly causal manner as defined in Section I. Transmitter
’s signal is subject to an average input cost constraint:

(3)

where is a single-letter input cost function for
transmitter and the expectation is taken with respect to all the
messages and states. We now define the following code.

Definition 1: Let , uniformly distributed over the set
, be the message sent by transmitter .

A code for the MAC with
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strictly causal and independent state information at the encoders
consists of sequences of encoder mappings:

(4)

each of which maps message to a channel input such that the
cost constraint (3) is satisfied, and a decoder mapping

(5)

which produces the estimate of messages .
The average probability of error, , is defined by

(6)

Given a cost tuple , a rate tuple
is said to be -achievable if there exists a se-

quence of codes as defined
above such that the probability of error satisfies
as . The capacity region is the closure of all the
-achievable rate tuples.
We first restrict our attention to a two-user MAC with two

independent states, and then generalize to an arbitrary -user
MAC with independent states in Section V.

B. Preliminaries

For comparison, we summarize a key result of [10].

Theorem 1 [10]: Let be given. Let be the
set of all random variables whose
joint distribution is factorized as

(7)

For the two-user MAC with strictly causal state information, a
-achievable rate region, denoted as , is given by
the projection in the plane of the set of rate-cost tuples

belonging to the convex hull of the collection
of all the tuples satisfying

(8a)

(8b)

(8c)

(8d)

for some random variables .

Remark 1: The basic idea of the achievable scheme of The-
orem 1 is to let the transmitters convey a compressed version
of the state, namely for and for , to the receiver.
The receiver can then use this partial information about the
state to improve decoding. As an example, if the state models

fading channels, state information enables partially coherent de-
coding. The proof of the theorem, though not available in de-
tail in [10], is there indicated to be based on a scheme that
leverages distributed Wyner–Ziv compression [15] and block
Markov encoding.

III. NEW ACHIEVABLE RATE REGION

In this section, for the two-user MAC , we propose a
new achievable scheme. The scheme is based on the idea of let-
ting the encoders compress also the past input codewords along
with the past states.We first show that the new achievable region
includes the original one. Then, we report on the example put
forth in [13] that demonstrates that the inclusion can be strict.

Theorem 2: Let be given. Let be the set
of all random variables whose joint
distribution is factorized as

(9)

For the two-user MAC with strictly causal state information,
a -achievable rate region, denoted as , is given
by the projection in plane of the set of rate-cost tu-
ples belonging to the convex hull of the tuples

satisfying

(10a)

(10b)

(10c)

(10d)

for some random variables .
Proof: The theorem follows as a special case of the

-user result of Theorem 5 for . We refer the reader to
Appendix B for a proof of Theorem 5.

Remark 2: In the proposed strategy, the transmitters convey
codewords and , which compress both the past state se-
quences and the past transmitted codewords. This difference
with respect to Theorem 1 is reflected in the different factor-
izations (7) and (9). Specifically, in the latter, the test channels

, is made to depend also on the previ-
ously transmitted symbols . We also note that, unlike [10],
our scheme uses long-message encoding, quantization without
binning and joint decoding over all blocks of transmission, sim-
ilar to [12] (see also [11]).

While the joint distribution factorization (9) is more general
than the original (7) used in [10], the two regions (8) and (10)
are not immediately comparable given the different mutual in-
formation expressions. The next theorem shows that in fact the
proposed achievable region always includes the original.

Theorem 3: The achievable rate region of Theorem 2
includes the achievable rate region of Theorem 1, i.e.,

.
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Proof: Given any cost-constraint pair , setting
and in ,

we obtain the following:
1) For the sum-rate bound

(11a)

(11b)

(11c)

(11d)

where (11c) follows from the Markov chain
and from the fact that are indepen-

dent of . Note the last equation is exactly the same
sum-rate bound in given by (8c).

2) For the individual rate bound on , we can write

(12a)

(12b)

(12c)

(12d)

(12e)

where (12c) follows from conditioning reduces entropy
while (12d) follows from the Markov chain
. The last equation is exactly the same as the bound on
in given by (8a).

3) A similar observation holds for by symmetry.
These three facts imply the relationship

.

It was recently shown in [13] that the proposed region
strictly includes the original region

for some channels. The following is the example given in [13]
that illustrates such inclusion.

