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Abstract—We consider an energy harvesting network where
the transmitter harvests energy from nature, and the harvested
energy can be saved in an imperfect battery which suffers from
charging/discharging inefficiency. In particular, when E units of
energy is to be stored in the battery, only ηE units is saved and
(1 − η)E is lost due to charging/discharging inefficiency, where
0 ≤ η ≤ 1 represents the storing efficiency. We determine the
optimum offline transmit power schedule for such a system for
single-user and broadcast channel models, for static and fading
channels, with and without a finite battery size. We show that the
optimum policy is a double-threshold policy: specifically, we store
energy in the battery only when the harvested energy is above
an upper threshold, and retrieve energy from the battery only
when the harvested energy is below a lower threshold; when the
harvested energy is in between these two thresholds, we use it in
its entirety in the current slot. We show that the two thresholds
remain constant unless the battery is depleted or full. We provide
an algorithm to determine the sequence of optimum thresholds.
For the case with fading, we develop a directional water-filling
algorithm which has a double-threshold structure. Finally, we
formulate the online problem using dynamic programming, and
numerically observe that the online policy exhibits a double-
threshold structure as well.

Index Terms—Energy harvesting communications, optimal
packet scheduling, nodes with rechargeable batteries, inefficient
energy storage.

I. INTRODUCTION

We consider an energy harvesting network where the trans-

mitter harvests energy from nature to sustain its operation. In

particular, the transmitter uses the energy harvested from na-

ture to transmit its data packets. Such energy harvesting capa-

bilities bring new constraints into the communication problem

in the physical layer in the form of energy causality and no-

energy-overflow conditions. The first constraint imposes that

the energy that has not yet been harvested cannot be used

for communication, and the second constraint imposes that no

harvested energy should be allowed to overflow due to a finite

battery size. Therefore, in such energy harvesting systems,

packet scheduling and the corresponding energy management
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scheme must be carefully optimized in the physical layer in

order to guarantee a certain optimum performance.

Energy constrained communication was studied widely in

the literature [1]–[6], including finite horizon scenarios with

delay constraints [7]–[10]. The offline energy management

problem in an energy harvesting setting was first formulated

in [11], which considered the problem of minimizing the

transmission completion time for a given number of data

packets in an offline setting. This reference introduced the

energy causality constraint, and showed that the transmitter

should use as constant power as possible, subject to energy

causality imposed by the energy harvesting profile. For a finite-

sized battery, [12] formulated the throughput maximization

problem in a similar communication setting. Reference [12]

introduced the no-energy-overflow constraint due to the finite-

sized battery, and showed that the transmitter should use as

constant power as possible subject to energy causality and

no-energy-overflow constraints, particularly, using harvested

energy slow enough not to violate energy causality but fast

enough to open up space in the finite-sized battery and cause

no energy overflows. Reference [13] considered a fading

channel and developed a directional water-filling algorithm

where energy (water) is filled over the fading profile, with

a directional flow of water to the right only, due to energy

causality constraints: energy can be saved and used in the

future, but the energy that will be harvested in the future

cannot be used earlier; see also [14] for a treatment of

the fading case. This line of work has been extended for

broadcast channels in [15]–[17], multiple access channels in

[18], interference channels in [19], two-hop relay channels in

[20]–[26]. The effects of circuit power have been considered

in [27]–[30], where the transmitter incurs energy loss by being

on, i.e., when the transmit power is non-zero. This, then,

disfavors long and constant stretches of transmit powers as this

increases circuit energy consumption. Reference [27] shows

the optimality of a directional glue-pouring algorithm in this

case. This line of offline energy management has also been

extended to energy cooperation in [31] where users transfer

energy to one another, leading to two-dimensional direction

water-filling in two-way and multiple access channels; see also

bidirectional cooperation in [32], [33]. Receiver side energy

harvesting has been considered in [34], [35]. Common in all

of these works is the assumption that the energy harvesting

nodes have perfect energy storage units (batteries) into which

energy can be stored without any losses and in which energy

can be saved without any leakages until it is eventually used.

In this paper, we consider energy storage imperfections

in the form of charging/discharging inefficiency and their
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effects on the offline throughput maximization problem. En-

ergy storage/retrieval imperfections can manifest themselves

in many different ways [36], [37], for instance: imperfections

in energy conversion from one technology to another, charg-

ing/discharging imperfections (only a portion of the available

energy can be saved in the battery at the time of charging),

energy leakage over time (saved energy is leaked and lost

over time), battery size degradation (battery capacity size gets

smaller at every recharge), etc. The first work to formulate a

form of practical energy storage inefficiency in the context of

offline throughput maximization is [38]. In [38], two forms

of storage imperfections are considered: leakage of saved

energy over time and battery degradation. The major effect of

such imperfections on the throughput maximization problem

is that they modify the energy feasibility tunnel, which is the

tunnel that is formed by the energy causality upper staircase

and the no-energy-overflow lower staircase [12]. The distance

between these two staircases is exactly the size of the battery,

Emax, in the case of perfect storage [12]. Reference [38]

demonstrated that, in the cases of energy leakage and battery

degradation, the energy feasibility tunnel gets narrower by

upper staircase decreasing and lower staircase increasing over

time, and developed the optimum offline power allocation

policy that maximizes the throughput.

The imperfections studied in [38] are long-term effects on

energy storage, that affect communications in durations much

larger than typical symbol durations. In this paper, we study

another class of energy storage inefficiencies, which occur at

the time of energy storage, almost instantaneously, at much

shorter time durations. In particular, we consider the ineffi-

ciency (loss) that occurs at the time of charging/discharging1:

when E units of energy is to be stored in the battery, only

ηE units is saved and (1− η)E is lost instantaneously due to

charging/discharging inefficiency, where 0 ≤ η ≤ 1 represents

the storage efficiency. Depending on the technology used in

energy storage, η can be as low as 66% [36], [37], [39], [40].

Such losses have been considered in communications in [41],

[42] for duty-cycling with constant transmission rate under

energy neutrality conditions, but not in the context of offline

throughput maximization. In this paper, we consider the offline

throughput maximization under such losses and determine the

corresponding optimum energy management policies. We start

with a single-user Gaussian channel with infinite-sized battery

(Section III), then consider a finite-sized battery (Section IV),

extend to fading channels (Section V), and extend to a multi-

user broadcast setting (Section VI).

The effects of imperfections at charging/discharging con-

sidered in this paper are significantly different than leak-

age/degradation imperfections studied in [38]. In particular,

while leakage/degradation imperfections affect the shape of

the energy feasibility tunnel, in our case, the energy feasibility

tunnel is unaffected. Instead, in our case, we need to deter-

mine, what portion of the incoming energy to store despite

storage losses, and how to use the stored energy. We show

1While we consider both inefficiencies at the time of charging/discharging,
we show that, from a mathematical point of view, these two imperfections
can be clubbed together into a single effective inefficiency only at the time of
charging.

that the optimal power policy has a double-threshold structure:

whenever the harvested energy is below a lower threshold,

we use a constant transmit power equal to that threshold by

retrieving energy from the battery; whenever the harvested

energy is above an upper threshold, we use a constant transmit

power equal to that threshold by storing some of the harvested

energy; and whenever the harvested energy is between these

two thresholds, we use the harvested energy for transmission

in its entirety without storing any of it in the battery. It then

only remains to determine these thresholds. These thresholds

change throughout the communication session and depend

on the harvested energy profile and the storage efficiency η.

We identify the properties these threshold should satisfy, and

then provide an algorithm to determine these thresholds. In

particular, we show that the optimal thresholds are constant

between battery events, i.e., they change only when the battery

is depleted or the battery is full, and may only increase if the

battery is empty and may only decrease if the battery is full.

