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Abstract—A state-dependent degraded broadcast diamond
channel is studied where the source-to-relays cut is modeled
with two noiseless, finite-capacity digital links with a degraded
broadcasting structure, while the relays-to-destination cut is a
general multiple access channel controlled by a random state. It
is assumed that the source has non-causal channel state informa-
tion, the relays have no state information and the destination may
or may not have state information. First, the capacity is found for
the case where the destination has access to the state sequence.
It is demonstrated that a joint message and state transmission
scheme via binning is optimal. Next, for the case with state
information at the source only, lower and upper bounds on the
capacity are derived for the general discrete memoryless model.
Achievable rates are then computed for the case in which the
relays-to-destination cut is affected by an additive Gaussian state.

I. INTRODUCTION

We consider a communication channel in which the source
wishes to communicate to the destination via the help of two
parallel relays and there is no direct link between the source
and the destination, as shown in Fig. 1. The first hop, from
the source to the relays, consists of two noiseless digital links
of finite capacity: a common link of capacity C1 (bits per
channel use) from the source to both relays and a private link
of capacity C2 (bits per channel use) from the source to relay
2. The first hop has thus a degraded broadcast channel (BC)
structure. The second hop, from the relays to the destination,
is a general multiple access channel (MAC) controlled by
a random state [1]. It is assumed that (i) the entire state
sequence that affects the MAC is known to the source before
transmission, (ii) the state is not available at the relays, and
(iii) it may or may not be known at the destination. We term
this channel model as the state-dependent degraded broadcast
diamond channel (SD-DBDC) with non-causal channel state
information (CSI) at the transmitter (i.e., CSIT) and with or
without CSI at the receiver (CSIR).

The motivation to study this channel stems from the down-
link of a distributed antenna system, in which a central unit
controls two antennas, e.g., two pico-base stations, via back-
haul links, for communication to an active user over a wireless
channel, see for example [2]. The backhaul communication
may be received by both antennas over a wireless broadcast
channel modeled by C1, or received by one of antennas via
a dedicated optical fiber cable modeled by C2. In such a
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Fig. 1. A state-dependent degraded broadcast diamond channel (SD-DBDC)
with non-causal channel state information (CSI) at the transmitter (CSIT) and
with or without CSI at the receiver (CSIR, switch closed or open, respectively).

system, the state may model the fading coefficients for the
MAC between the distributed antennas and the user, or an
interference signal affecting this MAC. In the first case, the
user can typically measure the fading channels of the MAC,
thus obtaining CSIR, while the central unit may be informed
about such fading channels, e.g., via dedicated feedback links,
thus obtaining CSIT. The pico-base stations, serving as the
relays, are not expected to decode the feedback signal from
the user, due to a design choice or insufficient signal-to-noise
ratio, and thus CSI is assumed to be unavailable at the relays.
In the latter case of an interfering signal affecting the MAC,
the interference signal may be communicated to the central
unit via backhaul links from the interfering transmitters, e.g.,
another central unit, thus obtaining CSIT, while relays and the
user are not informed, thus having no CSIR.

A. Related Work

The diamond channel, in which a source communicates to
two relays via a general broadcast channel and the relays are
connected to the destination via a state-independent MAC, was
introduced by Schein and Gallager in [3] and has been widely
studied ever since. A relevant special case of the diamond
channel, obtained when the BC in the first hop is modeled
as two orthogonal, noiseless digital links of finite capacity,
is the orthogonal broadcast diamond channel (OBDC). The
discrete memoryless (DM) OBDC was first studied by Traskov
and Kramer in [4], where upper and lower bounds on the
capacity were derived. Recently, Kang and Liu [5] proposed
a single-letter upper bound for the OBDC with a Gaussian
MAC and established the capacity for a subclass of Gaus-
sian OBDCs. The SD-DBDC studied here is related to the
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OBDC, with the differences that the first hop is modeled as
a degraded noiseless broadcast channel and that the MAC in
the second hop is state-dependent. It is emphasized that, as
discussed above, without the assumption of degradedness in
the broadcast channel, the problem is currently open even with
a state-independent MAC [4], [5].