Example 1 [13]: Consider a MAC with two binary inputs
; state and state

, where and are independent with entropies

(13)

and the output is given as

(14a)

(14b)

where notation “ ” denotes the conventional modulo-sum op-
eration. The key point of this example is that the state sequence
affects the received signal in a way that depends on the trans-
mitted symbol . Therefore, joint compression both the past
state and the past codeword, or compression of the past state
in way that depends on the past codeword, is expected to be
beneficial. To show this, following [13], it can be seen that rate
pair lies in the inner bounds of by setting ,

in (10). However, with , it was demonstrated
in [13] that is necessarily zero in . This allows us to
conclude, along with Theorem 3, that the region is strictly
larger than the region for this example.

IV. CAPACITY RESULT

In this section, we generalize the capacity result derived in
[10] for Gaussian channels with a single state sequence to a
larger class of channels.
Consider a class of discrete memoryless two-user determin-

istic MACs denoted by , in which the output is a
deterministic function of inputs , and the channel state
as

(15)

and where the channel state , strictly causally known to en-
coder 1, can be calculated as a deterministic function of the in-
puts , and the output as

(16)

Then, the capacity region for the class of channels is
identified as follows.

Theorem 4: Let be given. For any MAC in the
class defined above, the capacity region is given by

(17)

where the union is taken over all product input distributions
satisfying , and

is an auxiliary random variable with cardinality bound .
Proof: See Appendix A.

Remark 3: The achievability proof in Appendix A is based
on setting in the achievable region in The-
orem 2, which implies that is independent of . Hence, the
achievable scheme proposed in [10] is also optimal for the class
of channels considered here.

Remark 4: The class includes the Gaussian model
considered in [10], which is defined as
with input power constraints and state

known strictly causally to encoder 1. The ca-
pacity region for this model is given by:

(18)
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Fig. 2. Capacity region for the binary modulo-additive state-dependent MAC
with input constraints considered in Remark 5 .

This region can be identified from Theorem 4 by the standard
extension to continuous alphabets (see, e.g., [16, Ch. 3]) and
by maximizing each bound via the maximum entropy theorem
[17]. Note that when providing both and to the receiver,
the channel from user 2 to the receiver is noiseless, and hence,
the individual bound on is redundant.

Remark 5: The class contains more channels
along with the Gaussian model discussed in Remark 4.
In particular, consider a class of binary modulo-additive
state-dependent MAC channels, e.g., ,
where , with input cost constraints

and ,
. Note that assumption (16) automati-

cally holds for this class of binary deterministic channels. From
Theorem 4, by direct evaluation, we obtain that the capacity
region is

(19)

where denotes the convolution operation of two
Bernoulli distributions with parameters and , i.e.,

, and
. It is known from [17]

that, without state information, the capacity region for this
MAC channel is given by

(20)

Hence, we have the relationship , which confirms
the benefit of strictly causal state information in enlarging the
capacity region for this channel. For a numerical example, we
set and . The corresponding regions
(19) and (20) are depicted and compared in Fig. 2. It is seen
that the presence of strictly causal state information at encoder
1 improves the maximum rate of user 2.

V. GENERALIZATION TO USERSWITH INDEPENDENT STATES

In this section, we generalize the proposed achievable scheme
to an arbitrary number of users with independent states, as
depicted in Fig. 1 and described in Section II.
Let denote any subset of the set of encoders , i.e.,

and be the complement of with respect to
the set . Define to be the set of random variables

indexed by and similarly for .

Theorem 5: Let cost tuple
be given. Let be the set of all random variables

whose joint
distribution is factorized as

(21)

For the -user MAC with strictly causal and indepen-
dent state information, a -achievable rate region, de-
noted as , is given by the projection
in the space of the set of rate-cost tuples

belonging to the convex hull of the
tuples satisfying

(22a)

(22b)

(22c)

for some random variables

Proof: See Appendix B.

VI. INTRODUCING OUTPUT FEEDBACK

In this section, we briefly consider an extension of the model
with independent states studied in Section III, where output feed-
back is available to some encoder in addition to strictly causal
state information. It iswell known that the use of output feedback
can enlarge the capacity region in MACs by allowing coopera-
tion in the transmission of the encoders’message [14], [18], [19].
Here, instead, we demonstrate that, with strictly causal state in-
formation, a different type of cooperation is enabled by feed-
back that concerns the transmission of the state sequence.
To this end, we focus on the two-user state-dependent

Gaussian MAC shown in Fig. 3, for which the received signal
is given by

(23)

with power constraints , for ,

and state . We assume that the state information
about is known strictly causally to the first transmitter and
a perfect output feedback link is available from the receiver to
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Fig. 3. State-dependent MAC with strictly causal state information at TX1 and
output feedback at TX2.

the second transmitter. More specifically, we have the following
encoder and decoder mappings.