In the case of a fading channel, we develop a modified version

of directional water-filling which takes this double-threshold

policy into account. For the broadcast channel, we determine

the largest throughput region by employing double-threshold

policies on weighted sum rate maximization problems.

Overall, we observe that contrary to the results of previous

work with ideal batteries [11]–[17], where the optimal policies

were shown to be piecewise constant, here, the optimal policy

may favor transmitting immediately with the harvested energy,

i.e., without storing or retrieving energy to/from battery. In

essence, the thresholds in the double-threshold policy define

an interval within which storing energy is not worth incurring

the storage losses. Hence, our work demonstrates how optimal

policies need to adapt to the trade-off between scheduling and

storage inefficiency. Finally, we formulate the online version

of the problem as a dynamic program (Section VII). We

observe numerically that the solution of the online dynamic

problem formulation also has a double-threshold structure.

Due to the complexity of dynamic programming solutions,

we propose simpler threshold-based policies and evaluate their

performance via simulations (Section VIII) and observe that

they perform near-optimal.

II. SYSTEM MODEL

Time is slotted with unit slot length τ = 1 over a finite

session of N time slots2. The system model is shown in Fig. 1.

At the beginning of the ith time slot, the transmitter harvests an

energy in the amount of Ei ≥ 0 units. It retrieves an additional

ri units of energy from the battery, and allocates si for storage

in the battery. This leaves the energy

pi = Ei − si + ri (1)

for transmission in the ith time slot. The battery has a storing

efficiency of 0 ≤ η ≤ 1: when si units of energy is allocated

for storing, only ηsi units can be stored for future use and

2We consider unit length time slots solely for ease of presentation. The
results extend trivially to any positive slot length τ > 0.
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Fig. 1. Energy harvesting transmitter with inefficient storage and finite-sized
battery over a Gaussian channel.

(1− η)si units of energy is lost due to storage inefficiency3.

The power policy of the node consists of energy values

chosen for storage and retrieval, namely si for storage and ri
for retrieval, respectively, at time slots i = 1, . . . , N . From

these two variables, transmit power pi is calculated using (1)

for each time slot of unit duration. Note that by definition,

si ≥ 0, ri ≥ 0 and pi ≥ 0 for i = 1, . . . , N . From (1),

the last condition imposes that Ei + ri − si ≥ 0 on ri and si.
Furthermore, the energy drawn from the battery cannot exceed

the energy stored in the battery up to any time slot. Following

[11], we refer to this constraint as energy causality. Let the

initial charge of the battery be E0. Denoting the amount of

energy in the battery at time slot i as Bi, the energy causality

constraints are given by

Bi = E0 +

i
∑

j=1

(ηsj − rj) ≥ 0, i = 1, . . . , N. (2)

In addition, the battery has a maximum storage capacity (size)

of Emax, and the energy in excess of this capacity is lost if

attempted to be stored. Clearly, it is sub-optimal to allow such

energy overflows, and it is shown in [12] that restricting power

policies to those avoiding overflows yields an optimal policy.

Hence, we enforce a set of no-energy-overflow [12] constraints

Bi = E0 +

i
∑

j=1

(ηsj − rj) ≤ Emax, i = 1, . . . , N, (3)

which ensure that the energy allocated for storage does not

exceed the capacity of the battery at any time slot.

We consider an additive white Gaussian noise communica-

tion channel with a fading coefficient of hi at time slot i. With

allocated transmit power p and fading h, the communication

rate in a slot is given by

g(p) =
1

2
log (1 + hp) . (4)

Under this channel model, we consider the problem of max-

imizing the average throughput of this system, i.e., maximizing

the average of g(pi) over a duration of N time slots, by

choosing the optimal power policy {(si, ri)}
N

i=1. This requires

adapting the power policy to the harvesting process, inefficient

storage, and channel coefficients.

3Similarly, a loss may occur when energy is retrieved from the battery. In
this work, these two losses are combined in the model in η, which effectively
represents the fraction of energy that can be drawn from the battery per unit
energy stored.

III. OPTIMAL TRANSMISSION POLICY FOR AN

INFINITE-SIZED BATTERY, Emax = ∞

We first consider a non-fading channel, i.e., hi = h for all

i, and an infinite-sized battery, Emax = ∞. The throughput

maximization problem for the model in Fig. 1 over an N -slot

communication session is expressed as

max
{si,ri}

N
∑

i=1

g(Ei − si + ri), (5a)

s.t. E0 +
i
∑

j=1

(ηsj − rj) ≥ 0, i = 1, . . . , N, (5b)

Ei − si + ri ≥ 0, i = 1, . . . , N, (5c)

si ≥ 0, ri ≥ 0, i = 1, . . . , N, (5d)

where g(p) is given in (4). We first present the following

lemma which states that it is sub-optimal to store and retrieve

energy simultaneously in the same time slot for η < 1. The

η = 1 case is omitted since efficient storing and restoring in

the same time slot is equivalent to not storing for this case.

Lemma 1 For η < 1, the solution to (5) satisfies siri = 0 for

all i, i.e., the optimal policy never stores and retrieves energy

simultaneously.

Proof: Let {(si, ri)}
N

i=1 be a feasible power policy which

satisfies sjrj > 0 for some j. Let

s̄j = [sj − rj/η]
+ , r̄j = [rj − ηsj ]

+ , (6)

where [x]+ = max(0, x). For all i 6= j, let s̄i = si and

r̄i = ri. Note that the battery dynamics in (2) are unaffected

by this change, since ηsi − ri = ηs̄i − r̄i, for all i. Therefore,

the policy {(s̄i, r̄i)}
N

i=1 is feasible. On the other hand, the

resulting transmit power p̄j at time slot j becomes

p̄j = Ej − s̄j + r̄j =

{

Ej − sj + rj/η, if ηsj ≥ rj ,

Ej − ηsj + rj , otherwise,
(7)

and consequently p̄j > pj due to η < 1, sj > 0 and rj >
0. Since the rate g(p) is increasing in p, we have g(p̄j) >
g(pj), while g(p̄i) = g(pi) for i 6= j. Hence, the power policy

{(s̄i, r̄i)}
N

i=1 achieves a larger throughput than {(si, ri)}
N

i=1,

and the latter policy cannot be optimal. �

Lemma 1 shows that we can restrict our search for the

optimal policy to those that do not store and retrieve energy

simultaneously at any time. We remark that simultaneously

charging and discharging a battery may or may not be phys-

ically possible, but through Lemma 1, we show that it is

mathematically sub-optimal for our problem.

A. Double-Threshold Policy

We next observe a property of the optimal power policy.

Since all constraints are linear and g(p) is concave in p,

the problem in (1) is a convex optimization problem. Hence,
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Karush-Kuhn-Tucker (KKT) conditions are necessary and suf-

ficient for optimality. The Lagrangian of (5) is

L =

N
∑

i=1

(

g(Ei − si + ri) + λi

(

E0 +

i
∑

j=1

(ηsj − rj)

)

+ µi(Ei − si + ri) + σisi + νiri

)

, (8)

where λi, µi, σi and νi, i = 1, . . . , N are non-negative

Lagrange multipliers corresponding to the energy causality,

non-negativity of power, and non-negativity of stored and

retrieved energy, respectively. The KKT optimality conditions

are found by taking the derivatives with respect to si and ri
for i = 1, . . . , N as

−
h

1 + hpi
+ η

N
∑

j=i

λj − µi + σi = 0, i = 1, . . . , N, (9)

h

1 + hpi
−

N
∑

j=i

λj + µi + νi = 0, i = 1, . . . , N, (10)

with the complementary slackness conditions

λi



E0 +

i
∑

j=1

(ηsj − rj)



 = 0, i = 1, . . . , N, (11a)

µi (Ei − si + ri) = 0, i = 1, . . . , N, (11b)

σisi = 0, νiri = 0, i = 1, . . . , N. (11c)

From (9) and (10), we find the optimal transmit powers pi as

pi =
1

η
∑N

j=i λj − µi + σi

−
1

h

=
1

∑N

j=i λj − µi − νi
−

1

h
, i = 1, . . . , N. (12)

We define two sets of thresholds, psi and pri, as

psi =
1

η
∑N

j=i λj

−
1

h
, i = 1, . . . , N, (13a)

pri =
1

∑N

j=i λj

−
1

h
, i = 1, . . . , N. (13b)

Note that these variables satisfy

psi ≥ pri, i = 1, . . . , N, (14)

and are related as

1 + hpri
1 + hpsi

= η, i = 1, . . . , N. (15)

We note that whenever pi > 0, we have µi = 0 from (11b).

