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Abstract—This work considers a Gaussian multiple access
channel with two energy harvesting transmitters with lossy energy
storage. The power allocation policy maximizing the average
weighted sum rate given the energy harvesting profiles is found.
In particular, it is shown that the optimal policy has a double-
threshold structure on each of the transmit powers, while the two
transmit powers interact through the multivariate achievable rate
function which determines the thresholds. For the special case of
sum rate maximization in a Gaussian MAC channel, it is shown
that the thresholds apply to the sum power, and the optimal policy
consists of three thresholds, rather than four, which enables the
user with a more efficient battery to be given priority in energy
storage.

I. INTRODUCTION

Energy harvesting wireless nodes provide prolonged network
lifetime while building a foundation for green communications.
Such nodes are particularly attractive for wireless network
deployment where frequent replacement of batteries of nodes is
not practical, such as wireless sensor networks, body networks,
or dynamic communication scenarios for military applications.
A fundamental limitation of energy harvesting wireless nodes
is the scarcity and intermittent availability of the energy source.
Consequently, care must be given to storage and effective uti-
lization of harvested energy in order to achieve desired network
performance. As energy storage in practice is not perfectly
efficient, the trade-off between storage and consumption of
harvested energy arises as an important factor to be considered
in network design. In this work, we consider this trade-off in
a Gaussian energy harvesting multiple access channel and find
optimal power allocation policies in the presence of energy
storage losses.

Wireless nodes with energy harvesting as their sole energy
source has sparked interest in recent years [1]–[9]. Since a key
challenge in these works is energy management, the focus has
been on optimal power allocation. In [1], transmission time
minimization has been studied for a single energy harvesting
transmitter with infinite energy storage. The model has been
extended to finite capacity energy storage in [2], which also
showed the duality between transmission time minimization
and average rate maximization problems for energy harvesting
transmitters. This work is followed by the energy harvesting
broadcast channel [3], multiple access channel [4], interference
channel [5], and a two-hop network [6]. For Gaussian fading
channels, a directional water-filling algorithm is introduced in
reference [7].

In energy harvesting wireless networks, to enable operation,
an energy storage device such as a battery or a supercapacitor
is necessary. However, such devices may be inefficient, have a
rate-dependent capacity, and may suffer from storage capacity
fading, leakage, and recovery effects. In [10], [11], some elec-
trical models for energy storage devices are proposed. Some of
these imperfections, namely capacity fading and leakage, are
studied in [8] for energy harvesting networks by modifying the
single-user policy in [1], [2]. In this work, we adopt the storage
loss model in reference [12], i.e., the loss is a fraction of the
stored energy, which is used to find optimal duty-cycling for
energy-neutrality in nodes with infinite batteries.

We focus on a multiple access channel with two energy
harvesting transmitters, each equipped with finite and lossy
energy storage devices. The single energy harvesting transmit-
ter problem under such constraints is studied in [13], yielding
a double-threshold policy on the transmission power. The
multiple access extension of this problem, as examined in this
paper, additionally considers the interplay between the two
transmitters, and how the thresholds are related. It is shown
that the weighted sum rate maximizing policy can be found
by an iterative alternating maximization algorithm, where each
iteration is a modified version of the single user problem,
yielding a similar double-threshold result. For the special case
of sum rate maximization in a Gaussian MAC, it is shown
that the optimal policy consists of three thresholds on the sum
power, with storage priority given to the transmitter with a
more efficient energy storage.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider two energy harvesting transmitters with lossy
energy storage communicating to a common receiver. This
defines the energy harvesting multiple access channel as shown
in Figure 1. Each transmitter is equipped with a battery of
finite capacity Emax

i in which it can store the harvested energy
and from which it can discharge the stored energy in the
future. Hence, the instantaneous transmission power of an
energy harvesting node is determined by the harvested power,
stored power and the retrieved power at an instant, while the
stored and retrieved powers are constrained by causality and
the physical properties of the storage device.