A related line of work is that on coded CSIT problems for
point-to-point [6] or MAC [7] models, in which the encoders
are informed about the state sequence via finite-capacity links
by a third party, which is referred to as the genie [7]. Note
that, unlike the problem we shall consider in this paper, in [7],
the messages are already known at the encoders for the MAC.
Therein, assuming full CSIR, inner and outer bounds on the
capacity region were derived for the case where the genie-to-
encoder channels consist of separate noiseless links. Instead,
assuming that the genie-to-encoder channels are modeled as
in Fig. 1 with degraded noiseless links, the capacity region
was characterized. In [8], Permuter et al. derived the capacity
region for a MAC where the encoders are connected by finite-
capacity links to one another, and the MAC depends on two
correlated state sequences, each known to only one encoder,
and there is full CSIR.

With no CSIR, an upper bound on the capacity of the
coded CSIT problem for a point-to-point channel was found in
reference [9] and proved to be tight in some special cases. The
state-dependent MACs with non-causal CSIT were studied,
e.g., in [10], [11]. Relay channels with non-causal CSI at
certain nodes have also been investigated, see for example,
[12], [13].

B. Contributions

In this paper, we consider the SD-DBDC model illustrated
in Fig. 1 with non-causal CSIT and with or without CSIR.
Our contributions are summarized as follows:
• For the DM SD-DBDC with non-causal CSIT and CSIR,

we find the capacity. The key ingredient of the achievability is
a form of binning inspired by [8], whereby the source selects
directly the codewords to be transmitted by the relays in such
a way as to adapt them to the given realization of the state
sequence. It is demonstrated, similar to [8], that such a joint
message and state transmission scheme from the source to the
relays is optimal and that it generally outperforms a simple
scheme whereby the source sends separate message and state
descriptions to the relays (Sec. III);
• For the DM SD-DBDC with non-causal CSIT and no

CSIR, we first derive an upper bound on the capacity and then
propose two achievable schemes. The corresponding lower
bounds are derived in Sec. IV-B and IV-C, respectively. We
also extend the results to the Gaussian SD-DBDC with an
additive state, along with brief discussions on the relative
performance between the proposed schemes in Sec. IV-D.

Notations: The probability distribution of a random variable
X is denoted as pX(x) = Pr[X = x], or as p(x) when there
is no ambiguity. Notation xi denotes vector [x1, ..., xi]. For a
positive real number l, the notation [1 : 2l] denotes the set of

integers {1, ..., 2dle}, with d.e be the ceiling function.N (0, σ2)
denotes a zero-mean Gaussian distribution with variance σ2.

II. SYSTEM MODEL AND MAIN DEFINITIONS

In this section, we introduce the model studied in this work.
Specifically, the SD-DBDC model (see Fig. 1) is denoted
by the tuple (C1, C2,X1 ×X2 × S, p(y |x1, x2, s ),Y), where
C1 and C2 are the capacities in bits per channel use of the
common link from the source to both the relays, and the private
link from the source to relay 2, respectively, X1 and X2 are
the two input alphabets, S is the state alphabet, Y is the output
alphabet and p(y |x1, x2, s ) represents the channel probability
mass functions (PMFs) describing the MAC between the relays
and the destination. The state sequence sn is generated in
an independently and identically distributed (i.i.d.) fashion
according to a fixed PMF p(s), i.e., p(sn) =

∏n
i=1 p(si).

The channel is memoryless in the usual sense and the entire
state sequence sn is assumed to be non-causally known to
the source node, i.e., we assume non-causal CSIT. However,
sequence sn may or may not be available at the decoder, i.e.,
we may or may not have CSIR.

Let W be the message that the source wishes to send to
the destination, which is uniformly distributed over the set
W = [1 : 2nR]. We define the code as follows.

Definition 1: A (2nR, n) code for the SD-DBDC includes:
1) An encoding function at the source node

f :W ×Sn →
{

1, ..., 2nC1
}
×
{

1, ..., 2nC2
}
, (1)

which maps the message and the state sequence into two
indices M1 and M2 sent over the source-to-relays links;

2) Two encoding functions at the relays

h1 :
{

1, ..., 2nC1
}
→ Xn1 , (2)

and h2 :
{

1, ..., 2nC1
}
×
{

1, ..., 2nC2
}
→ Xn2 , (3)

that map the information received by each relay, namely
M1 by relay 1 and (M1,M2) by relay 2, into the
corresponding sequences transmitted by the two relays;

3) A decoding function at the destination. For the case of no
CSIR, we have g : Yn → W , which maps the received
sequence into a message estimate, while with CSIR, we
have g : Yn × Sn → W , which maps the received
sequence and the state sequence into a message estimate.

The average probability of error is defined in the usual sense
and so is the concept of achievable rate and capacity C.

III. NON-CAUSAL CSIT AND CSIR
In this section, the capacity is established for the DM SD-

DBDC with non-causal CSIT and CSIR.