Then, from the first equality in (12), since σi ≥ 0, we have

pi ≤ psi. Similarly, from the second equality in (12), since

νi ≥ 0, we have pi ≥ pri. Therefore, for pi > 0, we have

psi ≥ pi ≥ pri. (16)

We refer to psi and pri as thresholds: when transmit power

pi > 0, it must be larger than the lower threshold pri, and

smaller than the upper threshold psi. In the following lemma,

we show that charging and discharging are also related to these

thresholds in the optimal policy.

Lemma 2 Whenever the battery is being charged, i.e., si > 0,

a non-zero transmit power must satisfy pi = psi. Conversely,

whenever the battery is being discharged, i.e., ri > 0, a non-

zero transmit power must satisfy pi = pri.

Proof: For a non-zero transmit power pi > 0, due to (11b) we

have µi = 0. When the battery is being charged, i.e., si > 0,

from (11c), we get σi = 0. Substituting this in the first equality

in (12) yields pi = psi. When the battery is being discharged,

i.e., ri > 0, from (11c), we get νi = 0. Substituting this in the

second equality in (12) yields pi = pri. �

Due to Lemma 2, we call psi the storing threshold and pri
the retrieving threshold. We observe from Lemma 1 that we

have either si > 0 and ri = 0, or si = 0 and ri > 0, or si = 0
and ri = 0. When si = ri = 0, from (1), we have pi = Ei,

which must satisfy (16). These conditions show that there is a

double-threshold policy on pi. Specifically, when the battery is

being charged, the transmit power equals the storing threshold

psi; and when the battery is being discharged, the transmit

power equals the retrieving threshold pri. If the battery is

neither being charged or discharged, i.e., the battery is passive,

then pi = Ei, i.e., the transmitter uses all the harvested energy

in the current slot.

Theorem 1 The power policy solving (5) has the following

double-threshold structure:

a) If Ei > psi, then pi = [psi]
+. Consequently, si = Ei −

[psi]
+ > 0 and ri = 0 (storing).

b) If Ei < pri, then pi = pri. Consequently, si = 0 and

ri = pri − Ei > 0 (retrieving).

c) If psi ≥ Ei ≥ pri, then si = ri = 0 and pi = Ei

(passive).

Proof: We prove each case separately:

a) Consider the case Ei > psi. From (1) and Lemma 1, we

have si ≤ Ei. We consider the three distinct cases si = 0,

0 < si < Ei and si = Ei as follows. When si = 0, from (1),

we get pi ≥ Ei. Together with Ei > psi, this contradicts (16).

Therefore, this case cannot be optimal. When Ei > si > 0,

from (1) we get pi > 0 and from Lemma 2 we have pi = psi.
Finally, when si = Ei and therefore ri = 0, (1) yields pi = 0.

Since σi = 0 from (11c), substituting in (12) gives psi ≤ pi =
0. Hence, for all possible sub-cases in this case, pi = [psi]

+.

b) Consider the case Ei < pri. We consider the three

distinct cases, ri = 0 and pi > 0, ri = 0 and pi = 0, and

ri > 0 as follows. When ri = 0 and pi > 0, from (1), we

get pi ≤ Ei. Together with Ei < pri, this contradicts (16),

and therefore this case cannot be optimal. When ri = 0 and

pi = 0, from (1) we have si = Ei, implying that σi = 0 due

to (11c). From (12) and (14), we get pri ≤ pi = 0, which

contradicts Ei < pri. Therefore, this case cannot be optimal.

Finally, when ri > 0, this implies pi > 0 due to (1) and

Lemma 1. From Lemma 2 we have pi = pri. Hence, for the

Ei < pri case, the only possible transmit power is pi = pri.
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c) Consider the case psi ≥ Ei ≥ pri. When si > 0, then

from (1) and Lemma 1, we get pi < Ei. Due to psi ≥ Ei, this

contradicts Lemma 2. Therefore, this case cannot be optimal.

On the other hand, when ri > 0, then (1) and Lemma 1 yield

pi > Ei. Due to Ei ≥ pri, this contradicts Lemma 2, and

therefore this case cannot be optimal. Hence, si = ri = 0 in

this case, yielding pi = Ei from (1). �

In summary, Theorem 1 shows that the optimal policy is a

double-threshold policy that can be expressed as

pi = min
(

max (Ei, pri) , [psi]
+
)

, (17a)

si = [Ei − pi]
+, ri = [pi − Ei]

+. (17b)

To find the entire policy, it remains to find the thresholds psi
and pri for i = 1, . . . , N , which we describe next.

B. Finding the Thresholds

To determine the thresholds defined in (13), we make the

observations stated in the following two lemmas: Lemma 3

states that these thresholds are non-decreasing in general, and

remain constant in stretches of time slots when there is energy

in the battery. Therefore, they only potentially increase when

the battery is depleted. Lemma 4 states that the battery must be

depleted by the end of the communication session, otherwise

the throughput can be increased by retrieving and using the

remaining energy in the battery in the last slot.

Lemma 3 The thresholds psi and pri in (13) are non-

decreasing, and remain constant unless the battery is depleted,

i.e., ps(i+1) = psi and pr(i+1) = pri for all i when Bi > 0.

Proof: The non-decreasing property follows from λi ≥ 0 in

(13a)-(13b). The second property in the lemma is a conse-

quence of the complementary slackness condition in (11a),

which implies that when Bi > 0 we have λi = 0 and psi and

pri remain constant from (13a)-(13b). �

Lemma 4 In the optimal policy, the battery is depleted at the

end of the session, i.e., BN = 0.

Proof: The proof is by contradiction. Let {(si, ri)}
N

i=1 be a

feasible policy with BN > 0. Let s̄i = si for i = 1, . . . , N ,

r̄i = ri for i = 1, . . . , N − 1, and r̄N = rN + BN . Note

that {(s̄i, r̄i)}
N

i=1 is a feasible policy. For this new policy, we

have g(p̄i) = g(pi) for i = 1, . . . , N − 1 and g(p̄N ) > g(pN),
yielding a larger throughput. Hence, {(si, ri)}

N

i=1 cannot be

optimal. �

In light of Lemmas 3 and 4, we seek a set of thresholds that

are non-decreasing for all i, only increasing when Bi = 0, and

depleting the battery at the end of the transmission. Note that it

suffices to find psi values only, and pri can be calculated from

the fixed relationship in (15). For this purpose, we propose the

algorithm below.

Algorithm 1 Start from time slot j = 1. Using linear search,

find the largest threshold ps ≥ 0, and the corresponding pr

from (15), for which the transmit power policy given by (17)

is feasible in i = j, . . . , N . Find the smallest ℓ > j such that

Bℓ = 0, and assign optimal thresholds ps and pr to time slots

i = j, . . . , ℓ. If ℓ < N , repeat the above procedure starting

from j = ℓ+ 1.