What distinguishes this work from previous works on
scheduling with energy harvesting nodes such as [1], [2], [6],
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Fig. 1. The energy harvesting multiple access channel.

[7] is that the energy storage process is lossy, in the sense that
a constant fraction ηi of the stored power in transmitter i is
lost due to practical inefficiencies. Although this loss can be
both at the storage and the retrieval stages, it can equivalently
be modeled as a loss at the storage stage only by scaling the
storage capacity accordingly. This loss model is has been used
as an appropriate model before [12], [13].

As depicted in Figure 1, the harvested power at time t for
transmitter i is denoted with hi(t). Out of this arriving power,
si(t) is scheduled for storage, and ηisi(t) is stored in the device
while the remaining energy (1−ηi)si(t) is lost to inefficiency.
The rate of energy retrieval from the storage device is denoted
with ui(t). The transmission power pi(t) for transmitter i, i =
1, 2, is therefore expressed as

pi(t) = hi(t)− si(τ) + ui(τ). (1)

The nodes are free to allocate the available power to the
transmitter or storage device, and thus the variables of the
problem are si(t) and ui(t) which determine the transmit
power pi(t). The harvested power hi(t) is not controlled, but
is assumed to be known non-causally for the offline problem in
order to find the optimal policy. The variables si(t) and ui(t)
are constrained by the harvested power, energy causality and
battery capacity. Naturally, no more than the harvested power
hi(t) can be scheduled to be stored at any time t, and hence
si(t) ≤ hi(t) for all t. Assuming that the storage device is
initially empty, the energy stored at time t is given by

Ebat
i (t) =

∫ t

0

ηisi(τ) − ui(τ) dτ (2)

To conform to reality, the value of Ebat
i (t) shall never fall

below 0 and shall never exceed the capacity Emax
i . The former

constraint implies that no more than the stored energy can be
retrieved by the transmitter. This is named energy causality,
and is expressed as

∫ t

0

ηisi(τ) − ui(τ) dτ ≥ 0, 0 ≤ t ≤ T (3)

while the latter constraint, battery capacity, is given by∫ t

0

ηisi(τ) − ui(τ) dτ ≤ Emax
i , 0 ≤ t ≤ T. (4)

Given the instantaneous transmission powers of the two
users as p1 and p2, the rate pairs (R1, R2) that can be achieved
are given by an achievable region R(p1, p2). It is trivial that
this region is concave, since time-sharing allows any convex
combination of achievable rates to also be achieved. Note that
channel coefficients are not considered in this expression, but
they can easily be handled by properly scaling the harvested
powers hi(t) of the transmitters to get an equivalent model and
achievable region.

We define the utility of the system as the average weighted
short-term sum rate bR1 + R2, calculated by averaging the
instantaneous achievable weighted sum rate through the trans-
mission duration, T . Since the instantaneous rates are added in
this problem formulation, it is optimal to choose the weighted
sum rate maximizing rate pair out of R(p1, p2) at each instant
where a power pair (p1, p2) is given. For a weight b, we
denote the maximum achieved weighted sum rate as rb(p1, p2).
Together with the constraints on stored and retrieved powers,
the offline average weighted sum rate maximization problem
with transmission deadline T is given by

max
si(t),ui(t)

1

T

∫ T

0

rb(p1(t), p2(t)) dt (5a)

s.t. 0 ≤

∫ t

0

ηisi(τ) − ui(τ) dτ ≤ Emax
i , (5b)

hi(t) ≥ si(t) ≥ 0, ui(t) ≥ 0, 0 ≤ t ≤ T (5c)

where pi(t) is given in (1) and i ∈ {1, 2}. The solution to the
single-user version of this problem is provided in [13] as a
double-threshold power policy. In this paper, we analyze and
solve the two transmitter extension of this problem given in
(5). While we present the two-transmitter scenario in detail for
clarity of exposition, we note that the problem and the approach
can be readily extended to more than two transmitters.