A. Capacity Result

Theorem 1: For the DM SD-DBDC model with non-causal
CSIT and CSIR, the capacity is given by

C = max
P

min

 C1 + C2 − I(X1, X2;S),
C1 − I(X1;S) + I(X2;Y |X1, S ),
I(X1, X2;Y |S )


(4)
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with the maximum taken over the distributions in the set

P = {p(s, x1, x2, y) : p(s)p(x1, x2 |s )p(y |x1, x2, s )} (5)

subject to C1 ≥ I(X1;S), and C1 + C2 ≥ I(X1, X2;S).
Proof: The achievability is based on a scheme in which

the source encoder selects the codewords to be transmitted by
the relays so as to adapt them to the given realization of the
state sequence. This is accomplished via a binning strategy,
inspired by [8], in which the codebooks for the transmitted
signals Xn

1 and Xn
2 , are binned so that the bin index is

identified by the message w = (w1, w2) (where w1, w2 are
independent and obtained from w at the source) to be delivered
to the destination, and the codewords within the bin are chosen
to “match” the state sequence. Moreover, given the degraded
BC between source and relays, the codebooks for Xn

1 and Xn
2

are superimposed, so that the codeword for Xn
1 is known at

both relays, while the codeword for Xn
2 is only transmitted,

superimposed on Xn
1 , by relay 2.

For the converse, the constraint on C1 can be obtained
starting from inequality nC1 ≥ I(M1;Sn), followed by
standard arguments using the facts that the symbols Si with
i ∈ [1 : n] are i.i.d. and X1,i is a deterministic function
of M1. Similarly, one can prove the constraint on C1 + C2.
Considering now the first bound in (4), we get

nR = H(W |Sn ) (6)
= H(W,M1,M2 |Sn ) (7)
= H(M1,M2)− I(M1,M2;Sn) +H(W |M1,M2, S

n )

= H(M1,M2)−
∑n

i=1
I(M1,M2, X1,i, X2,i, S

i−1;Si)

+H(W |M1,M2, S
n ) (8)

≤ n(C1 + C2)−
∑n

i=1
I(X1,i, X2,i;Si)

+H(W |M1,M2, S
n ) (9)

= n(C1 + C2)−
∑n

i=1
I(X1,i, X2,i;Si)

+H(W |M1,M2, S
n, Y n ) (10)

≤ n(C1 + C2)−
∑n

i=1
I(X1,i, X2,i;Si) + nεn (11)

with εn → 0 as n → ∞, where (6) is due to the inde-
pendence between W and Sn; (7) holds because (M1,M2)
is a deterministic function of (W,Sn); (8) follows from the
facts that Si is independent of Si−1 and (X1,i, X2,i) is fully
determined given (M1,M2); (10) holds due to the Markov
chain W − (M1,M2, S

n)−Y n; and (11) follows from Fano’s
inequality. With similar arguments as above, one can prove the
second rate bound in (4). The third bound in (4) is essentially
the cut-set bound applied to the relays-to-destination cut. From
(11) and the other bounds obtained, the converse is concluded
by introducing an auxiliary variable Q uniformly distributed in
the set [1 : n] and then arguing that one can eliminate variable
Q. Details of the proof can be found in [14].

B. The Suboptimality of Separate Message-State Transmission

For comparison with the joint message-state transmission
strategy discussed above, we consider a scheme in which the

source encoder sends message and state information to the
relays separately. The suboptimality of such an approach for a
related model was discussed in [8]. We emphasize, however,
that, while related, the model considered here is not subsumed
by, nor does it subsume, the model in [8]. To elaborate, assume
that the source splits the message as w = (w1, w2), and
describes the state sequence using a successive refinement
code (S1, S2) [15]. Then, message w1 and the base state
description S1 are sent to both relays, while message w2 and
the refined state description S2 are sent only to relay 2. The
input codewords sent by each relay can now be generated
conditioned on the quantized state(s) available, similar to
the coding scheme of Theorem 1 in [7]. The corresponding
achievable rate Rseparate is equal to

max
P′

min

 C1 + C2 − I(S1, S2;S),
C1 − I(S1;S) + I(X2;Y |X1, S, S1, S2 ),
I(X1, X2;Y |S, S1, S2 )


(12)

with the maximum taken over the distributions in the set

P ′ =

{
p(s, s1, s2, x1, x2, y) : p(s)p(s1, s2 |s )

p(x1 |s1 )p(x2 |x1, s1, s2 )p(y |x1, x2, s )

}
(13)

subject to C1 ≥ I(S1;S), and C1 +C2 ≥ I(S1, S2;S), where
the auxiliary alphabets S1 and S2 satisfy |S1| ≤ |S| + 3 and
|S2| ≤ |S| (|S|+ 3) + 2.