The procedure in Algorithm 1 ensures that the resulting

thresholds are non-decreasing and remain constant while the

battery is not empty, as required by Lemma 3. The non-

decreasing property can be seen as follows: At a step starting

from time slot j, the previous threshold ps(j−1) is feasible

in i = j, . . . , N by construction. Hence, the new threshold

psj ≥ ps(j−1). Next, we prove the optimality of these

thresholds.

Theorem 2 The policy in (17) with thresholds {(p∗si, p
∗
ri)}

N

i=1

found using Algorithm 1 is the solution to (5).

Proof: We show that using p∗si and p∗ri, i = 1, . . . , N , a set of

Lagrange multipliers satisfying all KKT conditions in (9)-(11)

can be found. Note that p∗si and p∗ri are non-decreasing. Let

λi =
1

η(p∗si + 1/h)
−

1

η(p∗
s(i+1) + 1/h)

(18)

for i = 1, . . . , N , with p∗
s(N+1) = ∞ by definition. This

satisfies λi ≥ 0 since p∗si is non-decreasing, and satisfies (11a)

since p∗si only changes when Bi = 0.

Next, let µi = 0, i = 1, . . . , N , which satisfy (11b). Since

p∗si ≥ 0 and p∗ri ≥ 0 by construction, from (17a) we get

p∗si ≥ p∗i ≥ p∗ri for all i. Calculate σi and νi from (12) as

σi =
h

1 + hp∗i
−

h

1 + hp∗si
, νi =

h

1 + hp∗ri
−

h

1 + hp∗i
.

(19)

Note that these values are non-negative since p∗si ≥ p∗i ≥ p∗ri.
Furthermore, they satisfy (11c) as follows: when si > 0, (17b)

implies Ei > p∗i . Thus, from (17a), we have p∗i = [p∗si]
+ =

p∗si, and therefore (19) yields σi = 0. Similarly, when ri > 0,

(17b) implies Ei < p∗i , and therefore (17a) implies p∗i = p∗ri.
Hence, (19) yields νi = 0. �

An example run of Algorithm 1 and the resulting optimal

transmission policy is shown in Fig. 2. The example is over

N = 5 time slots with storage efficiency η = 0.5, energy

harvests {Ei} = {9, 4, 2, 13, 4}, initial charge E0 = 0, and

h = 1. Starting from j = 1, the largest feasible thresholds

satisfying (15) are found as ps = 7 and pr = 3, depleting the

battery at the end of time slot i = 3. Setting these thresholds

for i = 1, 2, 3, the second set of thresholds starting from j = 4
are found as ps = 11 and pr = 5, depleting the battery at the

end of time slot i = 5 = N . With these thresholds, the optimal

transmit powers p∗i are shown in red. Energy stored at the first

time slot, marked as I, is retrieved at the third time slot, marked

as II. Similarly, energy stored in the fourth time slot marked

as III is retrieved and consumed entirely in the fifth time slot

marked as IV. Note that since p∗si ≥ Ei ≥ p∗ri at i = 2, no

charging or discharging takes place. In this slot, transmitter is

in the passive state in Theorem 1, and uses only the incoming

energy for transmission, i.e., p∗i = Ei.
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Fig. 2. Example optimal policy with transmission power thresholds psi and
pri.

The optimal policy derived in this section can be shown to

converge to the results of [11] when energy storage is ideal.

This is when η = 1, and (15) yields psi = pri for all i.
Due to (17a), this implies pi = [psi]

+ at all times. Con-

sequently, the optimal policy consists of piecewise constant

power transmissions, with the transmit power increasing only

at instances of empty battery due to Lemma 3. This coincides

with the result with ideal battery in [11] which finds the longest

constant power stretches, and changes the power only when

the battery is depleted. As battery efficiency η decreases, the

two thresholds psi and pri separate, yielding a larger region for

the passive state. Our optimal policy describes the transition

from the constant power policy in one extreme, η = 1, to the

spend what you get policy without storage in the other, η = 0.

IV. OPTIMAL TRANSMISSION POLICY FOR A

FINITE-SIZED BATTERY, Emax < ∞

In practice, energy storage devices are of finite size. In this

section, we extend the infinite-sized battery problem in (5) to

the case of a finite-sized battery by including the additional no-

energy-overflow constraint in (3). For a battery of size Emax,

the throughput maximization problem becomes

max
{si,ri}

N
∑

i=1

g (Ei − si + ri) , (20a)

s.t. 0 ≤ E0 +

i
∑

j=1

(ηsj − rj) ≤ Emax, i = 1, . . . , N,

(20b)

Ei − si + ri ≥ 0, i = 1, . . . , N, (20c)

si ≥ 0, ri ≥ 0, i = 1, . . . , N, (20d)

where g(p) is defined in (4). The Lagrangian of (20) is

L =

N
∑

i=1

(

g(Ei − si + ri) + λi

(

E0 +

i
∑

j=1

(ηsj − rj)

)

− βi

(

E0 +

i
∑

j=1

(ηsj − rj)− Emax

)

+ µi(Ei − si + ri) + σisi + νiri

)

, (21)

where βi, i = 1, . . . , N are the non-negative Lagrange

multipliers for the no-energy-overflow constraints. The KKT

optimality conditions are

−
h

1 + hpi
+ η

N
∑

j=i

(λj − βj)− µi + σi = 0, i = 1, . . . , N,

(22)

h

1 + hpi
−

N
∑

j=i

(λj − βj) + µi + νi = 0, i = 1, . . . , N.

(23)

The complementary slackness conditions corresponding to βi

are

βi



E0 +

i
∑

j=1

(ηsj − rj)− Emax



 = 0, i = 1, . . . , N,

(24)

which, together with those listed in (11), constitute the com-

plementary slackness conditions for the problem in (20). From

(22) and (23), we find the optimal transmit powers pi as

pi =
1

η
∑N

j=i(λj − βj)− µi + σi

−
1

h

=
1

∑N

j=i(λj − βj)− µi − νi
−

1

h
, i = 1, . . . , N. (25)

In view of the new multipliers βi, we update the definition of

thresholds, psi and pri, as

psi =
1

η
∑N

j=i(λj − βj)
−

1

h
, i = 1, . . . , N, (26a)

pri =
1

∑N

j=i(λj − βj)
−

1

h
, i = 1, . . . , N, (26b)

which satisfy (14) and (15). Observing that µi = 0 when

pi > 0, (16) must also hold for the optimal policy.

A. Finding the Thresholds for a Finite-Sized Battery

In this finite-sized battery case, Lemmas 1, 2 and 4 continue

to hold, i.e., in this finite-sized battery case also siri = 0
(simultaneous storing and retrieval is sub-optimal), if si > 0
then pi = psi (when storing, the power must be equal to the

storing threshold), if ri > 0 then pi = pri (when retrieving, the

power must be equal to the retrieving threshold), and BN = 0
(the battery must be depleted at the end of the communication

session). However, due to βi, the new thresholds in (26)

no longer satisfy Lemma 3, i.e., the new thresholds are no

longer monotone. Instead, they satisfy the property stated in

the following lemma.

Lemma 5 The thresholds psi and pri in (26) are non-

decreasing while Bi < Emax, and non-increasing while

Bi > 0. Consequently, they remain constant if the battery

is not depleted or full, i.e., ps(i+1) = psi and pr(i+1) = pri
for all i while 0 < Bi < Emax.

Proof: For Bi < Emax, (24) gives βi = 0. Substituting

in (26), this implies that psi and pri are non-decreasing.
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Similarly, for Bi > 0, (11a) gives λi = 0. Substituting in

(26), this implies that psi and pri are non-increasing. Finally,

for 0 < Bi < Emax, (11a) and (24) give λi = 0 and βi = 0,

which yields ps(i+1) = psi and pr(i+1) = pri from (26), which

implies that psi and pri remain constant. �

Hence, we are looking for a feasible set of thresholds

satisfying Lemmas 1, 2, 4 and 5. We propose the following

algorithm to find the optimal policy.