III. OPTIMAL TRANSMISSION POLICY

For the multiple access channel, the weighted sum rate
maximization problem is defined in (5). To solve for the
optimal power policy, we first show the convexity of this
problem. It is trivial that the feasible set for (si(t), ui(t)) is
convex, since the constraints in (5b) and (5c) are linear. What
remains is the joint concavity of the function in the objective
rb(p1, p2) in the transmission powers p1 and p2.

Lemma 1: The achievable instantaneous weighted sum rate
rb(p1, p2) for a given weight b is non-decreasing, continuous
and jointly concave in p1 and p2.

Proof: The non-decreasing property follows from the
transmitters discarding excess transmission power from p1,
p2 or both to achieve any weighted sum rate provided by
p′1 ≤ p1 and p′2 ≤ p2. Continuity and joint concavity can be
proved with time sharing between two or more rate vectors.
In a small neighborhood of (p1, p2), a weighted sum rate rb
arbitrarily close to rb(p1, p2) can be achieved by discarding
power greater than p1 or p2 and transmitting with (p1, p2)
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for a slightly shorter time period so that the average transmit
power is as desired. Similarly for concavity, if two sum rates r′b
and r′′b can be achieved with (p′1, p

′

2) and (p′′1 , p
′′

2) respectively,
then time-sharing between these two power vectors can achieve
any convex combination of the two weighted sum rates, thus
proving concavity of rb(p1, p2) in p1 and p2.

Remark 1: The critical assumption at this step is the avail-
ability of time-sharing for achieving an instantaneous weighted
sum rate. Although this may not always be possible when
considered on a time scale comparable to the codeword length,
it is not impractical on longer time scales, i.e., when the
transmission time is much greater than a codeword, as is
frequently the case in practice.

As a consequence of Lemma 1, the maximization problem
in (5) is convex. We then seek some properties of the optimal
power allocation using the Karush-Kuhn-Tucker (KKT) condi-
tions for this problem. The Lagrangian function is given in (6),
where λi(t), βi(t), μi(t), σi(t) and νi(t) are the Lagrangian
multipliers for the constraints in (5b) and (5c).

The KKT stationarity conditions are found by differentiating
the Lagrangian function L over si(t) and ui(t), i = 1, 2,

∂r(p1(t), p2(t))

∂p1
= η1

∫
T

t

λ1(τ ) dτ + μ1(t)− σ1(t) (7a)

∂r(p1(t), p2(t))

∂p2
= η2

∫
T

t

λ2(τ ) dτ + μ2(t)− σ2(t) (7b)

∂r(p1(t), p2(t))

∂p1
=

∫
T

t

λ1(τ ) dτ − ν1(t) (7c)

∂r(p1(t), p2(t))

∂p2
=

∫
T

t

λ2(τ ) dτ − ν2(t) (7d)

Observing (7a) and (7c) for user 1 and (7b) and (7d) for
user 2 separately, it can be concluded that the optimal power
policy for each user separately follows the same properties with
the single user double-threshold policy in [13]. Therefore, the
double-threshold policy for transmitter j with energy harvest
hj(t) consists of the following three modes:

1) Storage: If hj(t) > psj(t), the upper threshold, then
transmit with psj(t) and store the excess power.

2) Retrieval: If hj(t) < puj(t), the lower threshold, then
transmit with puj(t) by retrieving the missing power.

3) Passive: If puj(t) ≤ hj(t) ≤ psj(t), then transmit with
hj(t) without storing or retrieving energy.

The two thresholds are related with ∂/∂pj r(ps(t))
∂/∂pj r(pu(t))

= ηj ,
j = 1, 2. For the single transmitter, the thresholds are found
to be piecewise constant and changing only at the extreme
values of the stored energy. This allows the exact thresholds
to be calculated by searching feasible threshold pairs for one
satisfying these optimality conditions. The specifics on how
to find the threshold values for the single user problem can
be found in [13]. In contrast to the single user problem,
the thresholds of the multiple access case are not necessarily
constant, since they depend on all transmission powers through
the partial derivative ∂rb(p1(t),p2(t))

∂pj
. This can be seen for

transmitter 1 by comparing (7a) and (7c) at storage and retrieval
modes respectively with Lagrangian multipliers chosen based
on the KKT complementary slackness conditions. Hence the
optimal policy is interactive in the sense that the thresholds of

the power of a user depends on the transmission power of the
interfering user, each user having its own pair of thresholds.