We now show that we have in general Rseparate ≤ C and
that this inequality can be strict. In particular, for a fixed p(s)
and channel PMF p(y |x1, x2, s ), considering any PMF in the
set P ′ of (13), we have the following Markov chains: S−S1−
X1, S− (S1, S2)− (X1, X2) and (S1, S2)− (S,X1, X2)−Y .
Based on these chains, we can prove the following inequalities

C1 ≥ I(S1;S) ≥ I(X1;S), (14)
C1 + C2 ≥ I(S1, S2;S) ≥ I (X1, X2;S) , (15)
I(X2;Y |X1, S, S1, S2 ) ≤ I(X2;Y |X1, S ), (16)

and I(X1, X2;Y |S, S1, S2 ) ≤ I(X1, X2;Y |S ), (17)

which imply that Rseparate ≤ C. We now show with an
example that this inequality can be strict.

For the example, we consider the special case of our model
obtained with C1 = 0 and X1 taken as a constant, so that
the model reduces to the two-hop line network, consisting of
the source, relay 2 and the destination (studied also in [8],
see Fig. 2 of [8] if R2 = 0 and p(y |x1, x2, s ) = p(y |x2, s )).
Inspired by the example considered in [8] in a slightly different
context, we then concentrate on the binary model described by

Y = SX2 ⊕ Z, (18)

where the state S ∼ Bern( 1
2 ), the noise Z ∼ Bern(pz) with

pz
∆
= Pr[Z = 1] ∈ [0, 1

2 ], independent of S, and ⊕ denotes the
modulo-sum operation. We further impose a cost constraint on
the binary input X2 at relay 2 as 1

n

∑n
i=1 E[X2,i] ≤ px2

with
px2
∈ [0, 1

2 ], where E[.] denotes the expectation operation. The
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Fig. 2. Performance comparison between C, Rseparate, and Rpure−message

for C2 = 0.5, and px2 = 0.1 or 0.3 in the binary example of Sec. III-B.

capacity C of this example can be derived from Theorem 1
along with the additional input constraint and is given by

max min

(
C2 −Hb(

1
2 (p0 + p1)) + 1

2Hb(p0) + 1
2Hb(p1),

1
2Hb(p1 ∗ pz)− 1

2Hb(pz)

)
subject to Hb(

1
2 (p0 + p1))− 1

2Hb(p0)− 1
2Hb(p1) ≤ C2 and

1
2 (p0 + p1) ≤ px2

, where p0
∆
= Pr[X2 = 1 |S = 0] ∈ [0, 1],

p1
∆
= Pr[X2 = 1 |S = 1] ∈ [0, 1], Hb(p)

∆
= −p log2(p)− (1−

p) log2(1−p), and p1∗pz
∆
= p1(1−pz)+(1−p1)pz . Similarly,

rate Rseparate can be obtained from (12). We also consider a
special case of the “separate” scheme, in which only message
information is sent to the relays, so that we set S1, S2 to a
constant in (12) (rate Rpure−message in the figure).

Numerical results are provided in Fig. 2, where C, Rseparate

and Rpure−message are plotted versus pz for C2 = 0.5, px2
=

0.1 or 0.3, and the cardinality of S2 is assumed to be m =
2 in Rseparate (increasing m to 3, 4 or 5 did not boost the
numerical rates of Rseparate). It is clearly seen that C strictly
improves upon Rseparate and the latter strictly outperforms
Rpure−message for a wide range of pz .

IV. NON-CAUSAL CSIT AND NO CSIR
In this section, we turn to the SD-DBDC with non-causal

CSIT and without CSIR.

A. An Upper Bound

Proposition 1: For the DM SD-DBDC model with non-
causal CSIT and no CSIR, the capacity is upper bounded by

Rupp = max
Pupp

min

 C1 + C2 − I(X1, X2;S),
C1 − I(X1;S) + I(X2;Y |X1, S ),
I(U ;Y )− I(U ;S)


(19)

with the maximization taken over the distributions in the set

Pupp =

{
p(s, u, x1, x2, y) :
p(s)p(u |s )p(x1, x2 |u, s )p(y |x1, x2, s )

}
.