Algorithm 2 Start from time slot j = 1. Find the largest

threshold ps ≥ 0, and the corresponding pr from (15), such

that the transmit power policy given by (17) does not violate

(2) first, i.e., either the policy is feasible for i = j, . . . , N , or

(3) is violated before (2). Find the smallest ℓ > j such that

Bℓ = 0 or Bℓ = Emax, and assign optimal thresholds ps and

pr to the time slots i = j, . . . , ℓ. If ℓ < N , repeat the above

procedure starting from j = ℓ+ 1.

The next lemma shows that the thresholds found by this

algorithm satisfy Lemma 5.

Lemma 6 The thresholds found by Algorithm 2 satisfy the

conditions in Lemma 5.

Proof: Starting from some j, let the algorithm output psj , prj
and ℓ. Consider the case Bℓ = 0. Then, the constant threshold

psj must yield a full battery at some k > ℓ, or be feasible

until i = N , since otherwise a smaller psj would have been

chosen by the algorithm. Hence, starting from time slot ℓ, the

next threshold cannot be less than psj . Now, consider the case

Bℓ = Emax. Then, the constant threshold psj violates (2) or

depletes the battery at some k > ℓ by construction. Hence,

starting from time slot ℓ, the next threshold cannot be greater

than psj . �

As a result of Lemma 6, we have that the thresholds found

by Algorithm 2 are non-decreasing if Bi = 0, non-increasing

if Bi = Emax, and by construction constant in between. Next,

we prove the optimality of the resulting policy.

Theorem 3 The policy in (17) with thresholds {(p∗si, p
∗
ri)}

N

i=1

found using Algorithm 2 is the solution to (20).

Proof: We show that using p∗si and p∗ri, i = 1, . . . , N , a set

of Lagrange multipliers satisfying all KKT conditions in (11)

and (22)-(24) can be found. First, note that p∗si and p∗ri are

constant unless the battery is depleted or full, non-decreasing

if Bi = 0 and non-increasing if Bi = Emax, as shown in

Lemma 6. Let

λi =

[

1

η(p∗si + 1/h)
−

1

η(p∗
s(i+1) + 1/h)

]+

, (27a)

βi =

[

1

η(p∗
s(i+1) + 1/h)

−
1

η(p∗si + 1/h)

]+

, (27b)

for i = 1, . . . , N , with p∗s(N+1) = ∞ by definition. These

satisfy (11a) and (24) due to Lemma 6. The rest of the

Lagrangian multipliers are found as in the proof of Theorem 2,

by replacing (12) with (25). �

The policy for the finite battery case in this section con-

verges to the previous results for the ideal battery case studied

in [12], when η = 1. In this case, the thresholds are equal and

thus the optimal policy is a constant power policy as in [12].

For equal thresholds, the conditions in Lemma 5 coincide with

those in [12, Theorem 1].

V. OPTIMAL TRANSMISSION POLICY FOR A FADING

CHANNEL

We now consider a fading channel, where the fading channel

coefficient hi, i = 1, . . . , N , is constant throughout time slot

i, but changes from one time slot to another. The coefficients

are known non-causally at the transmitter. This is an extension

of [13] to the inefficient energy storage case; see also [14].

The instantaneous rate in slot i is given in (4), which we will

denote as g(p, h) in this section, to emphasize its dependence

on the channel gain h.

The throughput maximization problem in a fading channel

for a transmitter with a finite-sized battery becomes

max
{si,ri}

N
∑

i=1

g(Ei − si + ri, hi), (28a)

s.t. 0 ≤ E0 +

i
∑

j=1

(ηsj − rj) ≤ Emax, i = 1, . . . , N,

(28b)

Ei − si + ri ≥ 0, i = 1, . . . , N, (28c)

si ≥ 0, ri ≥ 0, i = 1, . . . , N, (28d)

yielding the KKT optimality conditions

−
hi

1 + hipi
+ η

N
∑

j=i

(λj − βj)− µi + σi = 0, i = 1, . . . , N,

(29)

hi

1 + hipi
−

N
∑

j=i

(λj − βj) + µi + νi = 0, i = 1, . . . , N,

(30)

and the complementary slackness conditions in (11) and (24).

We note that Lemma 1 holds for the fading case as well,

since it only depends on the rate function g(p, h) being non-

decreasing in p.

For the fading case, we define the following water-level

thresholds,

vsi =
1

η
∑N

j=i(λj − βj)
, vri =

1
∑N

j=i(λj − βj)
, (31)

which satisfy

vri = ηvsi, i = 1, . . . , N. (32)

With these definitions, we observe that for a positive trans-

mit power, pi > 0, (11b) gives µi = 0. Therefore, if the battery

is being charged, i.e., si > 0, from (11c) and (29) we have

pi = vsi − 1/hi. Similarly, if the battery is being discharged,
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II
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IV

III
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pi

0
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Fig. 3. Directional water-filling with energy storage and retrieval thresholds:
(a) The initial water levels with pi = Ei, and resulting thresholds, and (b)
resulting water levels and optimal transmit powers.

i.e., ri > 0, (11c) and (30) yields pi = vri − 1/hi. If pi = 0,

then si = Ei is being stored, and hence σi = 0. Since µi ≥ 0
by definition, (29) gives vsi−1/hi < 0. Hence, for the storing

and retrieving cases, the optimal transmit powers are

pi =

[

vsi −
1

hi

]+

(storing), pi =

[

vri −
1

hi

]+

(retrieving).

(33)

Note that the thresholds vsi and vri no longer equal transmit

powers directly in these cases, as in Sections III and IV, but set

the water-levels over which water-filling is to be performed.

In particular, if we can find water-levels vsi and vri satisfying

(32) such that the power policy

pi = min

(

max

(

Ei, vri −
1

hi

)

,

[

vsi −
1

hi

]+
)

(34)

is feasible, and all KKT conditions are satisfied, then this

policy is optimal. Finding these water-level thresholds is

possible exactly as in Algorithm 2 after replacing the power

policy in (17) with (34) and the thresholds psi and pri with

vsi and vri, respectively.

An example of directional water-filling with thresholds is

given in Fig. 3 for a storage efficiency of η = 0.5 and N = 5.

Fading levels and the harvested energy for i = 1, . . . , 5 are

shown in Fig. 3(a) in gray and blue, respectively. In particular,

the height of the grey area represents h−1
i , and the height

of the blue area represents pi in each time slot. The battery

capacity is sufficiently large to store all harvested energy in

this example. Two pairs of thresholds satisfying (32) are found

such that the battery is empty at the end of time slots 3 and

5. Consequently, the thresholds only change at the end of the

third time slot. Energy in the areas marked as I and III are

stored, and later retrieved and consumed in the areas marked

as II and IV, respectively.

si

EH Transmitter

η

Ei

Emax

ri
Receiver 2

Receiver 1

(g1, g2) ∈ G(p)

g2

g1

Fig. 4. Energy harvesting transmitter with inefficient storage in a Gaussian
broadcast channel.

VI. OPTIMAL TRANSMISSION POLICY FOR A BROADCAST

CHANNEL

We next consider a Gaussian broadcast channel, which

consists of an energy harvesting transmitter with an inefficient

battery, and two receivers, as shown in Fig. 4. At time slot

i, the transmitter allocates the power pi for transmission,

achieving a rate pair (g1i, g2i) ∈ G(pi) where G(p) is the

capacity region for transmit power p, given by

G(p) =

{

(g1, g2)
∣

∣

∣g1 ≤
1

2
log

(

1 +
αp

σ2
1

)

,

g2 ≤
1

2
log

(

1 +
(1− α)p

αp+ σ2
2

)

, 0 ≤ α ≤ 1

}

, (35)

with noise variances σ2
1 and σ2

2 ≥ σ2
1 for receivers 1 and 2,

respectively [43]. The following lemma presents a property

that is common to all capacity regions, in particular for the

region in (35), which is an immediate result of time-sharing.