Given this preparation, we are now ready to utilize the
convexity of the problem and propose an iterative solution.
In particular, we solve this problem through an alternating
maximization algorithm [14], where at each iteration a user
assumes the transmission power of the other user to be fixed
and finds the optimal policy. For example, on the kth iteration,
transmitter 1 determines its transmission policy (s[k]1 (t),u[k]

1 (t))
by solving the single-user problem [13]

max
s1(t),u1(t)

1

T

∫ T

0

r(p1(t), p
[k−1]
2 (t)) dt (8a)

s.t. 0 ≤

∫ t

0

η1s1(τ) − u1(τ) dτ ≤ Emax
1 , (8b)

h1(t) ≥ s1(t) ≥ 0, u1(t) ≥ 0, 0 ≤ t ≤ T (8c)

where p
[k−1]
2 (t) is fixed as the output of the previous iteration.

The solution to this single transmitter problem is a two-
threshold policy. However, since the rate function is multivari-
ate, the thresholds are related as

∂/∂p1 r(ps, p
[k−1]
2 )

∂/∂p1 r(pu, p
[k−1]
2 )

= η1 (9)

On the k + 1st iteration, the same process is repeated for
the second transmitter and the iterations continue until con-
vergence. This iteration, namely block coordinate descent, can
be shown to converge to the global minimum objective value
[14], see also [5].

IV. SPECIAL CASE: SUM RATE MAXIMIZATION

A special case of (5) is the sum rate case, i.e., b = 1, with
Gaussian noise and a virtually infinite storage, for which the
sum-capacity is given by

r1(p1, p2) = R1 +R2 =
1

2
log

(
1 +

p1 + p2
N

)
bits/ch. use.

(10)
This case yields an explicit solution due to this rate expres-

sion being a function of p1+p2. In fact, when r1(p1, p2) is re-
arranged to be expressed as r1(p1+p2), we can observe a strict
concavity in p1+p2 along with continuity and monotonicity. In
this case, the KKT conditions in (7) all share the same partial
derivative term, since ∂r1(p1,p2)

∂pi
= ∂r1(p)

∂p where p = p1 + p2
is the sum power.

A direct consequence of the achieved utility being only a
function of p1 + p2 is the indifference of the system to how
much of the sum power is provided by either user. Therefore,
once some energy is stored in either of the batteries, the
performance of the system is independent of which battery
this energy is stored in, since it can be restored with identical
contribution to the sum power. This forms the grounds for the
equivalent model we propose to simplify the multiple access
problem as follows:

We define the multiple harvesters with shared storage model
as a single transmitter node powered by two harvesting pro-
cesses h1(t) and h2(t), which can be stored in a common
battery with efficiency η1 and η2 respectively, or used directly
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L =

∫ T

0

rb(p1(t), p2(t)) dt+

2∑
i=1

(∫ T

0

λi(t)

∫ t

0

ηisi(τ) − ui(τ) dτ dt+

∫ T

0

βi(t)

(
Emax

i −

∫ t

0

ηisi(τ)− ui(τ) dτ

)
dt+

∫ T

0

μi(t)(hi(t)− si(t)) dt+

∫ T

0

σi(t)si(t) dt+

∫ T

0

νi(t)ui(t) dt

)
(6)

in transmission. The stored power for the ith harvesting process
is denoted with si(t), and the power drawn from the battery
is denoted with u(t). This model is depicted in Figure 2. The
problem of maximizing the average rate for this transmitter
given a rate function r(p) is expressed as

max
s1(t),s2(t),u(t)