Definition 2: Let , uniformly distributed over the set
, be the message sent by transmitter ,

. A code for the MAC with
strictly causal state information at encoder 1 and output
feedback to encoder 2 consists of the sequences of encoder
mappings:

(24a)

(24b)

such that power constraints, i.e., , for
, are satisfied and a decoder mapping

(25)

Achievability and capacity region are defined in the usual way
(see Section II).

Theorem 6: The capacity region of the model in Fig. 3 is
given by

(26)

Proof: See Appendix C.

Remark 6: Without feedback, it is known from [9] that, if the
state is known strictly causally to both encoders, the capacity is
given by

(27)

whereas if the state is known strictly causally only to encoder 1,
the capacity region is given by (18). We plot a instance of
these three capacity regions by setting and
in Fig. 4. As we observe, we have the inclusion relationships

. As it will be seen in the achievability
proof in Appendix C, the gains obtained by leveraging feedback
can be ascribed to the fact that feedback enables cooperation
between the encoders in transmitting the state information to the

Fig. 4. Comparison of different capacity regions.

decoder. As a further remark, consider a fourth setting in which
no state information is present at encoder 1 but output feedback
is available to encoder 2. While the capacity region of the case
is unknown in general, it can be easily seen that
holds for any coding scheme. This is because the capacity of
user 2 cannot be improved via feedback. Therefore, the capacity
region in this case is strictly smaller than the capacity region

for the case in which the state is known at encoder 1. This
demonstrates the interplay between the availability of strictly
causal side information at encoder 1 and of output feedback at
encoder 2 in increasing the capacity region.

VII. CONCLUSION

In this paper, we have studied the state-dependent MAC with
strictly causal state information at the encoders, following the
original work by Lapidoth and Steinberg in [9] and [10]. We
have generalized the coding scheme proposed in [10] by al-
lowing the encoders to compress jointly past states and code-
words. The proposed scheme is shown to perform at least as well
as the original one, and it was demonstrated in [13] that there are
channels for which it outperforms the original strategy of [10].
Moreover, the capacity result for the Gaussian model of [10] for
the special case of a single state sequence has been generalized
to a larger class of channels that includes two-user modulo-ad-
ditive state-dependent MACs. Next, the proposed scheme has
been extended to an arbitrary number of users. We have also
demonstrated with an example that output feedback allows co-
operation on the transmission of the state sequence in the pres-
ence of strictly causal state information. Finally, we remark that
the evaluation of complete capacity region for the state-depen-
dent MACs with strictly causal state information remains open
and serves as an interesting problem for future work.

APPENDIX A
PROOF OF THEOREM 4

Achievability:
We provide the proof of achievability for for a con-

stant value and drop the conditioning on for simplicity. The
region (17) then follows by using coded time-sharing [16]. We
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set and in the achievable region
and use the properties (15) and (16) that characterize the

class of to obtain that a rate pair is achievable
if

(28a)

(28b)

(28c)

(28d)

(28e)

(28f)

and , are satisfied.
Converse:
From [10, Propositions 1 and 2], we have the bounds

(29a)

(29b)

and

(30a)

(30b)

where as , and we have defined as a uniformly
distributed random variable in the set and independent
of all other variables, and also the variables ,

, and . Moreover, by providing perfect
state information to the receiver, one can prove the following
bound by using standard arguments:

(31a)

(31b)

From the definition of the code, it can be seen that
the distribution on is of the form

. Notice that
both (29b) and (30b) leverage property (16) and the fact that
is independent of . For the cost constraints, starting
from the definition (3), we easily obtain that .
Finally, by the Fenchel–Eggleston–Caratheodory theorem

[16, p. 631], we establish the cardinality bound by
observing that the rate region in Theorem 4 is characterized
by the following five continuous functions over the connected
compact subset given by the product probability mass func-
tions on : , ,

, , and .