Lemma 7 Let (g1, g2) ∈ G(p) and (ḡ1, ḡ2) ∈ G(p̄). Then,

(λg1 + (1− λ)ḡ1, λg2 + (1− λ)ḡ2) ∈ G(λp+ (1 − λ)p̄).
(36)

For this channel, we characterize the maximum throughput

region GEH as the set of achievable throughput pairs under

the energy harvesting constraints in (2) and (3). This is the

extension of the maximum departure region in [17, Defn. 1]

to the case of inefficient storage. Specifically, we write

GEH =

{(

N
∑

i=1

g1i,
N
∑

i=1

g2i

)∣

∣

∣

∣

∣

(g1i, g2i) ∈ G(Ei − si + ri),

si, ri ≥ 0, Ei − si + ri ≥ 0, (2), (3)

}

. (37)

We first present the following result, which is an extension

of [15, Lemma 2] to the case of inefficient energy storage.

Lemma 8 The throughput region GEH is convex.

Proof: Let {(si, ri)}
N
1 and {(s′i, r

′
i)}

N
1 , be two feasible poli-

cies yielding transmit powers {pi}
N
1 and {p′i}

N
1 , and achieving

rate pairs {(g1i, g2i)}
N
1 and {(g′1i, g

′
2i)}

N
1 , respectively. Let

s̄i = λsi + (1− λ)s′i and r̄i = λri + (1− λ)r′i, i = 1, . . . , N ,
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which yields p̄i = λpi + (1 − λ)p′i, i = 1, . . . , N . Then,

due to Lemma 7, {(s̄i, r̄i)}
N
1 can achieve the rates ḡji ≥

λgji+(1−λ)g′ji, j = 1, 2. Furthermore, the policy {(s̄i, r̄i)}
N
1

is feasible since (2) and (3) are linear in si and ri. Hence,

{(ḡji)}
N
1 is achievable, and therefore GEH is convex. �

As a result of Lemma 8, the boundary of GEH can be traced

by solving a weighted sum throughput maximization problem.

In particular, we solve for weights w ≥ 0,

max
{g1i,g2i}

w

N
∑

i=1

g1i +

N
∑

i=1

g2i, (38a)

s.t.

(

N
∑

i=1

g1i,

N
∑

i=1

g2i

)

∈ GEH . (38b)

By substituting (37) in (38), and separating the maximization

over {si, ri} and {g1i, g2i}, the weighted sum throughput

maximization problem becomes

max
{si,ri}

N
∑

i=1

fw(Ei − si + ri), (39a)

s.t. Ei − si + ri ≥ 0, i = 1, . . . , N, (39b)

si ≥ 0, ri ≥ 0, (2), (3), i = 1, . . . , N, (39c)

where fw(p) is the maximum weighted sum rate function

defined as

fw(p) = max
{g1,g2}

wg1 + g2 s.t. (g1, g2) ∈ G(p). (40)

We next show the concavity of fw(p) in the following lemma4.

Lemma 9 The maximum weighted sum rate function fw(p)
in (40) is concave in p.

Proof: Let fw(p) = wg1 + g2 and fw(p
′) = wg′1 + g′2, with

(g1, g2) ∈ G(p) and (g′1, g
′
2) ∈ G(p′). By Lemma 7, we have

(λg1+(1−λ)g′1, λg2+(1−λ)g′2) ∈ G(λp+(1−λ)p′). From

the definition in (40), we can write

fw(λp+ (1 − λ)p′) ≥ w(λg1 + (1− λ)g′1) + λg2 + (1 − λ)g′2
(41)

= λfw(p) + (1− λ)fw(p
′), (42)

which implies the concavity of fw(p) in p. �

With a concave objective (39a) and linear constraints (39b)-

(39c), (39) is a convex program. This problem differs from

that in (20) only in the objective. Finding the respective KKT

conditions, the relation between the thresholds psi and pri,
given for the single link in (15), becomes

f ′
w(psi)

f ′
w(pri)

= η, i = 1, . . . , N, (43)

4We remark that the concavity property in Lemma 9 is also shown in
[17, Lemma 2] specifically for a Gaussian broadcast channel with M ≥ 2
receivers. In fact, the weighted sum rate fw(p) for any setting is concave due
to the possibility of time-sharing between different transmit powers. Hence,
these results can be generalized to a larger class of channels.

where psi and pri are defined as the solutions to

f ′
w(psi) = η

N
∑

j=i

(λj − βj), i = 1, . . . , N, (44a)

f ′
w(pri) =

N
∑

j=i

(λj − βj), i = 1, . . . , N, (44b)

and f ′
w(p) denotes the derivative of fw(p) with respect to

transmit power p. By construction, the properties in Lemmas 2,

4 and 5 extend to this case. The optimal power allocation is

therefore found as in Algorithm 2 by substituting (15) with

(43). The resulting thresholds satisfy (16) and Lemma 6 by

construction, and therefore yield valid Lagrange multipliers

through (19) and (27).

We remark that the optimal policy conforms to the double-

threshold structure defined in Theorem 1, regardless of what

the weight w is. However, unlike the efficient storage case in

[17, Lemma 3], the power policies are no longer identical for

all weights w. In particular, the relationship in (43) depends

on the weight w, and hence the thresholds depleting or filling

the battery in Algorithm 2 are affected by the weight. This

insight applies to other channel models, and the single link,

as well: in [11], [12], the optimal power policy is found to be

the same for all concave power-rate functions g(p). However,

in the inefficient storage case, the derivative g′(p) affects how

the thresholds are related, and thus the optimal policy. As a

conclusion, unlike previous work with ideal batteries, the rate

function plays a direct role in determining the optimal policy

in the inefficient storage case.

VII. TRANSMISSION POLICIES WITH CAUSAL ENERGY

HARVESTING INFORMATION

The previous sections derive optimal policies when the

harvesting process over the duration of the session, i.e. Ei,

i = 1, . . . , N , is known before the session starts. This

approach provides a benchmark solution as well as insights

for efficient power allocation, and is applicable in scenarios

where the harvested energy is controlled or predictable [44].

For other applications where such information may not be

available non-causally, in this section, we develop policies that

only require causal knowledge of the harvested energy.

A. Optimal Online Policy

We refer to those transmission policies where the transmitter

chooses its power value based on the energy harvested up

to that point in time, i.e., with causal information, as online

policies. The optimal such policy can be found by solving

a dynamic program [45], which we formulate next. Let the

harvested energy values Ei and fading coefficients hi be i.i.d.

or first order Markov processes. Such harvesting processes

are considered previously in [14], [46], [47], and recent work

with empirical solar and wind harvesting data confirms that a

Markov process is a good model for harvested energy [48].

Finite state Markov channels are also known to be good

models for Rayleigh fading channels [49]–[51].

For an energy harvesting transmitter, the states of the system

at the beginning of time slot i include the energy stored in the
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battery, Bi−1, history of energy harvests, Ei = E1, . . . , Ei,

fading coefficients, hi = h1, . . . , hi, and the slot index, i. The

node decides on its transmit power based on these variables,

and hence its decision can be expressed as the action pi =
φ(Bi−1, E

i, hi, i). We remark that simultaneous storage and

retrieval of energy is sub-optimal also in the online case, i.e.,

Lemma 1 extends to online policies. Thus, given the power

policy {pi}
N
1 , the stored and retrieved energy values are found

from (17b).