1

T

∫ T

0

r(h(t)−s1(t)−s2(t)+u(t)) dt (11a)

s.t. 0 ≤

∫ t

0

η1s1(τ) + η2s2(τ) − u(τ) dτ, (11b)

hi(t) ≥ si(t) ≥ 0, u(t) ≥ 0, 0 ≤ t ≤ T. (11c)

Note that since sum capacity is only a function of sum-
power in a Gaussian multiple access channel, this maximization
problem is a relaxed version of the original problem in (5)
which additionally allows exchanging the energy stored in
the two batteries of the MAC users. Therefore, the maximum
average sum rate achievable by the shared storage system is not
less than that of the multiple access problem. We shall first find
the optimal policy for this model that maximizes the average
sum rate, and then claim that the same policy can be employed
in the multiple access model with physically separate energy
storage devices.

In the case with equal efficiency, i.e., η1 = η2, the model in
Figure 2 would be equivalent to the single user model in [13]
since the harvests h1(t) and h2(t) can effectively be considered
cumulatively. In this case, the optimal policy can be found by
a double threshold on the sum power, and either of the sources
being stored when total harvested power is above a threshold.
For the remainder of this section, we shall focus on the case
η1 �= η2 and assume, without loss of generality, that η1 < η2.

For the shared storage problem in (11), the KKT stationarity
equations relating to s1 and s2 are identical to (7a) and (7b),
except with a common Lagrange multiplier λ(t). However,
since a single battery is considered, (7c) and (7d) are replaced
with (14), yielding the KKT conditions

r′(p(t)) = η1

∫ T

t

λ(τ) dτ + μ1(t)− σ1(t) (12)

r′(p(t)) = η2

∫ T

t

λ(τ) dτ + μ2(t)− σ2(t) (13)

r′(p(t)) =

∫ T

t

λ(τ) dτ − ν(t) (14)

where p(t) = h1(t)+h2(t)− s1(t)− s2(t)+u(t) is the trans-
mission power of the user. The corresponding complementary
slackness conditions for each Lagrangian multiplier are

λ(t)

(∫ t

0

ηs1(τ) + s2(τ) − u(τ) dτ

)
= 0 (15a)

μ1(t) (h1(t)− s1(t)) = 0, μ2(t) (h2(t)− s2(t)) = 0 (15b)

σ1(t)s1(t) = 0, σ2(t)s2(t) = 0, ν(t)u(t) = 0. (15c)

Fig. 2. Equivalent system model for two transmitters with shared storage

We briefly look at the possible cases for this system while
skipping some trivial cases due to lack of space.

Case 1: Simultaneous charging and discharging
In the case with u(t) > 0 and si(t) > 0 for some i ∈ {1, 2},

we have ν(t) = σi(t) = 0 due to (15). Combining (14) and
(12,13), we get

r′(p(t)) =

∫ T

t

λ(τ) dτ = ηi

∫ T

t

λ(τ) dτ − μi(t) (16)

which cannot hold for μi(t) ≥ 0 and 0 ≤ ηi < 1. For the
special case with ηi = 1, we can find an equivalent policy
that yields the same transmission power without simultaneous
charging and discharging. Thus, this case will be avoided in
the optimal policy.

Case 2: Discharge only
For the case of discharging only, u(t) > 0, the complemen-

tary slackness conditions yield ν(t) = 0. Substituting in (14),
this gives

r′(p(t)) =

∫ T

t

λ(τ) dτ (17)

implying that the transmission power at which the battery is
discharging is constant while the battery is non-empty, and this
constant level is non-decreasing due to the fact that λ ≥ 0. As
in the single user case in [13], we shall denote this discharge
threshold power as pu.

Case 3: Charging using both harvests
When both h1(t) and h2(t) are being stored, we have

σ1(t) = σ2(t) = 0. Substituting in (12) and (13), we get

r′(p(t)) = η1

∫ T

t

λ(τ) dτ − μ1(t) = η2

∫ T

t

λ(τ) dτ − μ2(t).