APPENDIX B
PROOF OF THEOREM 5

Throughout the achievability proof, we use the definition of
typical sequences and typical sets as in reference [16]. The set
of jointly -typical sequences according to a joint probability
distribution is denoted by . When the distribu-
tion with respect to which typical sequences are defined is clear
from the context, we will use for short. Throughout, we use
capital letters to denote random variables and the corresponding
lowercase letters to denote realized values.

In the proposed scheme, transmission takes place in blocks
of channel uses each and the samemessage is transmitted in all
blocks (long-message transmission [11]). Let be the code-
word sent by user in each block . This codeword en-
codes both user ’s message and the index cor-
responding to a compressed version of the state sequence

realized in the previous block and of the code-
word transmitted in the previous block. After the trans-
mission blocks, based on the received signals , the
decoder decodes the correct message tuple
by joint typicality decoding over all blocks. We now provide
details on codebook generation, encoding and decoding opera-
tions, and probability of error analysis.
Codebook Generation:
Let . Fix some probability mass function

(PMF) such that the input cost constraint
is satisfied, and the conditional PMFs , for

all . Define the marginal PMF
, for .

Finally, fix rate (to be specified below).
1) For each block , randomly and independently
generate i.i.d. sequences according
to the PMF , for

. Index the sequences as , with

and . As it will be
discussed below, index is used to encode a com-
pressed version of past state and transmitted codeword
from a codebook of rate .

2) For each block and for each codeword
, randomly and independently generate

i.i.d. sequences according to the marginal PMF

,

for . Index the sequences as
, with .

Encoding:
Let be the message sent by user , where .

For block , codeword is transmitted by user
. For block , instead, encoder looks for an index

such that

(32)

If no such index is found, then an arbitrary index is se-
lected from the set . If more than one such index is
found, the first one in lexicographical order is selected. Finally,
the codeword is transmitted by user in the
th block.
Decoding:
After blocks of transmission, the decoder looks for a unique

message tuple , where ,
such that there exists some tuple , with

and , satisfying the condition

(33)

for all blocks .
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Probability of Error Analysis:
We now bound the probability of error averaged over

all distribution of the codebooks defined above. Without loss of
generality, given the symmetry of the codebook generation, we

assume the message tuple sent is and we
label the compression index chosen by encoder for each block
as . In the following, we first define the error events
associated with the encoding and decoding operations, and then
bound the corresponding probabilities of error.
Let denote the event corresponding to en-

coding errors, where represents the error event at encoder
, for . An encoding error at encoder occurs
when in some block there is no codeword
satisfying the joint typicality rule (32). Therefore, the error
event can be written as the union

(34)

In order to define the decoding error events, we first define
the event indexed by a message tuple
as given by (35), shown at the bottom of the page, where
we have defined that and

. Event occurs when the
decoder finds a message tuple satisfying the decoding rule
(33). Based on the decoding rule (33), the decoding error event
can thus be expressed as the union .
Overall, by considering both encoding and decoding errors

and leveraging the union bound, the probability of error can be
upper bounded as

(36)

We now consider separately the terms in the sum (36).
1) By the covering lemma [16], we have the limit

as long as the inequality

(37)

holds for sufficiently large , where as .
2) By the conditional joint typicality lemma [16], we have

that for sufficiently large .
3) To bound each term in the third summand in (36), for con-

venience, for any given ,

and , we define the event
as

(38)

From (35), we have the following:

(39a)

(39b)

(39c)

where the union and sums over are taken over all vectors as
defined in (35), and (39c) holds due to the independence of the
codebooks generated for each block, the memoryless property
of the channel, and the fact that .
Next, we provide an upper bound on the probability

for a given tuple . To fa-
cilitate the analysis, we introduce some useful notations.
Specifically, for any given pair of vectors with

, we define the index set , where we
will drop the dependence on the arguments where necessary
to simplify the notation. This set contains all the indices for
which at least one of the conditions and is
satisfied for the pair of vectors , i.e.,

(40)

In addition, let denote the complement
of with respect to the set , i.e.,

. Furthermore,
we partition the set into two subsets as follows:

(41a)

(41b)

By definition, we have that

Finally, for a generic set , we define as
to be the set of variables , for , where is the

(35)
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symbol transmitted by the th user in the th block. We use
similar definition for .
Given the above notation and by the codebook construction,

we use standard arguments on joint typicality [16] to obtain

(42a)