Taking the action pi = φ(Bi−1, E
i, hi, i), the system

achieves a throughput g(pi, hi) in time slot i, and leaves

energy Bi = Bi−1 + ηsi − ri in the battery for future time

slots. The value function, which is the achieved throughput in

time slot i and the expected future throughput of the system

after time slot i, is given by the Bellman equation,

max
φ

g
(

φ
(

Bi−1, E
i, hi, i

)

, hi

)

+ E





N
∑

j=i+1

g
(

φ
(

Bj−1, E
j , hj , j

)

, hj

)



 (45a)

= max
φ

g
(

φ
(

Bi−1, E
i, hi, i

)

, hi

)

+ E
[

V
(

Bi, E
i+1, hi+1, i+ 1

)]

, (45b)

where the expectations are taken over the distribution of the

harvesting process Ei and fading process hi. The optimal

online power policy φ∗(.) is the maximizer of the Bellman

equation in (45) [45]. Note that the dimension of the opti-

mization variable in (45) increases with i. Thus, solving this

problem through value iteration has exponential complexity,

and is intractable for large N . However, it is possible to

simplify the problem by observing the Markovian property

of the harvesting and channel fading processes. In particular,

only Bi−1 and Ei impose a constraint on the transmit power,

and only hi affects the rate, in time slot i. Since Ei and hi

are i.i.d or Markovian, future realizations of these variables

are independent of the past values given their current val-

ues. Hence, having different actions for different values of

{Ei}
i−1
1 and {hi}

i−1
1 does not affect the value function, and

therefore we can simplify the actions as φ(Bi−1, E
i, hi, i) =

φ(Bi−1, Ei, hi, i). This yields the simplified Bellman equation

for i.i.d. arrivals and fading,

V (Bi−1, Ei, hi, i) = max
φ

g (φ (Bi−1, Ei, hi, i) , hi)

+ E [V (Bi, Ei+1, hi+1, i+ 1)] , (46)

which can be easily computed using value iteration. Namely,

starting from i = N and choosing V (BN−1, EN , hN , N +
1) = 0, optimal actions φ(BN−1, EN , hN , N) and value

functions V (BN−1, EN , hN , N) are calculated. These values

are then used to calculate the optimal actions and value

functions at i = N − 1 from (46), and the process is repeated

for all i.

Finally, we consider an infinite-horizon problem, i.e., N →
∞, and find the optimal online policy using a discounted

problem. This is also the policy that the value iteration

algorithm on (46) converges to for very large N . To find this

policy, denoted by φ∗(Bi−1, Ei, hi), we introduce a discount

Fig. 5. Optimal online transmission power for i.i.d. energy arrivals.

factor β ≤ 1 and write the Bellman equation as

V (Bi−1, Ei, hi) = max
φ

g (φ (Bi−1, Ei, hi) , hi)

+ βE [V (Bi, Ei+1, hi+1)] . (47)

Starting with an arbitrary set of initial actions, iterating (47)

converges to the optimal policy φ∗(Bi−1, Ei, hi). As the

discount factor β → 1, the resulting policy approaches the

optimal infinite horizon policy.

As an example, Fig. 5 shows the optimal infinite horizon

policy for a non-fading Gaussian channel with hi = 1, a finite-

sized battery Emax = 100, and i.i.d. uniform energy harvests

in [0, 20]. Note that for a fixed stored energy, the optimal

online policy exhibits a double-threshold structure similar to

that in Theorem 1, e.g., the bold line for Bi−1 = 60 in the

figure. The optimal transmit power is equal to the harvested

energy for a range of Bi−1 and Ei values, marked as region

I. Regions II and III are separated from region I by a set of

thresholds, indicated with dashed lines. Within these regions,

the transmit powers vary only slightly with harvested energy

rate Ei. The two thresholds separating region I from regions II

and III are observed to satisfy the relationship in (15) for each

Bi−1. The thresholds, however, change with Bi−1: For small

Bi−1, the thresholds are lower, with pri = 0 at Bi−1 = 0 since

retrieving energy is not feasible. For large Bi−1, the thresholds

are higher, reaching to psi > 20mW at Bi−1 = Emax, since

storing energy is not feasible.

For harvesting processes with memory, we consider two

scenarios with Markovian energy harvests in Fig. 6 and Fig. 7.

In Fig. 6, harvesting is a bursty process where the next energy

harvest remains the same, i.e., Ei+1 = Ei, with probability

0.5, and a new value that is uniform in [0, 20] is generated

with probability 0.5. Hence, the process consists of bursts

of constant rate harvests. As seen in Fig. 6, this harvesting

model also yields a double-threshold policy that resembles

the i.i.d. case in Fig. 5. In Fig. 7, harvested energy Ei

performs a random walk on [0, 20], where it increases or

decreases 1 unit with probability 0.4 each, and remains the
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Fig. 6. Optimal online transmission power for the bursty energy harvesting
model.

same with probability 0.2. In this case, the optimal policy

is to consume all harvested energy, which does not show a

threshold characteristic. This is intuitive, because a high or low

harvest rate is sustained for extended periods in this model,

and consistently storing or retrieving would likely overflow or

deplete the battery.

B. Proposed Online Policy

Sections III-VI show that the optimal policy has a double-

threshold structure where the thresholds are related for all i =
1, . . . , N . The infinite-horizon optimal online policy found in

Section VII-A for i.i.d. arrivals also exhibits a similar double-

threshold structure. With these in mind, in this section, we

propose a simpler online double-threshold policy by assigning

constant thresholds throughout the communication session.

We first consider a non-fading channel and Markovian har-

vested energy values Ei with stationary probability distribution

fE(E). We propose finding fixed thresholds psi = ps and

pri = pr, i = 1, . . . , N , that satisfy (15) and

η

∫ ∞

ps

(e − ps)fE(e)de −

∫ pr

0

(pr − e)fE(e)de = 0. (48)

This equation can be interpreted as an energy stability condi-

tion, since it ensures that the expected energy stored in and

retrieved from the battery are equal. Thus, neither the energy

storage is underutilized, nor an excessive amount of energy

is stored without utility. Note that at η = 1, this reduces to

a constant power policy that preserves energy-neutrality, and

resembles the best-effort transmission scheme of [52] which

is optimal for infinite length transmission. On the other hand,

at η = 0, (48) is only satisfied with pr = 0 and ps → ∞. This

means that no energy is stored, i.e., pi = Ei, which is optimal

since η = 0.

Above policy satisfying (48) can be readily extended to a

fading channel with Markovian channel coefficients hi and

joint stationary distribution fE,H(e, h) by finding water level

Fig. 7. Optimal online transmission power for the random walk energy
harvesting model.

thresholds vsi = vs and vri = vr, i = 1, . . . , N , that satisfy

(32) and
∫∫ ∞

0

η
[

e−
[

vs −
1
h

]+
]+

−
[

vr −
1
h
− e
]+

fE,H(e, h) de dh = 0, (49)

where (49) is the fading equivalent of the energy stability

condition in (48).

VIII. NUMERICAL RESULTS

In this section, we provide numerical results on the perfor-

mances of the optimal offline policy and the online policies.

We simulate communication sessions consisting of N = 104

time slots, with a slot length of τ = 10ms. Since the model

in Section II assumed unit slot length, the optimal policies in

this case are found by scaling transmit powers and consumed

energy values accordingly. We consider an energy harvesting

transmitter node equipped with a battery of size 1mJ and initial

charge Ebat
0 = 0. We have the Gaussian noise spectral density

of N0 = 10−19W/Hz at the receiver, and a bandwidth of

1MHz. The path loss between the transmitter and receiver is

h = −100dB.