Proof: Since the capacity with CSIR cannot be smaller
than without CSIR, the first two bounds follows from the
converse proof of Proposition 1. The third bound in (19) is
instead obtained by providing message and state information
to the relays and thus the proof can be derived as in [1].

B. Achievable Scheme 1: Gel’fand-Pinsker (GP) Coding With
Quantized States At The Relays

In the absence of CSIR, the source can provide information
about the state to the relays so as to allow the latter to
perform GP coding [1]. Following this idea and an appropriate
combination of message splitting, superposition coding and
successive refinement [15], we can devise a coding scheme
sketched below, which is referred to as GP coding with
quantized states at the relays (GP-QS).

Proposition 2: For the DM SD-DBDC model with non-
causal CSIT and no CSIR, a lower bound on the capacity,
RGP−QS, attained via the GP-QS scheme, is equal to

max
P1

min


C1 + C2 − I(S1, S2;S),
C1 − I(S1;S)

+I(U2;Y |U1 )− I(U2;S1, S2 |U1 ),
I(U1, U2;Y )− I(U1;S1)− I(U2;S1, S2 |U1 )

,
with the maximum taken over the distributions in the set

P1 =

 p(s, s1, s2, u1, u2, x1, x2, y) :
p(s)p(s1, s2 |s )p(u1 |s1 )p(u2 |u1, s1, s2 )
p(x1 |u1, s1 )p(x2 |x1, u1, u2, s1, s2 )p(y |x1, x2, s )


subject to I(S1;S) ≤ C1, and I(S1, S2;S) ≤ C1 + C2.

Proof: As done in the “separate” strategy discussed in
Sec. III-B, the source encoder splits the message as w =
(w1, w2) and describes the state sequence via a successive
refinement code (S1, S2), with (w1, S1) to be delivered to both
relays and (w2, S2) to be delivered to relay 2 only. Given the
messages and quantized states, GP coding is performed by
the relays. Specifically, relay 1 and relay 2 first encode w1

via GP codeword Un1 , binned against the common quantized
state. Next, relay 2 encodes message w2 via GP codeword
Un2 , superimposed on codeword Un1 and binned against both
the common and private quantized states. Appropriate channel
inputs are then formed by each relay, based on the binning
codeword(s) selected and the available quantized state(s). At
the destination, the decoding is done by looking for a unique
pair of codewords that are jointly typical with the channel
output, and the message estimates (ŵ1, ŵ2) are assigned as
the indices of the bins to which such codewords belong.

C. Achievable Scheme 2: Quantized GP Coding

In the GP-QS scheme above, a separate description of state
and message is conveyed to the relays. Based on the results
with CSIR in Section III, one might envision that a scheme in
which selection of the relays’ codewords is done directly at the
source based on both message and state information could be
instead advantageous. One such scheme is described here. As
further discussed below, however, without CSIR, this scheme
is generally not optimal and might even be outperformed by
the “separate” GP-QS strategy.
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In the second scheme, inspired by [13], [16], GP coding
is done by the source encoder, as if the source encoder had
direct access to the relays. Given the finite-capacity links
between source and relays, the source encoder then quantizes
the resulting GP sequence using a successive refinement code,
and conveys a common description to both relays and a private
description to relay 2. Upon receiving the descriptions and
hence having the reconstructed sequences, the relays simply
forward them to the destination. Observing the channel output,
the decoder looks for a GP codeword that is jointly typical
with the received sequence, and obtains the message estimate
as the index of the bin to which such codeword belongs. This
scheme is referred to as the quantized GP coding (QGP).

Proposition 3: For the DM SD-DBDC model with non-
causal CSIT and no CSIR, a lower bound on the capacity,
attained via the QGP scheme, is given by

RQGP = max
P2

(I(U ;Y )− I(U ;S)) (20)

with the maximum taken over the distributions in the set

P2 =

{
p(s, u, v, x1, x2, y) :
p(s)p(u |s )p(v |u, s )p(x1, x2 |v )p(y |x1, x2, s )

}
subject to I(X1;V ) ≤ C1, and I(X1, X2;V ) ≤ C1 + C2.

Remark 1: While a general performance comparison be-
tween the GP-QS and QGP schemes does not seem to be easy
to establish, it can be seen that when the link capacities are
arbitrarily large, either the state sequence or the GP sequence
can be perfectly conveyed to the relays, and thus both the GP-
QS and QGP achieve the upper bound (19), and specifically
the third bound in (19), thus establishing the capacity.