(18)
Recall that η1 < η2 by assumption. This would mean that

if h2(t) > s2(t), i.e., if the more efficiently stored harvest
is not being stored as a whole, we get μ2(t) = 0 and the
above equation cannot hold with μ1(t) ≥ 0. Therefore, we can
conclude that both harvests cannot be stored unless s2(t) =
h2(t), i.e., that the harvest with higher efficiency must always
have storage priority over the other one.
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Case 4: Charging with harvest i only
When si(t) > 0 only, complementary slackness conditions

yield σi(t) = 0. Substituting in (12) or (13) gives

r′(p(t)) = ηi

∫ T

t

λ(τ) dτ − μi(t) = 0. (19)

Therefore, unless all harvested power is being stored, μi(t) is
zero and the transmission power at which charging for harvest
i occurs is constant while Ebat > 0. Comparing to (17), we
see that this power, denoted as psi, satisfies

r′(psi)

r′(pu)
= ηi. (20)

Finally, note that for i = 1, if h2(t) > 0, then μ2(t) = 0,
yielding

r′(p(t)) = η1

∫ T

t

λ(τ) dτ − μ1(t) = η2

∫ T

t

λ(τ) dτ + σ2(t)

(21)
which cannot hold for non-negative μ1(t) and σ2(t). Thus,
complementing the priority statement in the previous case,
charging with harvest 1 only occurs when h2(t) = 0.

The cases analyzed above outline sufficient requirements to
find an optimal policy for the shared storage model. Given the
three thresholds pu, ps1 and ps2, the transmitter operates in
one of the five modes below:

1) Both harvests being stored, s2(t) = h2(t), p(t) = ps1,
2) h1(t) being stored only, p(t) = ps1
3) h2(t) being stored only, p(t) = ps2,
4) Battery is discharging, i.e., u(t) > 0, with p(t) = pu,
5) No charging or discharging occurs.

The three thresholds that govern these modes are necessarily
ordered as 0 ≤ pu ≤ ps2 ≤ ps1 with the second harvest
with better efficiency, i.e., η2 > η1, having storage priority.
The transmission power at which discharging occurs, pu(t)
is constant while Ebat > 0 and non-decreasing. Furthermore,
given pu(t), the charging thresholds for both harvests can be
found through (20). The problem reduces to finding a sequence
of levels for pu(t) that deplete the stored energy whenever
the levels are changing. The solution can be easily found by
searching for the smallest pu to deplete the battery at some
time 0 < t1 ≤ T , similar to the line search proposed in [13]
for the single user problem.

Remark 2: The optimal policy derived above for the shared
storage model can be feasibly implemented in the multiple
access setting. An important property of the policy is that the
performance of the system does not depend on which of the
two batteries of the two transmitters is supplying the required
power. Thus, when the nodes store energy based on thresholds
ps1 and ps2 with the corresponding constraints in Cases 3 and 4
holding, the discharge rate u(t) can be satisfied by either of the
batteries. The optimal policy for the multiple access scenario
is therefore a triple-threshold policy acting on the sum-power,
with thresholds determined by (17) and (20) and the threshold
levels are found by a line search algorithm.

V. CONCLUSION

In this paper, we have identified the optimal transmit power
policy for energy harvesting transmitters with storage losses
sharing a medium in a multiple access setting. We have shown
that the problem can be solved by an alternating maximization
algorithm where each iteration step is effectively a single-user
problem. For this problem, the optimal policy is a double-
threshold policy on each transmitter with thresholds related
through the energy loss rate. For the special case of sum
rate maximization in a Gaussian multiple access channel, we
have shown that the thresholds act on the sum-power, and the
optimal policy has a three threshold structure with storage
priority given to the user with a more efficient storage. The
results of this work can be extended to more than two receivers
when a simple multiple access scenario is considered. Future
work may include analysis of such networks with multiple
destinations and energy harvesting relays, exploiting different
paradigms such as routing.
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