For the purpose of comparison, we introduce two algo-

rithms. The first is the directional water-filling (DWF) algo-

rithm of [13], which is indifferent to the storage efficiency

η, and a feasible policy is obtained as in [13]. The second

is the efficiency-adaptive directional water-filling algorithm,

which is obtained by forcing the two thresholds of the optimal

offline algorithm in Section III to be equal, thus resembling

DWF in [13]. However, it accounts for the storage efficiency

η when choosing its constant water levels, and therefore is a

near-optimal heuristic.

We consider the single-user setting with a finite-sized

battery in Section IV. Fig. 8 shows the throughput for the

offline and online policies versus storage efficiency η when

the harvested energy Ei at each time slot of length 10ms

is generated in an i.i.d. fashion, distributed uniformly in
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Fig. 8. Throughput for a static channel with i.i.d. energy arrivals and an
average harvesting rate of 10mW.
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Fig. 9. Throughput for a static channel with Markov (bursty) energy arrivals
and an average harvesting rate of 10mW.

[0, 200]µJ. This corresponds to an average energy harvesting

rate of 10mW. Simulations are repeated for bursty and random

walk arrival models of Section VII-A in Fig. 9 and Fig. 10,

respectively, for a harvested energy range of [0, 200]µJ. We

observe that the performance of DWF degrades rapidly with

decreasing η, since it does not adapt to storage efficiency.

Efficiency-adaptive DWF performs reasonably well for high

storage efficiency, but worse at low storage efficiency since

it also relies on frequently storing and retrieving energy.

Moreover, in all cases, the proposed online policy performs

very close to the optimal online policy, both providing a

notable improvement over DWF and efficiency-adaptive DWF.

In Fig. 11, we compare the throughput of offline and online

policies for a fading channel. We consider Rayleigh fading

with E[hi] = −100dB, and the remaining parameters are

unchanged from those in Fig. 8. Here, the optimal offline

and online policies compare similar to the non-fading case.

We observe that efficiency-adaptive DWF performs close to

optimal for high storage efficiency, while DWF rapidly departs
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Fig. 10. Throughput for a static channel with Markov (random walk) energy
arrivals and an average harvesting rate of 10mW.
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Fig. 11. Throughput for a Rayleigh fading channel with i.i.d. energy arrivals
and an average harvesting rate of 10mW.

from the optimal as η decreases. The proposed online policy

is notably close to the optimal for all storage efficiency values.

We next consider an average harvesting rate of 80µW, which

is more realistic for small-sized energy harvesting sensor nodes

with limited access to ambient energy. We generate energy

arrivals accordingly, while the remaining parameters are un-

changed. Figs. 12-15 present the throughput for the offline

and online policies versus storage efficiency η for i.i.d., bursty,

and random walk energy harvests in a static channel, and i.i.d.

energy harvests in a Rayleigh fading channel, respectively. The

significance of the double-threshold policy is more pronounced

in this low-power scenario, as the performance of both DWF

and efficiency-adaptive DWF quickly depart from that of the

optimal as η decreases.

We plot the throughput of the above policies relative to the

optimal offline policy, i.e., scaled by the optimal throughput, as

a function of average energy harvesting rate in Fig. 16, for i.i.d.

energy harvests in a static channel with the same parameters.

We observe that while the performance of the optimal online

and proposed online algorithms are virtually identical to that
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Fig. 12. Throughput for a static channel with i.i.d. energy arrivals and an
average harvesting rate of 80µW.

0 0.2 0.4 0.6 0.8 1

0.32

0.34

0.36

0.38

0.4

0.42

Storage efficiency, η

T
h
ro

u
g
h
p
u
t 
(B

it
s
/s

/H
z
)

 

 

Optimal offline policy

Efficiency−adaptive DWF

Directional water−filling

Optimal online policy

Proposed online policy

Fig. 13. Throughput for a static channel with Markov (bursty) energy arrivals
and an average harvesting rate of 80µW.

of the optimal offline policy, the performance of efficiency-

adaptive DWF and DWF falls to as low as 90% and 67% of

the optimal throughput, respectively, at low harvesting rates.

Finally, to examine the dynamics of the policies further,

we present a smaller numerical example with N = 5 time

slots of duration 10ms, storage efficiency η = 0.66, battery

capacity Emax = 20µJ, and energy harvests [18 20 2 9 4]µJ.

In this scenario, the optimal power policy sets thresholds

ps = 1.43mW and pr = 0.61mW, and yields the transmit

powers p = [1.43 1.43 0.61 0.90 0.61]mW with an average

throughput of 0.4861bits/sec/Hz. In comparison, efficiency-

adaptive DWF yields p = [0.93 0.93 0.93 0.93 0.93]mW

with average throughput 0.4733bits/sec/Hz, and DWF yields

p = [0.70 0.70 0.70 0.70 0.70]mW with average through-

put 0.3825bits/sec/Hz. Note that the optimal offline policy

consumes more energy in the first two time slots, and does

not insist on equalizing the powers p2 and p3. This is to

its benefit, because for these transmit powers, energy storage

loss overcomes the advantage of constant power transmis-
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Fig. 14. Throughput for a static channel with Markov (random walk) energy
arrivals and an average harvesting rate of 80µW.
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Fig. 15. Throughput for a Rayleigh fading channel with i.i.d. energy arrivals
and an average harvesting rate of 80µW.

sion. Meanwhile, being aware of the storage inefficiency,

the efficiency-adaptive DWF algorithm chooses a constant

transmit power of 0.93mW, while the DWF algorithm chooses

a constant transmit power of 0.70mW. As a result, the average

throughput of the optimal offline algorithm is significantly

better than that of DWF, and is only approached by efficiency-

adaptive DWF.

IX. CONCLUSION

We identify the throughput optimal transmit power policy

for an energy harvesting transmitter with a battery that has

storage inefficiency. We show that the optimal policy has

a double-threshold structure, where the thresholds are de-

termined by the energy harvesting process and the storage

efficiency. We show that the thresholds are constant if battery

is not completely empty or full, and the thresholds only

increase when the battery is empty, and only decrease when the

battery is full. We develop an algorithm to find the optimum

thresholds. We extend the solution to a fading channel, and
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Fig. 16. Throughput of efficiency-adaptive DWF, DWF, and online policies
relative to optimal throughput.

develop a directional water-filling algorithm with a double-

threshold policy acting on water levels. In the broadcast chan-

nel, we obtain throughput regions by maximizing weighted

sum throughput for all weights, where the optimal policy

in each case is a double-threshold policy. Finally, we use a

dynamic programming formulation to develop an optimum

online algorithm, and numerically observe that it follows

a similar double-threshold structure. We further propose a

simpler online double-threshold policy with low complexity,

and observe experimentally that it performs close to its optimal

counterpart. An insight drawn from these results is that when

battery inefficiency is taken into consideration, the optimal

power policy is no longer piecewise constant as was the case

in previous work with ideal batteries. Instead, two thresholds

emerge in both the offline and online optimal policies, between

which harvested energy is consumed immediately, i.e., without

energy storage or retrieval. When battery is set to be lossless,

these two thresholds are equal, and the policies converge to

previous results. In essence, double-threshold policies result

from the inefficiency of the battery, and introduce an interval

within which the losses due to inefficiency outweigh the ben-

efits of storage. In addition, we observe that the conventional

directional water-filling algorithm, which does not adapt to

storage inefficiency, incurs a significant performance loss as

storage efficiency decreases. Important future directions are

incorporating other practical aspects of physical systems such

as processing power and communication overheads to our

model, leading to practical implementation of these com-

munication systems. Finally, the results of this paper where

we have investigated charging/discharging imperfections that

occur at the time of energy saving/retrieval should further be

combined with other types of battery imperfections such as

battery degradation and energy leakage that occur over time.
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