(42b)

(42c)

(42d)

(42e)

where as ; (42b) follows from standard steps
involving mutual information; (42c) holds because so
that ; (42d)
holds because of the fact that the tuple is
independent of the tuple ; and finally,
(42e) is due to the fact that . It is noted that the
upper bound of (42e) depends only on the sets and

, and hence, it is independent of for any given
and .
Given this upper bound, we then proceed with (39c) and ob-

tain the following:

(43a)

(43b)

(43c)

(43d)

(43e)

(43f)

(43g)

(43h)

where (43c) follows from (42e); (43d) holds because of the
fact that the upper bound (42e) is independent of for any

given and ; (43e) also follows from (42e), where we
have defined the index set
and ; (43f) fol-
lows by for any ; and (43g) holds
because there are at most subsets of that con-
tain any index set given, where we have defined the term

(44)

In this way, we obtain that

(45)

Therefore, we conclude that the limit
holds as long as the condition

(46)

is satisfied, or equivalently, we have

(47)

Setting and , we then have the condition

(48a)

(48b)

for all . This completes the proof of Theorem 5.

APPENDIX C
PROOF OF THEOREM 6

Achievability:
The key idea of the achievable scheme is based on a vari-

ation of Schalkwijk–Kailath coding [14], [20]. User 1 divides
its power into two parts. Specifically, it consumes fraction

of its power to send its message over
channel uses using a codeword drawn from a codebook whose
entries are generated in an i.i.d. fashion from a zero-mean
Gaussian distribution with variance . Moreover, it uses the
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remaining portion to transmit state information via
in cooperation with user 2, as detailed below.
Codebook Generation: Randomly generate i.i.d. se-

quences with each component distributed as
, for . Index the sequences by

with . Partition the interval into
small intervals of equal length and map messages

to the middle points of these intervals. Index
these middle points by .
Encoding:
1) Initial channel use, : User 1 keeps silent in this
channel use. To send message to the receiver, user 2
transmits .

2) First channel use, : By feedback, user 2 learns state
after subtracting its own information. Since user 1 knows
as well, it cooperates with user 2 to convey informa-

tion about state to the receiver, superimposed on its
private message . Specifically, user 1 transmits

, where the scalar is chosen so
that , while user 2 transmits

, where the scalar is chosen so that
.

3) Channel uses : At each following channel use ,
user 2 forms the minimum mean squared error (MMSE)
estimate of based on the observed output
symbols at the beginning of channel use . Let

. Then, user 2 transmits
over the channel use , where the scalar is selected so
that . Given the fact that user 1 knows
, the outdated channel state and its own message

symbols, it equivalently knows the channel output symbols
from the first channel use up to current time. Hence, it can
also generate the MMSE estimate of and thus as
done by user 2. User 1 then transmits

in channel use , where the scalar is chosen
so that .

Decoding: After channel uses, the receiver first esti-
mates state by ; it then estimates by

and declares that mes-
sage is sent if is the closest message point to . After
successfully estimating state and decoding message , the
receiver is able to retrieve the information about , which is
conveyed from both users, so as to subtract it from the received
sequence . In this way, message is decoded based on the
residual signal.
Analysis of Probability of Error: We note that using the union

bound, we have , where the first
term corresponds to the probability of decoding error for mes-
sage , and the second term is the probability of decoding error
for message given that message is correctly decoded. The
probability of decoding error vanishes as the variance
of estimation error of becomes arbitrarily small as .
Similar to [14], it can be shown that we have as
long as

(49)

Moreover, from the standard consideration, we have
as long as the inequality

(50)

holds. Setting concludes the proof of the achiev-
ability.
It is remarked that the achievability can also be proved by ex-

tending the scheme proposed in [9, p. 15]. This scheme demon-
strates that it is enough for both users to know the initial state
symbol , which can be accomplished by user 2 via feedback,
in order to achieve the rate region of Theorem 6.
Converse:
Providing message to encoder 1, the channel becomes the

MAC studied in [21] where encoder 1 knows both and ,
encoder 2 knows , and output feedback is available at the
encoders. In fact, the state sequence at encoder 1 in this genie-
aided model can be seen as equivalent to feedback since via
feedback, encoder 1 effectively obtains . It is shown in [21]
that feedback does not increase capacity, and thus, the capacity
region is given by (26).
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