D. Gaussian SD-DBDC

We now study a Gaussian SD-DBDC. In particular, we
assume that the destination output Yi at time instant i is
related to the channel inputs X1,i, X2,i at the relays and the
channel state Si as Yi = X1,i + X2,i + Si + Zi, where
Si ∼ N (0, PS) and Zi ∼ N (0, N0), are i.i.d., mutually
independent sequences. The channel inputs at the relays satisfy
the average power constraints 1

n

∑n
i=1 E[X2

k,i] ≤ Pk, k = 1, 2.
The code definition follows Definition 1 except that the input
codewords are required to guarantee the power constraints.

We apply the GP-QS and QGP schemes discussed above
to the given Gaussian model and obtain the corresponding
achievable rates. Details of the proof can be found in [14].

Proposition 4: Let C(x) = 1
2 log2(1 +x). For the Gaussian

SD-DBDC, the rate RG
GP−QS of scheme GP-QS is given by

max
0≤ρ≤1,

(D1,D2)∈A

min


C1 + C2 − 1

2 log2(PS

D2
),

C1 − 1
2 log2(PS

D1
) + C

(
ρ̄P2

D2+N0

)
,

C
(

(
√
P1+
√
ρP2)2

ρ̄P2+D1+N0

)
+ C

(
ρ̄P2

D2+N0

)
 ,

where ρ̄ = 1− ρ and the set of A is defined as

A ∆
=

{
(D1, D2) : PS ≥ D1 ≥ D2 ≥ 0,

D1 ≥ PS2−2C1 , D2 ≥ PS2−2(C1+C2)

}
; (21)

while, the rate RG
QGP of scheme QGP is given by

C


(√

P1(1− 2−2C1 ) +
√

P2

(
1− 2−2(C1+C2)

))2

P12−2C1 + P22−2(C1+C2)

(
1 + 2

√
P1(1−2−2C1 )

P2(1−2−2(C1+C2))

)
+N0

 .

For reference, a natural lower bound on the capacity is
obtained when the source transmits pure message to the relays,
so that the model at hand is converted into a Gaussian MAC
with degraded messages. The decoder simply treats the state
as noise. This lower bound, denoted by RG

no SI, is equal to

max
0≤ρ≤1

min

 C1 + C2, C
(

(1−ρ2)P2

N0+PS

)
+ C1,

C
(
P1+P2+2ρ

√
P1P2

N0+PS

)
,

 . (22)

A simple upper bound RG
upp, instead obtained by providing

the decoder with the interference sequence so that it can be
cancelled, is given by (22) with N0 in lieu of N0 + PS .

Remark 2: As the link capacity C1 becomes arbitrarily
large, it is seen that both the GP-QS and QGP schemes attain
RG

upp, leading to the capacity C = C
(
P1+P2+2

√
P1P2

N0

)
. Note

that the capacity is the same as if the interference at the
destination was not present and if full cooperation was possible
at the relays. The benefit of utilizing the non-causal CSIT
is hence evident. We also emphasize that letting capacity C2

alone grow to infinity is not enough to achieve RG
upp, as in

this case only relay 2 can be fully informed by the source.
Remark 3: The rate RG

GP−QS is generally dependent on the
interference power PS , while the rate RG

QGP is not. This is
because in the GP-QS scheme, the state sequence needs to be
described to the relays on the finite-capacity links, and thus
the stronger is the power PS of the state, the larger are the
feasible distortions (D1, D2) in (21) for reproducing the state
sequence at the relays. As a result, in the extreme case in which
PS becomes arbitrarily large, the rate RG

GP−QS reduces to rate
RGno SI of (22) obtained by treating the state as noise. On the
other hand, in the QGP scheme, the source compresses directly
the appropriate GP sequence, whose power does not depend
on PS . Given the fact that the performance of QGP is not
dependent on PS , it is expected that scheme QGP outperforms
scheme GP-QS in case PS is sufficiently large. But in general,
scheme QGP is not optimal and might even be outperformed
by scheme GP-QS, e.g., when PS is relatively small, as seen
from the numerical results provided in [14].

V. CONCLUDING REMARKS

In this work, we have studied a state-dependent diamond
channel, in which the BC between source and relays is defined
by a noiseless degraded BC, and the MAC between relays
and destination is state-dependent. For the case with non-
causal CSIT and CSIR, we have established the capacity and
shown that a joint message and state transmission scheme via
binning is optimal and superior to the scheme that performs
separate message and state description transmission. For the
case without CSIR, we have proposed an upper bound and two
transmission schemes, and applied the results to a Gaussian
model with an additive Gaussian state.
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